Citation: Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang. On the mechanism of antibiotic resistance and fecal microbiota transplantation[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
[1] | S. Nancey, J. Bienvenu, B. Coffin, et al., Butyrate strongly inhibits in vitro stimulated release of cytokines in blood, Dig. Dis. Sci., 47 (2002), 921–928. |
[2] | S. M. Finegold, S. E. Dowd, V. Gontcharova, et al., Pyrosequencing study of fecal microflora of autistic and control children, Anaerobe, 16 (2010), 444–453. |
[3] | A. C. Ericsson, S. Akter, M. M. Hanson, et al., Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota, Oncotarget, 6 (2015), 33689–33704. |
[4] | H. E. Jakobsson, C. Jernberg, A. F. Andersson, et al., Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome, PLoS One, 5 (2010), e9836. |
[5] | L. Dethlefsen and D. A. Relman, Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation, Proc. Natl. Acad. Sci. U. S. A., 108 (2011), 4554–4561. |
[6] | J. J. Faith, J. L. Guruge, M. Charbonneau, et al., The long-term stability of the human gut microbiota, Science, 341 (2013), 1237439. |
[7] | I. Gustafsson, M. Sjolund, E. Torell, et al., Bacteria with increased mutation frequency and antibiotic resistance are enriched in the commensal flora of patients with high antibiotic usage, J. Antimicrob. Chemother., 52 (2003), 645–650. |
[8] | D. Artis, Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut, Nat. Rev. Immunol., 8 (2008), 411–420. |
[9] | V. Bucci, C. D. Nadell and J. B. Xavier, The evolution of bacteriocin production in bacterial biofilms, Am. Nat., 178 (2008), E162–173. |
[10] | J. Zheng, M. G. Ganzle, X. B. Lin, et al., Diversity and dynamics of bacteriocins from human microbiome, Environ Microbiol, 17 (2015), 2133–2143. |
[11] | F. Zhang, B. Cui, X. He, et al., Microbiota transplantation: concept, methodology and strategy for its modernization, Protein. Cell., 9 (2018), 462–473. |
[12] | S. N. Gopalsamy, M. H. Woodworth, T. Wang, et al., The Use of Microbiome Restoration Therapeutics to Eliminate Intestinal Colonization With Multidrug-Resistant Organisms, Am. J. Med. Sci., 356 (2018), 433–440. |
[13] | Y. Wei, J. Gong, W. Zhu, et al., Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant Staphylococcus aureus enterocolitis, BMC Infect. Dis., 15 (2015), 265. |
[14] | D. Ishikawa, T. Sasaki, T. Osada, et al., Changes in Intestinal Microbiota Following Combination Therapy with Fecal Microbial Transplantation and Antibiotics for Ulcerative Colitis, Inflamm. Bowel. Dis., 23 (2017), 116–125. |
[15] | E. van Nood, A. Vrieze, M. Nieuwdorp, et al., Duodenal infusion of donor feces for recurrent Clostridium difficile, N. Engl. J. Med., 368 (2013), 407–415. |
[16] | C. Ubeda, V. Bucci, S. Caballero, et al., Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization, Infect. Immun., 81 (2013), 965–973. |
[17] | L. J. Brandt, American Journal of Gastroenterology Lecture: Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile infection, Am. J. Gastroenterol., 108 (2013), 177–185. |
[18] | M. C. Zanella Terrier, M. L. Simonet, P. Bichard, et al., Recurrent Clostridium difficile infections: the importance of the intestinal microbiota, World J. Gastroenterol., 20 (2014), 7416–7423. |
[19] | S. Jamot, V. Raghunathan, K. Patel, et al., Factors Associated with the Use of Fecal Microbiota Transplant in Patients with Recurrent Clostridium difficile Infections, Infect. Control. Hosp. Epidemiol., 39 (2018), 302–306. |
[20] | G. Cammarota, G. Ianiro and A. Gasbarrini, Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review, J. Clin. Gastroenterol., 48 (2014), 693–702. |
[21] | Y. Li, A. Karlin, J. D. Loike, et al., Determination of the critical concentration of neutrophils required to block bacterial growth in tissues, J. Exp. Med., 200 (2004), 613–622. |
[22] | A. Heinken and I. Thiele, Anoxic Conditions Promote Species-Specific Mutualism between Gut Microbes In Silico, Appl. Environ. Microbiol., 81 (2015), 4049–4061. |
[23] | T. J. Wiles, M. Jemielita, R. P. Baker, et al., Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota, PLoS Biol., 14 (2016), e1002517. |
[24] | T. E. Gibson, A. Bashan, H. T. Cao, et al., On the Origins and Control of Community Types in the Human Microbiome, PLoS Comput. Biol., 12 (2016), e1004688. |
[25] | D. Gonze, L. Lahti, J. Raes, et al., Multi-stability and the origin of microbial community types, ISME J., 11 (2017), 2159–2166. |
[26] | A. L. Gomes, J. E. Galagan and D. Segre, Resource competition may lead to effective treatment of antibiotic resistant infections, PLoS One, 8 (2013), e80775. |
[27] | E. M. D'Agata, M. Dupont-Rouzeyrol, P. Magal, et al., The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria, PLoS One, 3 (2008), e4036. |
[28] | V. Bucci, S. Bradde, G. Biroli, et al., Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota, PLoS Comput. Biol., 8 (2012), e1002497. |
[29] | S. Estrela and S. P. Brown, Community interactions and spatial structure shape selection on antibiotic resistant lineages, PLoS Comput. Biol., 14 (2018), e1006179. |
[30] | S. W. Wu, H. de Lencastre and A. Tomasz, Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus, J. Bacteriol., 183 (2001), 2417–2424. |
[31] | S. Gottig, S. Riedel-Christ, A. Saleh, et al., Impact of blaNDM-1 on fitness and pathogenicity of Escherichia coli and Klebsiella pneumoniae, Int. J. Antimicrob. Agents., 47 (2016), 430–435. |
[32] | R. Freter, H. Brickner, J. Fekete, et al., Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun., 39 (1983), 686–703. |
[33] | M. P. Leatham, S. Banerjee, S. M. Autieri, et al., Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine, Infect. Immun., 77 (2009), 2876–2886. |
[34] | K. Tabita, S. Sakaguchi, S. Kozaki, et al., Comparative studies on Clostridium botulinum type A strains associated with infant botulism in Japan and in California, USA, Jpn. J. Med. Sci. Biol., 43 (1990), 219–231. |
[35] | Y. Yamashiro, Gut Microbiota in Health and Disease, Ann. Nutr. Metab., 71 (2017), 242–246. |
[36] | C. Cordonnier, G. Le Bihan, J. G. Emond-Rheault, et al., Vitamin B12 Uptake by the Gut Commensal Bacteria Bacteroides thetaiotaomicron Limits the Production of Shiga Toxin by Enterohemorrhagic Escherichia coli, Toxins (Basel), 8 (2016), E14. |
[37] | R. A. Sorg, L. Lin, G. S. van Doorn, et al., Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation, PLoS Biol., 14 (2016), e2000631. |
[38] | T. Ito, K. Okuma, X. X. Ma, et al., Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC, Drug Resist Updat., 6 (2003), 41–52. |
[39] | H. Nicoloff and D. I. Andersson, Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes, J. Antimicrob. Chemother., 71 (2016), 100–110. |
[40] | C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, et al., Diversity, stability and resilience of the human gut microbiota, Nature, 489, (2012), 220–230. |
[41] | C. Manichanh, J. Reeder, P. Gibert, et al., Reshaping the gut microbiome with bacterial transplantation and antibiotic intake, Genome. Res., 20 (2010), 1411–1419. |
[42] | E. K. Costello, C. L. Lauber, M. Hamady, et al., Bacterial community variation in human body habitats across space and time, Science, 326 (2009), 1694–1697. |
[43] | P. J. Turnbaugh, M. Hamady, T. Yatsunenko, et al., A core gut microbiome in obese and lean twins, Nature, 457 (2009), 480–484. |
[44] | A. Uygun, K. Ozturk, H. Demirci, et al., Fecal microbiota transplantation is a rescue treatment modality for refractory ulcerative colitis, Medicine (Baltimore), 96 (2017), e6479. |
[45] | B. Cui, Q. Feng, H. Wang, et al., Fecal microbiota transplantation through mid-gut for refractory Crohn's disease: safety, feasibility, and efficacy trial results, J. Gastroenterol. Hepatol., 30 (2015), 51–58. |
[46] | C. R. Kelly, S. Kahn, P. Kashyap, et al., Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook, Gastroenterology, 149 (2015), 223–237. |
[47] | S. Vermeire, M. Joossens, K. Verbeke, et al., Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease, J. Crohns. Colitis, 10 (2016), 387–394. |
[48] | H. Seedorf, N. W. Griffin, V. K. Ridaura, et al., Bacteria from diverse habitats colonize and compete in the mouse gut, Cell, 159 (2014), 253–266. |
[49] | S. K. Ji, H. Yan, T. Jiang, et al., Preparing the Gut with Antibiotics Enhances Gut Microbiota Reprogramming Efficiency by Promoting Xenomicrobiota Colonization, Front. Microbiol., 8 (2017), 1208. |
[50] | D. L. Suskind, M. J. Brittnacher, G. Wahbeh, et al., Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn's disease, Inflamm. Bowel. Dis., 21 (2015), 556–563. |
[51] | A. K. Seth, P. Rawal, R. Bagga, et al., Successful colonoscopic fecal microbiota transplantation for active ulcerative colitis: First report from India, Indian. J. Gastroenterol., 35 (2016), 393–395. |
[52] | S. X. Liu, Y. H. Li, W. K. Dai, et al., Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment, World J. Gastroenterol., 23 (2017), 8570–8581. |
[53] | J. Zhang, J. J. Cunningham, J. S. Brown, et al., Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer, Nat. Commun., 8 (2017), 1816. |
[54] | R. B. Montgomery, E. A. Mostaghel, R. Vessella, et al., Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth, Cancer Res., 68 (2008), 4447–4454. |
[55] | J. M. Hyatt, D. E. Nix, C. W. Stratton, et al., In vitro pharmacodynamics of piperacillin, piperacillin-tazobactam, and ciprofloxacin alone and in combination against Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 39 (1995), 1711–1716. |
[56] | D. M. Chaput de Saintonge, D. F. Levine, I. T. Savage, et al., Trial of three-day and ten-day courses of amoxycillin in otitis media, Br. Med. J. (Clin. Res. Ed.), 284 (1982), 1078–1081. |
[57] | C. Llor and L. Bjerrum, Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem, Ther. Adv. Drug Saf., 5, (2014), 229–241. |
[58] | I. van Langeveld, R. C. Gagnon, P. F. Conrad, et al., Multiple-Drug Resistance in Burn Patients: A Retrospective Study on the Impact of Antibiotic Resistance on Survival and Length of Stay, J. Burn. Care. Res., 38, (2017), 99–105. |