
http://www.aimspress.com/journal/MBE

MBE, 16(6): 7057–7084.
DOI: 10.3934/mbe.2019354
Received: 05 June 2019
Accepted: 25 July 2019
Published: 01 August 2019

Research article

On the mechanism of antibiotic resistance and fecal microbiota
transplantation

Xiaxia Kang1, Jie Yan2, Fan Huang3 and Ling Yang1,2,∗

1 School of Mathematical Sciences, Soochow University, Suzhou 215006, P. R. China
2 Center for Systems Biology, Soochow University, Suzhou 215006, P. R. China
3 Mathematics Application Joint Laboratory of Soochow University and Suzhou Jiaoshi Intelligence

Technology Co., Ltd, Soochow University, Suzhou 215006, P. R. China

* Correspondence: Email: lyang@suda.edu.cn; Tel: +8613913152842.

Abstract: Antibiotic resistance is a growing threat to human health and is caused by mainly
the overuse of antibiotics in clinical medicine. Clinically, drug resistance emerges after a series
of antibiotic treatments, implying that each treatment changes the intestinal flora composition and
the accumulations of these changes induce the resistance. But mathematically, this cumulative
effect cannot be achieved by a general population model, because the system will return to its pre-
treatment state (an isolated steady state) after each cure. Based on the fact that sensitive bacteria
and resistant bacteria are similar in most respects except their reactions to antibiotics, we developed
a mathematical model with a specific phase-space structure: instead of isolated points, the steady
states of this system compose one-dimensional manifolds (line segments). This structure explains the
fundamental mechanism of antibiotic resistance: after antibiotic treatment, the system cannot return to
the pretreatment healthy steady state but rather slightly moves along the manifold to a different steady
state. Each use of antibiotics can change the ratio of resistant to susceptible pathogens in the host.
The change the ratio can persist and accumulate, and finally promotes the emergence of antimicrobial
resistance. We also assessed key factors (such as pathogen composition, the amount and composition of
beneficial bacteria, medication duration and bactericidal rates of drugs) influencing the development of
drug resistance. In addition, we clarified how fecal microbiota transplantation affects the treatment of
antibiotic-resistant infections. The effect is essentially a transfer towards the healthy state in the phase
space. Finally, based on the mechanisms revealed by the mathematical models, we suggested some
strategies to delay or prevent the emergence of drug resistance. These findings not only provide a solid
theoretical basis for the treatment of antimicrobial resistance, but also inspire clues to the phenomenon
of drug resistance.
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1. Introduction

Drug-resistant infection caused by over use of antibiotic is one of the most serious health problems
of the 21st century. In the United Sates in 2005, a data survey showed that the total number of deaths
caused by methicillin-resistant S taphylococcus.aureus invasion exceeded that caused by HIV/AIDS in
the same year. A recent estimate suggested that at least 700,000 patients worldwide die from antibiotic
resistance every year. These alarming situations highlight the need to explore the formation mechanism
of antibiotic resistance to control the incidence of resistance.

As a standard treatment for various diseases, antibiotics have been widely used in the clinic due to
their convenience and quick action. Standard antibiotic treatment guidelines aim to maximize
treatment efficacy and minimize side effects, but they do not give enough consideration to the
long-term impact, such as the emergence of antibiotic resistance. In fact, an increasing-number of
studies have demonstrated that antibiotic use can alter the composition of the gut microbiota [1–3].
Some studies have shown that the microbiota composition in patients treated with antibiotics cannot
return to the pretreatment state [4–6]. Additionally, a growing body of literature has suggested that
antibiotic-resistant pathogens are enriched in the intestinal microbiota of patients with high antibiotic
usage [7]. More generally, it has been demonstrated that altering the composition of the microbiota
will interfere with some of the human-microbe interactions that are integral to human physiology.
However, the fundamental role of the microflora composition has not been fully explored in the
development of antibiotic resistance.

The harmony of the gut microbiota ecosystem is crucial to host health. As the dominant
microorganisms in the whole intestinal flora, probiotics are very important in maintaining the balance
of the gut microbiota. Several studies of intestinal flora have demonstrated that beneficial bacteria
play an essential role in intestinal health. For example, beneficial bacteria can inhibit the reproduction
and growth of pathogens or prevent the invasion of foreign pathogens by secreting bacteriocins or
activating the host’s immune defense system [8–10]. Altogether, exploring the mechanism of
antibiotic resistance must take into account the role of probiotics.

FMT (short for Fecal microbiota transplantation) as a new therapy is one of the main treatments
against drug-resistant infections. FMT is a therapeutic regimen of infusion of fecal preparation from a
healthy donor into a patient to cure a certain disease [11]. The gut microbiota in healthy donors is
dominated by a large number of probiotics. Therefore, FMT is a feasible strategy to resist drug
resistance. Recently, FMT has gradually been adopted and has achieved considerable success in
curing antibiotic-resistant infections [12–16]. For instance, many studies have shown that FMT
restored both the gut microbiota composition and function in patients who suffered from recurrent
Clostridium di f f icile-associated diarrhea [17–19]. Some studies have shown that the worldwide
mean cure rates of FMT for diarrhea are approximately 91% [20]. Increasing use as a first-line
treatment suggests that FMT combined with antibiotic treatment can be effective in treating infections
caused by “superbugs” [12, 13]. Therefore, understanding the effective mechanism of FMT is another
important issue.

Mathematical modeling is a powerful tool to interpret the development of antibiotic resistance.
Some studies have used dynamic systems approaches to explore the growth patterns of microbial
species, species-species interactions, and susceptibilities of the intestinal microbiota to
antibiotics [21–23]. Other researchers have proposed multi-stability or the existence of strongly
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interacting species to explain the microbial compositional shift caused by antibiotic
treatments [24, 25]. However, most quantitative studies of the intestinal microbiota are limited to the
classification of microorganisms into antibiotic-sensitive and antibiotic-resistant bacterial groups, and
the critical effects of probiotics are absent [26–29]. Additionally, the theoretical analysis of fecal
bacteria transplantation is sparse.

Unlike previous studies, we focused on the case where gene sequences of sensitive and resistant
pathogens differ at only one site or a few sites in the drug resistance determinant region. This situation
has been confirmed by deep sequencing technology in many cases. For example, the difference
between methicillin-resistant S taphylococcus aureus and non-resistant strains is that a site mutation
occurs in the -10 consensus of the promoter [30]. Another example is that there was no significant
difference in growth between NDM-1-expressing E.coli (which are resistant to all β-lactam antibiotics
except monobactams) and their isogenic parental strains [31]. We also considered the role of
probiotics in maintaining the balance of the gut microbiota. Therefore, we modeled the combined
effects of inter-specifies interaction (probiotics and pathogens) and antibiotic therapy (or FMT
combined with antibiotic treatment) to explore the mechanism of development of drug resistance and
the mechanism of FMT. In our model, the intestinal microbiota was divided into the following three
groups: probiotics, sensitive-pathogens and resistant-pathogens. Specifically, we wanted to explore
the dynamic evolution of the core gut microbiota, to provide critical information for the optimal use
of antibiotics to delay or even prevent the emergence of antibiotic resistance. By mathematical
modeling and numerical simulations, we demonstrated the importance of probiotics and interspecies
inhibition in the development of antibiotic resistance. This work clarified that the mechanism of FMT
is essentially a transfer towards the healthy states in the phase space. In addition, we also suggested
some strategies (i.e., early usage of FMT) to delay or prevent the emergence of drug resistance. These
findings provide novel insights for understanding drug resistance and FMT.

2. Dynamic model

We used the generalized Lotka-Volterra (L-V) equation to establish a time-dependent ecological
dynamic model with external disturbances (antibiotics). The human intestinal microbiota is a complex
and dynamic ecosystem of crucial importance to human health. In this study, we were primarily
interested in the development of antibiotic-resistance which is caused by changes in the microbiota
composition state. To achieve this goal, we classified the microbiota into three groups (probiotics,
antibiotic-sensitive pathogens and antibiotic-resistant pathogens) to represent the response of
commensal bacteria to antibiotic treatments.

Experimental studies have shown that microbial growth and reproduction will eventually saturate
due to limited resources and space [32, 33]. Therefore, we introduced a logistic equation to depict the
growth pattern of bacteria under limitation of resources. Some studies on microbial interactions have
shown that probiotics can effectively inhibit the growth of pathogens and the formation of pathogenic
spores by secreting bacteriocins or short-chain fatty acids and so on; in turn, pathogens can also
secrete toxins to eliminate probiotics [9, 34–36]. Combining these existing experimental phenomena,
we developed a model in which pathogens (consisting of antibiotic-sensitive pathogens and
antibiotic-resistant pathogens) and probiotics (i.e., B1) inhibited each other, as shown in Figure 1. Our
system further considered the competition for resources between sensitive pathogens and resistant
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pathogens with population sizes of PS 1 and PT1, respectively. The ecological dynamic model assumes
that three populations follow a set of ordinary differential equations:

dPS 1
dt = r1(1 − k1PS 1+k2PT1

K1
)PS 1 − k12

B2
1

B2
1+a′2

PS 1 − d1PS 1 − η1PS 1

dPT1
dt = r1(1 − k1PS 1+k2PT1

K1
)PT1 − k12

B2
1

B2
1+a′2

PT1 − d1PT1 − η2PT1

dB1
dt = r2(1 − B1

K2
)B1 − k21

(k1PS 1+k2PT1)2

(k1PS 1+k2PT1)2+b′2
B1 − d2B1 − η3B1

(2.1)

Figure 1. The three-group model of the intestinal microbiota with sensitive pathogens,
resistant pathogens and probiotics. The blue oval is the population of probiotics. The pink
rectangle is the population of pathogens that consists of two groups of pathogens: sensitive
pathogens and resistant pathogens. Both pathogens compete for the same growth substrates,
which are different from those for the probiotics. The outflow arrows denote the possible
fates of different strains. The model parameters r1 and r2 represent growth rates. The death
rates d1 and d2 consist of the immune response killing bacteria and fecal efflux. η j ( j = 1, 2, 3)
describes killing rate of antibiotic. The dashed lines represent the inter-specifies inhibition
between pathogens and probiotics (i.e., parameters k12 and k21).

A key assumption of our model is that sensitive pathogens and resistant pathogens have differences
in one site or very few sites in the gene coding sequence, which mainly affect the bactericidal activity
of antibiotics. Actually, using deep sequencing technology, this situation has been confirmed in many
cases [30, 31]. For instance, the resistant strains have only one site mututaion from the non-resistant
S taphylococcus aureus. The genetic determinant of resistance, mecA, is a gene of
methicillin − resistant S taphylococcus aureus. DNA sequence of mecA from homologous resistant
strains revealed that this resistance originated from a site mutation in the -10 consensus of the
promoter, that is, thymine residues of sensitive strains (i.e., T at nt 1577) were replaced by adenine of
resistant strains (i.e., A at nt 1577) [30]. Additionally, Stephan Gottig, et al. used a vivo infection
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model to study the growth kinetics of NDM-1-expressing E.coli and their isogenic controls [31]. The
results showed that there was no significant difference in growth. Therefore, we assume that the
relevant parameters of these two pathogens (sensitive and resistant) are identical except for antibiotic
bactericidal rates (η1 and η2) and competition coefficients (k1 and k2). In our model, this assumption is
the basis of explaining the mechanism of drug resistance.

Here, ri and di are the growth rate and the mortality rate of pathogens and probiotics (i = 1, 2),
respectively. We introduce a logistic function to characterize the growth of probiotics and two types of
pathogens. The term in brackets indicates that the growth of every species is limited by the maximum
population size K1 (K2). k1 and k2 denote the inter-specific competition intensity of the two pathogen
groups because they will compete for the same nutritional resources and space. The interspecific
inhibitions between probiotics and pathogens, mediated through secretion (bacteriocin or toxins), are
represented by increasing Hill functions. The inhibition coefficients k12 (pathogens by probiotics)
and k21 (probiotics by pathogens) indicate the maximum inhibition intensity of bacteriocin and toxins,
respectively. The parameter a

′

(or b
′

) is probiotic (or pathogen) population that gives half of the
maximum inhibition coefficient k12 (or k21 ). The last item in the equations describes the mortality rate
caused by antibiotic intake. Many studies have shown that resistant pathogens can prevent the entry of
antibiotics different ways, as follows: altering cell membrane permeability, changing protein structure
in the body to inhibit binding, or secreting certain hydrolytic enzymes to break down antibiotics [37–
39]. Therefore, we assumed that antibiotics have different effects in different species, i.e., the drug
bactericidal rate η j of species j (=1, 2 or 3) is different for different species (or η j is the antibiotic-
related death rate).

It is convenient to scale the variables and set the maximum capacity to unity (K1 = K2 = 1). By
introducing PS = PS 1/K1; PT = PT1/K1; B = B1/K2; a = a

′

K2
; and b = b

′

K1
, we simplified the Eq (2.1) to

obtain the following model:

dPS
dt = r1[1 − (k1PS + k2PT )]PS − k12

B2

B2+a2 PS − d1PS − η1PS

dPT
dt = r1[1 − (k1PS + k2PT )]PT − k12

B2

B2+a2 PT − d1PS − η2PT

dB
dt = r2(1 − B)B − k21

(k1PS +k2PT )2

(k1PS +k2PT )2+b2 B − d2B − η3B

(2.2)

Different growth rates or mortality rates are used to characterize the different physiological stages.
In the healthy stage, we set the drug bactericidal rate η j as zeros in Eq (2.2), because there is no
antibiotic involved. In the infection stage, increased r1 was used to describe the accumulation of the
pathogens. For the antibiotic treatment stage, we utilized nonzero drug bactericidal rates, η j ( j = 1, 2
or 3), to present the effects of antibiotics. For the FMT treatment stage, we introduced the survival rate
coefficient k (0 < k < 1) to characterize the effect of fecal microbiota transplantation. For example,
the microbiota composition state before FMT and that of donors are (PS , PT , B) and (PS h, PTh, Bh),
respectively, and the instantaneous composition state after FMT becomes (PS + k ∗ PS h, PT + k ∗
PTh, B + k ∗ Bh). In the recovery stage, the same parameters as in the healthy stage were used. Table 1
summarizes the values of all the parameters used in the Eq (2.2) and the corresponding parameter
values for different stages.
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Table 1. List of Parameters and their values.

Symbols Definition Value (day−1)
r1 Growth rate of pathogens 0.664 (without infection)

0.664 ∗ 1.32 (with infection)
r2 Growth rate of probiotics 0.718
d1 Death rate of pathogens 0.0501
d2 Death rate of probiotics 0 .0751
k12 Maximum inhibition coefficient of probiotics on pathogens 0.76
k21 Maximum inhibition coefficient of pathogens on probiotics 0.84
k1 Competitive coefficient of PT against PS 0.5
k2 Competitive coefficient of PS against PT 0.5
a Probiotics amount that yields 50% of k12 0.58
b Pathogens amount that yields 50% of k21 0.58
η1 Killing rate of antibiotic for PS 0.086 (with antibiotic )
η2 Killing rate of antibiotic for PT 0.0016 (with antibiotic )
η3 Killing rate of antibiotic for probiotics 0.015 (with antibiotic )
k Survival rate of fecal microbiota 0.5

3. Results

3.1. Validation of antibiotic resistance and effectiveness of FMT

We first characterized the host’s complete physiological process of illness (red curve 1©), drug
treatment (sky blue curve 2©), FMT (green curve 3©) and recovery (blue curve 4©) through time
evolution curves of the total amount of pathogens (sensitive pathogens and resistant pathogens)
(Figure 2A). Some studies have shown that each healthy individual harbors a stable gut
microbiota [40]. Therefore, in our model, before the illness stage, the microbiota composition state
was set in a healthy stable state, i.e., the amount of pathogens remained in a low level (-7 days to 0
days in Figure 2A). To depict the illness process, we used the overgrowth of pathogens, i.e., parameter
r1 became 1.32 ∗ r1. In the illness stage, the pathogen populations continued to increase. Then,
antibiotic treatment started on the fourth day after the infection and lasted for 3 days. We defined a
course of continuous-medication for 3 days as a standard treatment, because many clinical trials have
confirmed that most common infectious diseases can be cured with 3 days of drug therapy. Here, we
assumed that the antibiotic effects (non-zero η j) were added to the system to eliminate pathogens in
this stage. In the meantime, the reproductive rate of pathogens was also effectively suppressed and
returned to the healthy level (r1). After drug treatment, the total amount of pathogens was
significantly reduced to a lower level than that prior to treatment. From the 7th day, the system entered
the self-repair stage and then fully recovered after a long time. In the recovery process, we set the
drug bactericidal rate (η j) to zero because the bactericidal activity of antibiotic also disappears after
drug withdrawal.

Figure 2A shows the first sixteen complete illness-treatment processes of the same patient. It can
be seen intuitively that the amount of pathogens after the first 15 antibiotic treatments can return to the
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pretreatment state. However, the amount of pathogens after the 16th treatment can stabilize to a higher
level (Figure 2A).

Figure 2. Time evolution curves of the total amount of pathogens in the illness-treatment
processes. (A) The first 16 illness-treatment processes. (B) The first illness-treatment
process. (C) The 16th illness was not prevented by a 3-day medication course. (D) The
16th infection was not prevented by a 4-month medication course. (E) The 16th infection
was treated with FMT combined with antibiotic. The arrow lines represent the illness course
(red), the drug treatment course (sky blue), the FMT course (green) and the recovery or health
course (blue). This figure shows that our model is reasonable and effective.

To further explore why the same treatment can work for only the first 15 times on the same disease,
we amplified the details of the first and 16th treatments (Figure 2B and C). After the first antibiotic
treatment, the amount of pathogens rapidly decreased to a low level and reached a healthy stable state
soon afterwards (Figure 2B). The patient accepted the same treatment after the 16th infection, and the
amount of pathogens eventually returned to a high level (the illness stable state) (Figure 2C). The 16th

treatment failure implies that the gut microbiota may have developed resistance or pseudo-resistance.
We then confirmed that the antibiotic lose efficacy in the 16th infection is due to the emergence of

drug-resistance. Upon the 16th infection, we prolonged the duration of antibiotics treatment from 3
days to 4 months (the sky blue curve in Figure 2 D), however, the amount of pathogens still remains at
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a high level (the illness stable state). The result shows that the amount of pathogens still rebounds to
the illness state (the high stable state) even when the permanent treatment was given. Combining the
data from the standard treatment and permanent treatment after the 16th illness, these results suggest
that the gut microbiota has already developed permanent resistance.

We further studied the improved strategy of FMT (i.e., FMT with antibiotic treatment). The results
demonstrate that the amount of pathogens returned to the healthy level in our model (Figure 2E).
Therefore, this simulation also reproduced that drug-resistant infections can be eliminated by FMT in
clinic. In the amplified details, the total pathogens decreased slightly after antibiotic intake, but
instantly rose to higher levels after the inoculation of fecal bacteria and subsequently rapidly declined.
These simulation results are consistent with experimental observations in mouse models by
Chaysavanh and Jens et al [41].

Therefore, these simulation results confirmed that our model can be used to explore the mechanism
of antibiotic-resistance and the effectiveness of FMT. By revealing the dynamic evolution of the gut
microbiota, we could provide new ideas for how to reduce the risk of drug resistance in clinical
treatments.

3.2. The development mechanism of drug resistance

We first analyzed steady states to understand key features of this dynamic system, because the
measurements of the gut microbiota composition in some studies typically represent steady state
behaviors. Many experimental observations have indicated that the microbial ecosystem of each
individual has a relatively stable and resilient community [4, 5, 42, 43]. Unless a large perturbation
(e.g., antibiotic intake) is introduced, the ecological system remains stable for months or even years.
The steady state of ecological dynamics system Eq (2.2) are those positive real solutions that satisfy
equations set Eq (2.2). Because sensitive and resistant pathogens in the ecological system Eq (2.2)
share the same parameters in the absence of antibiotic intake, we can combine these two variables
together to form a new variable P = k1 ∗ PS + k2 ∗ PT . Therefore, we recast system Eq (2.2) to an
equivalent two-dimensional system Eq (3.1),

dP
dt = r1(1 − P)P − k12

B2

B2+a2 P − d1P

dB
dt = r2(1 − B)B − k21

P2

P2+b2 B − d2B
(3.1)

in which P indicates the weighted total population of two pathogens.
Then, we focused on this equivalent 2-D system Eq (3.1) to study the steady states. Under some

constraint conditions, the system has six steady states, named P0, P01, P30, P1, P2 and P3. Under
the parameter values of Table 1, we can get two eigenvalues of the system at each equilibrium point
approximately. By caculating the Jacobian matrix of Eq (3.1) at these steady states, we obtained their
eigenvalues. The numerical results showed that steady states P1 and P3 are locally asymptotically
stable (because eigenvalues at both equilibrium points are negative real roots), and the rest are unstable
(Figure 3A). And the two eigenvalues at the equilibrium point P2 are one positive real root and one
negative real root, respectively. Therefore, P2 is a saddle point. Here, we are particularly interested
in three biologically meaningful steady states: a healthy stable state (P1) with probiotics dominant, a
disease stable state (P3) with pathogens dominant and an unstable state (P2).

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7057–7084.



7065

Figure 3. The vector field diagram in the P-B plane and disease types. (A) Phase plane
analysis of the bistability, for the following parameters values: r1 = 0.664; r2 = 0.718;
d1 = 0.0501; d2 = 0.0751; k12 = 0.76; k21 = 0.84; a = 0.58; and b = 0.58. Over the blue
arrows describing the flow field in the phase-portrait (P-B), the black dashed curve is a stable
manifold of a saddle (P2). The equilibrium P1 (blue circle, the healthy state) and equilibrium
P3 (red circle, the disease state) are stable nodes, and the remaining equilibriums (P0, P01, P30

and P2) are unstable. In addition, the stable manifold is also a critical line between regions
R1 and R2. (B) Self healing disease. The trajectory in the infection course remains in the area
R1. (C) Non-self-healing disease. The trajectory in the infection course passes through the
manifold m1 and enters into the area R2.

A one-dimensional stable manifold (m1) of the saddle point (P2) can divide the first quadrant of the
phase plane into two regions (R1 and R2). The vector field in Figure 3 depicts the long-term behavior
depending on the initial conditions. The trajectories from the initial points in R1 will converge towards
the healthy stable state (P1), but the trajectories from R2 will ultimately reach the disease stable state
(P3). Therefore, we call the region R1 as the self-healing area, and the region R2 as the non-self-healing
area.

In fact, this stable manifold (m1) is also the boundary between the self-healing area and the non-
self-healing area. After infection, the trajectory moved away from healthy stable state in our model.
If the trajectory crossed this manifold m1 during the illness, it approached the disease stable state (P3)
without treatment (the long blue curve in Figure 3C). In our model, we defined this disease as the non-
self-healing disease in Figure 3C. In contrast, if the trajectory did not cross this manifold m1 during
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the illness, it returned to the healthy stable state even without treatment (blue curve in Figure 3B). The
second case is the self-healing disease. Once the host infected with the non-self-healing disease, he
had to be treated. The force of antibiotic treatment in our model pushes the trajectory back to above
the critical manifold (e.g., the sky blue curve in Figure 3C).

Figure 4. The illness-treatment-recovery processes in the phase plane. (A) The first infection
was eliminated by a 3-day medication course. (B) The 16th infection was not prevented by
a 3-day medication course. (C) The 16th infection was also not prevented by a 4-month
medication course. (D) The 16th infection was eliminated by FMT combined with antibiotic.
The characteristic of antibiotic resistance is that the trajectory of the drug treatment course
never crosses the manifold (the black dashed line).

Next, we analyzed the illness-recovery processes in the phase plane. In the absence of external
disturbances, the gut microbiota stayed in the stable state P1 (in the R1 region) to maintain a
functional balance in a healthy intestinal system. Once the host infected diseases, the amount of
pathogens increased accordingly, resulting in a decrease in the probiotic amount. The orbit crossed
the manifold m1 to the R2 region (red trajectory 1© in Figure 4). In the first 15 illness-treatment
processes, 3-day antibiotic intakes could push the trajectory across m1 and back to the R1 region (sky
blue trajectory 2© in Figure 4A). After withdrawing antibiotics, the orbits may automatically return to
the healthy stable state P1 (blue trajectory 4© in Figure 4A), because the orbit started from the R1

region. However, in the 16th treatment process, 3-day antibiotic treatment could not push the
trajectory back to the R1 region (trajectory 2© in Figure 4B). Therefore, the orbit automatically went to
the illness stable state P3 (trajectory 4© in Figure 4B), because it started from the R2 region. In the
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16th, if we used long-term (even permanent) treatment, the trajectory still could not go back to the R1

region, and finally went to an illness state (trajectory 2© in Figure 4C). If FMT combined with
antibiotic ( Figure 4D) was applied, the state was relocated to the R1 region (sky blue trajectory 2©,
and green trajectory 3©), and then the orbit automatically returned to the healthy stable state P1

(trajectory 4©). In summary, the system could reach a stable healthy state (P1) if and only if the
microbiota composition state was transferred to the curable region (R1) by treatments. In this 2-D
system, the microbial composition state always returned to the same state after repeated antibiotic
perturbations (first 15 times). However, many studies have confirmed that the gut microbiota just
returns to a stable state similar to that of the pretreatment state [4, 5, 10].

Figure 5. The system dynamics behavior in the 3-D phase space. Eigenvalues of equilibrium
states in the line segment L1 (blue line segment) and L3 (red line segment) are two negative
roots and one zero; but in L2 (black dashed line segment) are one negative root, one positive
root and one zero. The yellow 2-D surface M1 is formed by the stable manifolds of
equilibrium states in L2, which divides the space into the D1 domain and D2 domain.

To test this phenomenon (i.e., the post-antibiotic state is similar to only the pre-treatment state), we
further analyzed the dynamic behavior of a 3-D system. Instead of three isolated steady states P1 − P3

in the 2-D system, there are three types of steady states (L1−L3) in the 3-D system (Figure 5). The 3-D
phase space in Figure 5A depicts the long-term behavior depending on different initial values. The blue
line segment L1 and red line segment L3 represent healthy equilibrium states and disease equilibrium
states, respectively. The stable manifold (M1) of the unstable steady states in L2 is a 2-D surface in the
3-D phase space. The surface M1 divides the space into two domains (D1 and D2). These trajectories
from the initial points in D1 converged towards stable healthy states in L1, but these trajectories from
D2 ultimately reached a stable disease state in L3.

Furthermore, we reproduced the first 15 effective treatments (Figure 6A) and the outcomes of
different treatments after the 16th illness (Figure 6B-D) in the 3-D phase space. For succinctness, only
the first, 10th, 12th and 15th effective treatments are illustrated to show the illness-treatment-recovery
process (Figure 6A). During the illness stage, the trajectory went away from the healthy state in L1,
and passed the critical interface M1 to enter the D2 domain. Three-day antibiotic intakes could push
the trajectory back to the D1 domain. After the withdrawal of antibiotics, the trajectory eventually
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returned to a healthy stable state in L1, but in a location slightly different from that pretreatment.
Furthermore, the recovered healthy states gradually deteriorated (the amount of resistant pathogen
increased) with repeating antibiotic treatments (Figure 6A).

Figure 6. The illness-treatment processes in 3-D phase space. (A) The first 15 infection-
treatment processes. (B) The 16th infection was not prevented by a 3-day medication course.
(C) The 16th infection was not prevented by a 4-month medication course. (D) The 16th was
eliminated by FMT combined with antibiotic. The characteristic of antibiotic resistance is
that the trajectory of antibiotic treatment never crosses the yellow surface. (E) The amount
of resistant and sensitive pathogens after each drug treatment. (F) The ratio of resistant
pathogens to sensitive pathogens in healthy states.
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During the 16th illness- treatment- recovery processes, the system eventually reached a disease
stable state in L3, because the trajectory did not cross the critical interface (M1) after 3-day antibiotic
(Figure 6B) or even permanent treatment (Figure 6C). However, after FMT combined with antibiotic
treatment, the orbit reached a healthy stable state in L1 (Figure 6D). In fact, the state was relocated to
the D1 domain by this combined strategy.

As shown in Figure 6A, the recovered healthy states gradually moved along L1 with repeated
antibiotic treatments. From the perspective of pathogen composition, the amount of sensitive bacteria
among pathogens gradually decreased, while the amount of resistant pathogens gradually increased
with repeated antibiotic perturbations (Figure 6E). Antibiotic resistance emerges when the amount of
resistant pathogens reaches a certain level. We used the ratio of resistant pathogens to sensitive
pathogens in the healthy stable state to quantify the cumulative effects of repeating antibiotic
disturbances. As shown in Figure 6F, this ratio (black dots) gradually increased, and finally passed a
critical value (red dashed line) to achieve antibiotic-resistance.

These simulations show that every antibiotic treatment can change the location of the healthy
stable state in L1, e.g., antibiotic treatment can permanently change the steady state ratio of resistant
pathogens to sensitive pathogens. These results are consistent with the existing experimental
observation that after antibiotic withdrawal, the change in the microbial composition state caused by
antibiotics will persist for years or decades [4, 5]. Repeating antibiotic treatments pushed the ratio
towards the “bad” direction; that is, resistant pathogens in the post-recovery stable state increased in
abundance. When the ratio of resistant pathogens to sensitive pathogens exceeds a threshold value,
the antibiotic resistance of the gut microbiota emerges. This model affirmed that the successive shift
of post-recovery stable states on L1 was essentially the change of the ratio (PT to PS ).

In summary, every antibiotic treatment will permanently change the steady state ratio of sensitive
pathogens to resistant pathogens. This small change is the foundation of development of antibiotic
resistance. The effects of antibiotic intake will gradually accumulate. Due to the accumulation of
the antibiotic effect, the ratio of sensitive pathogens to resistant pathogens continues to changing and
eventually exceeds a certain value, inducing the development of antibiotic resistance.

3.3. Key factors affecting antibiotic resistance

In the above analysis, we confirmed that the ratio of sensitive pathogens to resistant pathogens is
the root cause of antibiotic resistance. Therefore, we first studied how the initial pathogen composition
influences the development of resistance. In Figure 7A, the x-axis stands for the initial ratio of sensitive
pathogens to resistant pathogens in healthy individuals. The number of effective antibiotic treatments
(before 3 days of antibiotic treatment failed) increased logarithmically with the initial ratio. Every
antibiotic treatment increases the ratio of resistant pathogens to sensitive pathogens, until the ratio
reaches a threshold to form the resistance. A higher initial ratio indicates a shorter distance to the
threshold and fewer effective treatments before resistance than those for a lower initial ratio. Therefore,
the initial pathogen composition structure is crucial in determining resistance.

In fact, probiotics also play an important role in the development of antibiotic resistance. Here,
we further explored the risk of antibiotic resistance in different microenvironments of the intestinal
microbiota. Usually, a higher level of beneficial bacteria means a better microenvironment because
beneficial bacteria can inhibit the growth of pathogens. In our model, we used the growth rate of
beneficial bacteria, which determines the beneficial bacteria amount in the healthy state, to describe
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the microenvironment of different hosts.

Figure 7. Key factors affecting antibiotic resistance. (A) The pathogen composition in
healthy stable states. (B-C) The impact of probiotics on drug resistance. (D) The excessive
administration of antibiotics. Here, the gray regions indicate that antibiotic treatment for 3
days failed to eliminate the first infection. The blue line charts indicate that the total number
of effective treatments was limited. The green regions show that 3-day antibiotic treatment
was permanently effective.

We simulated the total number of effective treatments in different microenvironments. The results
show that the number of antibiotic treatments increased with an increasing reproduction rate (r2) in a
small window between the gray region and the green region (Figure 7B). When the reproduction rate
of probiotics was relatively small, antibiotic resistance emerged in the first treatment stage (the gray
region in Figure 7B). However, when the reproduction rate of probiotics was high, 3-day antibiotic
treatment remained effective and resistance never emerged (the green region in Figure 7B).

In addition to the amount of beneficial bacteria, the composition of beneficial bacteria may also be
different in different hosts. In our model, we assumed that different compositions of beneficial bacteria
can alter the maximum inhibition coefficient of probiotics to pathogens. Then, we explored the number
of antibiotic treatments with different inhibition coefficients. Similarly, we also found that increasing
the inhibition intensity of probiotics to pathogens could prolong the number of antibiotic treatments to
varying degrees (Figure 7C).

Taken together, these simulations show that beneficial bacteria are indispensable in the intestinal
flora composition. Enhancing the level or optimizing the endogenous composition of beneficial
bacteria can effectively delay or even prevent (depending on the parameters) the development of
antibiotic resistance.
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Moreover, excessive administration (longer medication duration) of antibiotics had an important
effect on the development of antibiotic resistance (Figure 7D). The x-axis represents the duration of
antibiotic administration in a course of treatment. In contrast to the initial ratio of pathogens, the
number of antibiotic treatments decreased logarithmically with the duration of antibiotic
administration. Compared with standard treatment, prolonged antibiotic treatment could accelerate
the change in the ratio of sensitive pathogens to resistant pathogens. In other words, excessive
administration of antibiotics could promote the development of antibiotic resistance. Therefore,
following the medication guidelines or the doctor’s advice is very important.

Next, from the perspective of drugs, we explored their effects on antibiotic resistance. Since the
application of penicillin in the clinic in 1940, the number of antibiotics has reached several thousand,
and there are several hundred commonly used antibiotics in clinical practice. The gut microbiota has
different responses to these antibiotics. Therefore, we studied the effect of different antibiotics, which
corresponds to different parameter values of η1, η2 and η3 in our model.

Here, we explored the risk of antibiotic resistance from two aspects. The first aspect is that of the
bactericidal rates against resistant pathogens. Here, we fixed the bactericidal rate of antibiotics against
sensitive pathogens (η2 = 0.086) and probiotics (η3 = 0.015) and tested the resistance risk of different
antibiotics (with different bactericidal rates for resistant pathogens, i.e., η2).

Generally, extending the antibiotic medication time may cure the illness. In our model, resistance
meant that the infection cannot be cured even under endless antibiotic treatment. Therefore, we
observed the medication time (may be finite or infinite days) of achieving an effective treatment to
determine whether antibiotic resistance emerged.

Under the conditions of Figure 8A (η2 = 0.016), the medication time, T, was three days to achieve an
effective treatment in the first eighteen infection-treatment processes. In the nineteenth treatment, the
required medication time to achieve an effective treatment was prolonged to 4 days. In the twentieth
infection, the required medication time was further extended to 9 days (Figure 8A). Furthermore,
the antibiotic resistance emerged in the twenty-first treatment stage. We call this type of antibiotic
resistance response incurable resistance because treatment failed even with permanent medication.

Under a different parameter value, η2 = 0.044 (Figure 8B), the required medication time was
gradually extended as the infection time increased. Starting from the forty-first infection, the system
could always return to a healthy stable state after a 5-day treatment. Therefore, the gut microbiota did
not develop incurable resistance to this antibiotic (η2 = 0.044). Here, we call this type of antibiotic
resistance responses a curable antibiotic resistance response or pseudorandom resistance.

In our model, we defined the culminating medication time as the required maximum medication
time for a specific antibiotic. Hence, the culminating medication time for specific antibiotic (η2 =

0.016) was infinity and the culminating medication time was 5 when η2 = 0.044.
These simulations (Figure 8A and 8B) implied that the bactericidal rate (η2) may be a key factor

determining the risk of antibiotic resistance. The culminating medication time can be used an effective
indicator to measure the resistance of antibiotics. We further studied the culminating medication time
for different antibiotics (i.e., different η2 values) (Figure 8C). Simulation result showed that a critical
threshold (black dashed line) of the bactericidal rate (η2) did exist. When η2 exceeded the critical
threshold, the culminating medication time was finite and was a decreasing function of η2 (red
polygonal line). When η2 was below the critical threshold, the culminating medication time was
infinite (gray region). This meant that the incurable antibiotic resistance is bound to occur.
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Figure 8. The antibiotic resistance response for different antibiotics. (A-C) η1 and η3 are
fixed; η2 is different (η1 = 0.086, η3 = 0.015). (D-F) η1 and η2 are fixed; η3 is different
(η1 = 0.086, η2 = 0.03). (A) and (E) show permanent antibiotic resistance. (B) and (D) show
pseudo-resistance. (C) and (F) show the culminating medication time for varying, η2 and
η3 values, respectively. The purple indicates that the gut microbiota can develop antibiotic
resistance for specific antibiotics.

The second aspect is that of bactericidal rates against beneficial bacteria (i.e., different η3 values).
Therefore, we fixed the bactericidal rate of antibiotics against sensitive pathogens (η1 = 0.086) and
resistant pathogens (η2 = 0.03) and explored the effect of different η3 values on antibiotic resistance.
Similarly, our simulations presented two different types of antibiotic resistance responses.

Under the conditions of Figure 8D (η3 = 0.008), the medication time was three days to achieve an
effective treatment in the first twenty-five infection-treatment processes. Beginning with the twenty-
sixth treatment, the required medication time began to increase gradually from 4 days to 7 days. The
culminating medication time was 7 days. In contrast, under the conditions of Figure 8E (η3 = 0.044),
the culminating medication time was infinity.

We also explored the culminating medication time for different bactericidal rates against beneficial
bacteria (i.e., η3). Simulation result showed that the critical threshold (black dashed curve in Figure 8F)
of η3 existed. When η3 was below the critical threshold, the culminating medication time was finite
and was an increasing function of η3 (red polygonal line). When η3 exceeded the critical threshold, the
culminating medication time was infinite (gray region).

Altogether, a good antibiotic should have a stronger bactericidal rate against resistant pathogens
and a weaker bactericidal rate against probiotics. Therefore, our model can also be recommended for
optimizing the design of pharmaceutical compositions so that antibiotics have precise lethality.
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3.4. Effective treatment strategies against resistance: FMT combined with antibiotic pretreatment

In recent decades, clinical practices and mouse models have proven that a burgeoning therapeutic
strategy (i.e., FMT) can effectively treat infections caused by resistant pathogens [12–14]. However,
the fundamental mechanism of FMT in reshaping the gut microbiota has not been fully elucidated and
there also remains a knowledge gap on how to improve FMT efficiency.

To determine the benefits of FMT, we compared the therapeutic efficacy of two different strategies
(i.e., permanent antibiotic treatment and FMT combined with antibiotic treatment) in the P-B plane.
Here, the horizontal axis P is the total amount of resistant pathogens and sensitive pathogens (i.e.,
P = k1 ∗ PS + k2 ∗ PT ) and the vertical axis B is the amount of the beneficial bacteria. Before the
16th infection, the microflora composition remained in the healthy stable state P1 (blue dot). After
infection, the population of pathogens rapidly reproduced and grew in size, resulting in a decrease in
the amount of non-pathogens. The orbit crossed the manifold m1 to enter the R2 region (red trajectory
1© in Figure 9). In the pure antibiotic treatment, permanent antibiotic therapy was used to eliminate
the infection (Figure 9A). The trajectory eventually stabilized to a disease state because this treatment
failed to push the trajectory (sky blue trajectory 2© in Figure 9A) back into the R1 region. This result
implied that the 16th infection was a resistant infection.

Figure 9. The therapeutic efficacy of three treatment strategies against the 16th infection. (A)
Permanent antibiotic treatment. (B) 3-day antibiotic pretreatment combined with FMT. (C)
FMT alone. The pink region is the onset range of FMT (k=0.5).

Furthermore, we tested the efficacy of FMT combined with antibiotic therapy in eliminating the
16th infection. We assumed that the donor fecal microbiota has a healthy stable state (denoted as
(PS h, PTh, Bh) corresponding to (Ph, Bh) in the 2-D system). This assumption is because most healthy
hosts have a similar “core microbiota”. In addition, some studies have pointed out that many factors
(such as bowel preparation for the procedure, fresh and frozen material, administration, methods of
microbiota preparation and the source of fecal microbiota) may affect the efficiency of FMT [14, 44–
48]. To make our model more realistic, we introduced the survival rate k (0 < k < 1) to characterize
the transplant survival rate of the donor fecal microbiota. The fecal bacteria injection transfers the
transient state (P, B) to a new state (P, B) +k (Ph, Bh). Therefore, the original location of (P, B) is a
decisive factor in determining whether the system state (P, B) + k (Ph, Bh) falls into the R1 region after
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FMT, when the colonization rate k is fixed. In addition, we defined the onset range (the purple pink
region) of a single FMT which consists of many states in the phase plane. These states (P, B) within the
onset range could be transferred to the R1 region by a single FMT. In Figure 9B, the treatment effect of
FMT with antibiotic is shown: first, the trajectory of infection crossed the manifold m1 to enter the R2

region (red trajectory 1©); second, the 3-day antibiotic pretreatment pushed the trajectory into the onset
range (sky blue trajectory 2©); third, FMT pulled the trajectory back to the R1 region (green trajectory
3©); and finally, the trajectory (blue trajectory 4©) stabilized to the healthy stable state P1.

Combining the above two therapeutic effects, it can be identified that the large number of probiotics
from donors is a key factor affecting the therapeutic effect of FMT. The overwhelming advantage of
probiotic to pathogen abundances ensured that the vector k (Ph, Bh) pointed roughly upward in the 2-D
phase plane. Therefore, the upward- driven force caused by FMT facilitated the system state crossing
the boundary m1 to enter the R1 region.

Antibiotic pretreatment in the combined therapy is also very important. Compared to FMT
combined with antibiotic therapy, the 16th infection could not be eliminated by using FMT alone. The
system transient state (Pd, Bd) after infection fell out of the onset range so that the trajectory of FMT
(green trajectory 3© in Figure 9C) did not cross the manifold m1. Thus, the system finally stabilized to
the disease stable state P3. However, 3-day antibiotic pretreatment could push the trajectory (sky blue
trajectory 2© in Figure 9B) into the onset range of FMT so that it successfully crossed the manifold m1

to enter the R1 region after a single FMT (green trajectory 3© in Figure 9B). Altogether, antibiotic
pretreatment is also another key factor in determining the therapeutic efficacy of combined therapy
(FMT with antibiotic) by facilitating the transition of the system state into the onset range.

Therefore, the mechanism of action of FMT combined with antibiotic is essentially a synergistic
effect of antibiotic pretreatment and FMT. On the one hand, antibiotic pretreatment reduced the
amount of whole microbiota (i.e., decreased P and B, respectively), thereby improving the effect of
FMT. On the other hand, a large number of probiotics (in the fecal microbiota of donors) ensured that
the direction of transplantation (i.e., (Ph, Bh)) pointed roughly upward in the 2-D phase plane. These
simulation results are consistent with experimental phenomena; that is, antibiotic pretreatment
promotes the successful colonization of the transplanted bacteria in the host [41, 49].

3.5. Advantages of early usage of FMT

In the above analysis, we confirmed that the use of FMT can effectively fight diseases that are
resistant to antibiotics. In this section, we will explore the long-term effects of early usage of FMT
(with antibiotic) on the formation of antibiotic resistance by examining the total number of treatments.

We first analyzed the total number of treatments for two different strategies, pure antibiotic treatment
and FMT combined with antibiotic (Figure 10A) under a specific antibiotic and survival rate. In our
previous analysis, FMT was used only after the system had revealed antibiotic resistance (Figure 4D
or 6D). Here, FMT was used in advance, for example, after the first infection or second infection,
to test the benefits of early application of FMT. In Figure 10A, the x-axis indicates the i-th infection
from which the transplantation starts. For example, the 7-th infection indicates that the first 6 illnesses
were treated with antibiotic; from the seventh infection, the host was treated with FMT combined with
antibiotic. The y-axis is the total number of effective treatments. Additionally, we used the orange and
blue bars to distinguish FMT combined with antibiotic treatment and antibiotic treatment, respectively.
If FMT combined with antibiotic was used from the first illness, the treatment strategy could be used
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up to 35 times (the first bar). If FMT combined with antibiotic was used after using antibiotic 5
times, this strategy could be used only 24 times (the 6-th blue bar). Since the sixteenth infection, the
standard antibiotic treatment was no longer effective (gray area). However, usage of FMT combined
with antibiotic still could achieve 6 effective treatments (the 16-th orange bar). These simulation results
indicate that early usage of FMT can delay the development of antibiotic resistance.

Figure 10. The advantage of early usage of FMT. The blue bars represent the number of
pure antibiotic treatments (i.e., antibiotic treatment without FMT). The orange bars represent
the number of FMT combined with 3-day antibiotic treatments (i.e., FMT combined with
antibiotic). The gray region indicates that the two treatments are ineffective. The x-label
(i) indicates that the first i-1 illnesses are treated with antibiotic; beginning from the i-th
infection, the host is then treated with FMT combined with antibiotic. (A) k = 0.5, η2 =

0.0016. (B) k = 0.5, η2 = 0.003. (C) k = 0.5263494, η2 = 0.0016. (D) k = 0.51, η2 = 0.003.
(E) k = 0.43, η2 = 0.012.

The above results are based on parameters in Table 1. These parameters, especially the bactericidal
rate of antibiotics and the survival rate (i.e., η j and k) may vary in the real environment. Therefore, the
effect of early usage of FMT combined with antibiotic requires further study in a broad parameter
space. Simulation results (different η2 and k values) show different typical cases. Under some
parameters, the systems eventually exhibited resistance to FMT combined with antibiotic (Case A).
However, under other parameters, the systems never exhibited resistance to FMT (with antibiotic)
(Case B). In some situations, use of FMT combined with antibiotic could rescue the treatment after
antibiotic resistance emergence (Case II), but in other situations even FMT combined with antibiotic
failed (Case I). In all these typical cases (Case A-I in Figure 10B, Case A-II in Figure 10C, Case B-I
in Figure 10D and Case B-II in Figure 10E), early usage of FMT could extend the number of effective
treatments, compared with those of FMT combined with antibiotic use after resistance emergence.
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For Case A-I, after 16 treatments with antibiotic, antibiotic resistance emerged (gray region in
Figure 10B) under certain parameters. If FMT combined with antibiotic was used first after resistance
emergence, the treatment could not be rescued (the 17-th bar). However, if FMT combined with
antibiotic was used beginning at the sixteenth infection, it could be used 10 times (the 16-th orange
bar). If the combined treatment was used beginning at the first infection, the total number of effective
treatments was 35 (the 1-st bar). The total number of effective treatments will be prolonged only if
FMT is used in advance.

For Case A-II, after 15 treatments with antibiotic, antibiotic resistance emerged (gray region in
Figure 10C) under certain parameters. Unlike Case A-I, if FMT combined with antibiotic
pretreatment was first used after resistance emergence, the treatment could be rescued, and up to 30
effective treatments were achieved (the 16-th orange bar). If FMT combined with antibiotic was first
used beginning at the eleventh infection, it could be used 41 times (the 11-th orange bar). If the
combined treatment was used from the first infection, the total number of effective treatments was 58
(the 1-st bar). Regardless of whether early FMT (with antibiotic) was employed, it always extended
the number of effective treatments.

For Case B-I, antibiotic resistance emerged (gray region in Figure 10D) after 16 treatments with
antibiotic. If FMT combined with antibiotic pretreatment was first used after resistance emerged,
the treatment could not be rescued (the 17-th bar). However, if the combined treatment was used in
advance, the treatment was permanently effective (for example, the 16-th orange bar).

For Case B-II, after 18 antibiotic treatments, antibiotic resistance emerged (gray region in
Figure 10E). If FMT combined with antibiotic pretreatment was first used after resistance emergence,
the treatment could be rescued. Moreover, the treatment was permanently effective (the 19-th orange
bar).

All of the above four typical cases indicated that the early use of FMT combined with antibiotic
pretreatment can significantly delay antibiotic resistance emergence (Figure 10A-E). Furthermore, in
some cases, early use of the combined therapy could even permanently prevent the development of
antibiotic resistance (Figure 10D-E). These results suggest that early usage of FMT combined with
antibiotic could be recommended for clinical treatment.

3.6. Exploring the onset range of multiple FMTs

In our model, we used FMT combined with 3-day antibiotic pretreatment to simulate the clinical
recovery treatment protocol, antibiotic pretreatment combined with a single FMT. In clinical trials,
feces dilutions by the donor were infused into the patient through a nasoduodenal tube (2 to 3 minutes
per 50 ml) and the tube was removed after 30 minutes [15]. A single FMT in clinical treatment was
usually used to treat patients with Clostridium di f f icile infection or refractory intestinal infection.
However, some diseases require multiple FMTs, such as Crohn’s disease or ulcerative colitis [50–52].

Next, we clarified whether multiple FMTs are superior to a single FMT. In fact, the onset range of
multiple FMTs directly reflects the corresponding curable range. Therefore, we analyzed the variety
of onset ranges in the phase plane (P - B). Here, the onset range consisted of those states that can be
transferred to the R1 region by multiple FMTs. A single FMT pushed the transient state (P, B) in the
R2 region up to a new state (P, B) + k (Ph, Bh) along the vector (Ph, Bh) (green arrow in Figure 11A).
Therefore, the critical curve of a single FMT (red curve) is obtained directly by moving the manifold
m1 downward by k (Ph, Bh). The upper left region (red) surrounded by the boundary and manifold
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(m1) is the onset range of a single FMT. Here, we assumed that the second FMT was performed on the
second day after the first FMT. The corresponding boundary (two FMTs) was not simply obtained by
moving the boundary (the first FMT). Therefore, we simulated the process to obtain the onset range
of two FMTs (green). Generally, the onset range of two FMTs was bigger than that of a single FMT.
Similarly, the onset range of n-FMT was larger than that of n-1 FMTs. This implies that multiple FMTs
are better than a single FMT (Figure 11).

Figure 11. The effective region of multiple FMTs for different survival rates. (A) The
effective region of finite FMTs covers the whole region of R2. k = 0.3; here, different colors
represent the magnitude of increase of the onset range (every FMT). (B) The effective region
of infinite FMTs covers the partial region of R2. k = 0.07; here, different colors represent the
magnitude of the increase of the onset range (every 5 FMTs).

Since the onset range for every FMT is increasing, whether the corresponding onset range of infinite
FMTs can cover the whole non-self-healing area (R2) remains to be further explored. In fact, there may
be different cases. As shown in Figure 11A, the onset range of finite FMTs can fully cover the whole
region of R2. However, under other parameters, the onset range of infinite FMTs can cover only a local
region of R2 (Figure 11B). Further observation showed that the increase in the onset range (each FMT)
gradually decreased in the second case, while in the first case, the opposite was true.

Altogether, these results show that multiple FMTs have a wider therapeutic range than a single
FMT. Therefore, multiple FMTs can be recommended for the treatment of some serious infections or
infections caused by “superbugs”.

3.7. The impact of a donor’s medication history on FMT

In the above analysis, fecal microbiota from donors with no history of medication was used for the
microbiota of transplantation. However, in the real life, donors with no history of medication are quite
rare. The fecal material may come from different donors, i.e., the composition of pathogens or
probiotics is different. The transplant microbiota may also come from the same donor, i.e., the
composition of pathogens and probiotics are the same but the composition of resistant pathogens and
sensitive pathogens is different. In this section, we will explore the second case, in which a different
composition of pathogens is caused by repeating antibiotic treatment.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7057–7084.



7078

Next, we analyzed the corresponding total number of treatments with FMT combined with antibiotic
pretreatment (in the second case) in Figure 12A. Here, the x-axis and z-axis represent the i-th infection
and the total number of FMT combined with antibiotic treatments, respectively. For instance, the 6-th
bars indicate that patients were treated with the combined therapy from the sixth infection. From the
x-z plane, it can be seen that the sooner FMT is used, the greater the number of FMT treatments is.
The y-axis represents the number of times the donors have taken medicine. For example, 5-D denotes
fecal material from donors that have taken medicine five times. From the y-z plane, we can see that
the fewer number of times the donors take medicine (in Figure 12A y-axis), the greater the number of
FMT treatments is.

Figure 12. The impact of different donors’ fecal microbiota on FMT. (A) Early use of FMT
combined with antibiotic and fecal microbiota from donors that have taken medicine several
times. The color bar represents the results of fecal bacteria transplantation from the i-th
infection. (B) FMT combined with antibiotic is used beginning at the first infection. (C)
FMT combined with antibiotic is used beginning at the tenth infection. (D) FMT combined
with antibiotic is used beginning at the sixteenth infection.
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Furthermore, we explored the corresponding total number of treatments for early use of FMT
combined with antibiotic in comparison with the standard antibiotic treatment. Here, the blue bar
indicates the 3-day antibiotic treatment; the orange bar indicates FMT (with antibiotic) treatment.
Figure 12B presents the use of FMT (with antibiotic) beginning at the first infection. Surprisingly,
when fecal microbiota donors have taken medications less than 13 times, the total number of
treatments was the same, despite the use of different fecal microbiota. However, when fecal
microbiota donors have taken medicine 13 times or more, the total number of treatments decreased
dramatically. We observed similar phenomena even when FMT (with antibiotic) treatments were not
used until the 10th (Figure 12C) or even 16th infection (Figure 12D). These simulation results show
that early use of FMT (with antibiotic) may accelerate the emergence of antibiotic resistance when
fecal microbiota donors have taken medicine several times. This finding may be the reason why
screening of donors should first exclude donors with a history of serious illness.

In brief, we confirmed that fecal material should come from donors who have taken fewer
medicines. Clinically, the screening criteria should be strictly followed and further combined with
“the exclusive method” to obtain the healthiest donors.

4. Conclusions

We established a dynamic microbiota model to describe the comprehensive effects of antibiotic
therapy, interspecies inhibition and resource competition on the balance of the intestinal flora. The
development of antibiotic resistance was revealed by simulating multiple complete illness - treatment -
recovery processes. That is, repeated antibiotic intake promoted the proportion of resistant pathogens
and sensitive pathogens in the healthy state to exceed a specific threshold, which led to the emergence
of drug resistance.

We believe that the proposed resistance mechanism is also widely applicable in the treatment of
other diseases. Drug resistance is commonly seen in various clinical treatments. For example, the first-
line treatment of metastatic prostate cancer uses androgen deprivation therapy (ADT), but nearly all
men progress to a resistant stage. In metastatic prostate cancer, there are three competing phenotypes:
(i) T+ cells are sensitive to ADT; (ii) TP (testosterone producing) cells are sensitive to ADT but also
helps T+ cells; and (iii) T− cells are resistant to ADT [53, 54]. This kind of competing structure is
similar to our sensitive pathogens / probitcs / resistant pathogens framework. Thus, the mechanism of
drug resistance here may be similar to that proposed by us.

Furthermore, our model confirmed that antibiotic resistant infections could be cured based on FMT
combined with antibiotic. In particular, the numerical simulation predictions also showed that early
usage of FMT can delay or prevent the development of antibiotic resistance. This finding implied that
multiple FMTs or early use of FMT may be implemented instead of antibiotic therapy alone to
prevent the emergence of antibiotic resistance in the future. Therefore, we should strive to improve
fecal microbiota transplantation so that it can be widely used in the clinic. Specifically, the screening
criteria for fecal bacteria and transplantation techniques need to be improved. Similarly, in the
treatment of cancer, some scholars have found that adaptive therapy can delay the emergence of drug
resistance more effectively than those of the standard cure or continuous MTD treatment [53].
Therefore, adaptive therapy may also be an effective treatment to delay the development of antibiotic
resistance. Besides, some investigations have shown that the prevalence of resistant microbiota
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decreased markedly following a reduction in specific antibiotic use in agricultural areas. Hence, we
need to standardize and strictly limit the use of antibiotics to reduce the overall outbreak of antibiotic
resistance.

The main purpose of this study is to qualitatively explain how drug-resistance emerges upon the
accumulation of the effect of antibiotics. Although our mathematical model is rather simple, we
maintain the most critical reactions among different intestinal flora in the mathematical model, which
is the most essential reason for the mechanism of the emergence of drug-resistance. The mathematical
model is still somewhat limited because it is difficult to determine all the real parameter values from
experimental data or other literature. Therefore, we evaluate the relative value of some parameters
based on the clinical data. For example, the killing rate of antibiotic for sensitive bacteria is larger
than other bacteria [55]. Other parameters are determined according to the time scale of the clinical
observations and some biological phenomena [56–58]. Regarding to the other limitation of this study,
the main approach to reveal the mechanism of drug-resistance is numerical simulations with fixed
parameter values. In fact, we also intended to perform some analytical studies upon system (2.2) and
system (3.1). However, due to the complexity of the functions in the systems, we can’t determine
theoretically if all these sufficient conditions can be satisfied at the same time. Therefore, to analysis
the stability, we will use piecewise linear system to approximate system (2.2) and system (3.1) in the
future work.
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