
http://www.aimspress.com/journal/MBE

MBE, 16(6): 7085–7097.
DOI: 10.3934/mbe.2019355
Received: 23 March 2019
Accepted: 29 July 2019
Published: 05 August 2019

Research article

Modeling epidemic in metapopulation networks with heterogeneous
diffusion rates

Maoxing Liu1,∗, Jie Zhang1, Zhengguang Li1 and Yongzheng Sun2

1 Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P. R. China
2 School of Science, China University of Mining and Technology Xuzhou, Jiangsu, 221008, P. R.

China

* Correspondence: Email: liumaoxing@126.com; Tel: +863513942729.

Abstract: In this paper, the process of the infectious diseases among cities is studied in
metapopulation networks. Based on the heterogeneous diffusion rate, the epidemic model in
metapopulation networks is established. The factors affecting diffusion rate are discussed, and the
relationship among diffusion rate, connectivity of cities and the heterogeneity parameter of traffic flow
is obtained. The existence and stability of the disease-free equilibrium and the endemic equilibrium
are analyzed, and epidemic threshold is also obtained. It is shown that the more developed traffic of
the city, the greater the diffusion rate, which resulting in the large number of infected individuals; the
stronger the heterogeneity of the traffic flow, the greater the threshold of the disease outbreak. Finally,
numerical simulations are performed to illustrate the analytical results.
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1. Introduction

Metapopulation model is not only used to describe population reproduction, migration, competition
and death [1–4], but also describe the spread of disease in real networks [5–9]. Colizza et al. have
done a lot of representative results on metapopulation models with heterogeneous degree distribution,
which mainly consider the spread of epidemic influenced by individual movement [10–16]. Juher et
al. have given threshold for metapopulation epidemic model with uncorrelated network [17, 18]. The
reaction-diffusion equation is usually used to describe the propagation process, which assumed that
the processes of reaction and diffusion occur simultaneously [14, 17, 19, 20]. Furthermore, there is
becoming up-front trend that concerns not only disease spreading but also human decision making;
whether he is committing vaccination or not [21–25].

In an SIS dynamic system, there are two kinds of processes between individual states: I
µ
−→ S , I +
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S
β
−→ 2I. Here µ is the recovery rate and β is the transmission rate across an infective contact. The

influence of individuals diffusion was considered on disease transmission in papers [26, 27]. Here the
node represents a city or an airport, and the edge represents the connection between cities. For a system
with N nodes, which include two types of individuals S , I. The diffusion rate of infected individuals
and susceptible individuals in different subpopulations are DI ,DS (DI ,DS are all nonnegative). Thus
the dynamic system is as follows:

dρS ,i

dt
= −βρS ,iρI,i + µρI,i − DSρS ,i + DS

∑N
j=1

A ji

k j
ρS , j,

dρI,i

dt
= βρS ,iρI,i − µρI,i − DIρI,i + DI

∑N
j=1

A ji

k j
ρI, j,

where ρS ,i(ρI,i) is the average density of susceptible individuals (infected individuals) in node i,
A ji(1 ≤ j, i ≤ N) is an adjacency matrix, and k j is the degree of node j. If there is a connection
between node j and i, then A ji = 1; otherwise A ji = 0. In the first equation of above system, the first
term represents the number of susceptible individuals becoming infected, and the second term is the
number of infected individuals recovering susceptible, and the third term is the number of individuals
that diffuse away from the node; the last term is the number of individuals which diffuse into the node.

The data of the International Air Transport Association was analyzed in [26, 28, 29]. It is shown
that there is a strong heterogeneity about the airport connectivity and traffic capacity. The different
carrying capacity of route is considered in [11, 12, 30], which is reflected in the size of the traffic flow.
In paper [11], the metapopulation epidemic model is established in the mean field, and the average
traffic flow in the subpopulation with degree k in per unit time is Tk = k

∑
k′ p(k

′

/k)ωkk′ , where p(k
′

/k)
is the conditional probability that the node with degree k connects the node with degree k

′

(in the
uncorrelated network p(k

′

/k) = k
′

p(k
′

)/〈k〉). Here ωkk′ = ω0(kk
′

)ν is the average weight, where ω0 is
the coefficient of a particular system, and ν is the heterogeneity parameter of traffic flow (0 ≤ ν ≤ 1).
In the uncorrelated network Tk can be wrote in the form of Tk = ω0k1+ν〈k1+ν〉/〈k〉. The diffusion rate
of nodes with degree k is Dk = Tk/ρk. The effects of diffusion on the disease due to traffic driving
have also been studied in [31].

In this paper we consider an epidemic model in metapopulation network with heterogeneous
diffusion rate. The heterogeneity includes the difference of urban scale, the discrepancy of traffic
conditions and so on [11, 32–34]. We use Di j

S ,D
i j
I to express the diffusion rate of susceptible and

infected individuals from node i to node j, which is more in line with the heterogeneity of
metapopulation network. In fact, when the traffic of a city is more developed, the number of people
flowing into and out of the city is larger. So, for the convenience of studying the problem, we assume
that Di j

S = D ji
S = Di

S . From the view of travel, infected individuals will reduce the amount of travel,
thus the relation is taken as follows: Di

I = rDi
S , where 0 < r ≤ 1 is constant. In this paper, we also

give the relationship among the diffusion rate, connectivity and the heterogeneity parameter of traffic
flow. The results show that, if considering the heterogeneity of the degree and the heterogeneity of the
traffic flow at the same time, the relationship can be obtained among the diffusion rate, connectivity
and the heterogeneity of traffic flow. It can be got a more real conclusion than before.

The paper is organized as follows. The model is formulated in section 2 and the disease-free
equilibrium is obtained. Some mathematical analysis are given in section 3 and the stability of the
disease-free equilibria of the model is investigated. The existence and stability of the endemic
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equilibria of the model are studied in sections 4 and 5 respectively. In section 6, numerical
simulations are illustrated.

2. The model

Considering an SIS model with nonlimited transmission, the master equation is obtained as follows
dρS ,i(t)

dt
= −βρS ,iρI,i + µρI,i − Di

SρS ,i +
∑N

j=1 Di
S

A ji

k j
ρS , j,

dρI,i(t)
dt

= βρS ,iρI,i − µρI,i − Di
IρI,i +

∑N
j=1 Di

I
A ji

k j
ρI, j.

(2.1)

In uncorrelated networks, A ji can be approximately expressed in the form A ji ' k jki/(N〈k〉) [26],
where 〈k〉 =

∑N
i=1 ki/N is the average degree of the network, thus one obtains the following equations

for the epidemic spread in metapopulation networks:
dρS ,i(t)

dt
= −βρS ,iρI,i + µρI,i − Di

SρS ,i + Di
S

ki
〈k〉ρS ,

dρI,i(t)
dt

= βρS ,iρI,i − µρI,i − Di
IρI,i + Di

I
ki
〈k〉ρI .

(2.2)

It is easy to see that the total density of individuals ρ(t) = ρS (t) + ρI(t) remains constant and equal
to ρ0, the initial average number of individuals per cities, where ρS =

∑N
j=1 ρS , j/N, ρI =

∑N
j=1 ρI, j/N. In

these metapopulation networks, the connectivity matrix Φ is given by

Φ =
1

N〈k〉


k1 k1 · · · k1

k2 k2 · · · k2
...

...
. . .

...

kN kN · · · kN

 .
3. The stability of disease-free equilibrium

The disease-free equilibrium of system (2.2) is E0 = (k1ρ0/〈k〉, · · · , kNρ0/〈k〉, 0, · · · , 0). The local
stability of the disease-free equilibrium can be determined by Jacobian matrix. The Jacobian matrix of
system (2.2) at the disease-free equilibrium is

JE0
=

(
A B
O C

)
,

where A, B,O,C are matrix blocks of N × N, A = diag(Di
S )(Φ − Id), Φ is the connectivity matrix,

Id is the identity matrix, B = −diag(βkiρ0/〈k〉 − µ), O is the null matrix, and C = diag(βkiρ0/〈k〉 −
µ) + diag(Di

I)(Φ − Id). Then, the characteristic polynomial of JE0
are the product of the characteristic

polynomial of diagonal matrix blocks PJE0
(λ) = P(λA)P(λC). Taking Dmin

S = min{Di
S , i = 1, 2, · · · ,N}

and we consider another matrix Ā = Dmin
S (Φ − Id), which has the maximum eigenvalue λĀ

max = 0.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7085–7097.



7088

Noticed that λA
max ≤ λ

Ā
max = 0, it can be proved that the eigenvalues of the matrix block A are all non-

positive.
By using the eigenvalue perturbation theorem in [35], the relationship between the eigenvalues of

C and diag(βkiρ0/〈k〉 − µ) is given by

λC
max > max

1≤i≤N

{
βkiρ0

〈k〉
− µ − Di

I

}
, i = 1, 2, · · · ,N. (3.1)

Therefore, the maximum eigenvalue of JE0
is λmax = max{0, λC

max}. If λmax > 0, the disease-free
equilibrium of system (2.2) is unstable, and the system has an endemic equilibrium. Thus we have the
following theorem:

Theorem 3.1. The sufficient condition of the disease-free equilibrium to be unstable is

max
1≤i≤N

{
βkiρ0

〈k〉
− µ − Di

I

}
≥ 0. (3.2)

Theorem 3.2. It can be seen from Eq (3.2), for fixed µ, even if β is sufficient small, if ρ0 is large enough,
the disease-free equilibrium is also unstable. While for fixed ρ0, the diffusion rates Di

I will affect the
spread of the disease.

As mentioned in the first section, the traffic flow is the physical quantity in the mean field. Here,
we assume that all nodes with the same degree are one class [14, 15]. In this paper Tki represent traffic
flow with degree ki in node i. According to the previous discussion in the first section, the diffusion
rate of node i can be expressed as

Di =
Tki

ρi
=
〈k1+ν〉ω0kνi

ρ0
, (3.3)

where ρi =
kiρ0
〈k〉 is the average density of node i. From Eq (3.3), it is not difficult to see that Di is a

function of ki. Similarly, we can get the diffusion rates Di
I , Di

S . Based on Di =
TI,ki +TS ,ki
ρI,i+ρS ,i

, the relationship
can be got about Di,Di

I ,D
i
S :

Diρi = Di
IρI,i + Di

SρS ,i, (3.4)

Substituting ρS ,i = ρi − ρI,i into the Eq (3.4), it can be simplified

Di
I =

1
hi

Di + (1 −
1
hi

)Di
S , (3.5)

(where hi =
ρI,i

ρi
). Substituting (3.3) into (3.5), we can get

Di
I =
〈k1+ν〉ω0

hiρ0
kνi + (1 −

1
hi

)Di
S . (3.6)

It can be seen that Di
I is a function of ki and parameter ν.

Theorem 3.3. Let Di
I = rDi

S , (0 < r ≤ 1), then

Di
S =

〈k1+ν〉ω0kνi
[1 − hi(1 − r)]ρ0

,Di
I =

r〈k1+ν〉ω0kνi
[1 − hi(1 − r)]ρ0

.

When r = 1, then Di
I = Di

S =
〈k1+ν〉ω0kνi

ρ0
, which is satisfying (3.4).
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Theorem 3.4. The unstable condition of the disease-free equilibrium is β > βc, where

βc =
µ〈k〉
ρ0kmax

+
〈k〉〈k1+ν〉ω0

ρ2
0k1−ν

max
. (3.7)

Here kmax is the maximum degree of all nodes in the metapopulation network. When ν = 0, βc =
〈k〉(µρ0+〈k〉ω0)

ρ2
0kmax

; And when ν = 1, there is βc =
〈k〉(µρ0+〈k2〉ω0kmax)

ρ2
0kmax

.

Comparing the above two thresholds, it is shown that the epidemic threshold increases with the
traffic flow heterogeneity parameter increase.

4. The existence and uniqueness of endemic equilibrium

The endemic equilibrium E∗ = (ρ∗S ,1, ρ
∗
S ,2, · · · , ρ

∗
S ,N , ρ

∗
I,1, ρ

∗
I,2, · · · , ρ

∗
I,N) of system (2.2) is satisfied

Di
Sρ
∗
S ,i + Di

Iρ
∗
I,i = Di

S
ki

〈k〉
ρ∗S + Di

I
ki

〈k〉
ρ∗I ,

where ρ∗S = 1
N

∑N
i=1 ρ

∗
S ,i, ρ

∗
I = 1

N

∑N
i=1 ρ

∗
I,i, and ρ∗S ,i can be expressed

ρ∗S ,i =
ki

〈k〉

[
ρ0 +

(
Di

I

Di
S

− 1
)
ρ∗I

]
−

Di
I

Di
S

ρ∗I,i. (4.1)

Putting Eq (4.1) into the second equation of system (2.2) and solving a quadratic equation, then we get

ρ∗I,i =

β ki
〈k〉ρ0 − (µ + Di

I) + δ +

√
[β ki
〈k〉ρ0 − (µ + Di

I) + δ]2 +
Di

I
Di

S
θ

2β Di
I

Di
S

, (4.2)

where δ = β ki
〈k〉ρ

∗
I (

Di
I

Di
S
− 1), θ = 4β ki

〈k〉ρ
∗
I Di

I . The negative root of equation has been taken out.

Now, ρ∗I,i > 0 need to be proven. Taking the summation over i and multipling 1
N for (4.2), it can be

obtained as follows

ρ∗I =
1
N

N∑
i=1

β ki
〈k〉ρ0 − (µ + Di

I) + δ +

√
[β ki
〈k〉ρ0 − (µ + Di

I) + δ]2 +
Di

I
Di

S
θ

2β Di
I

Di
S

,

where 0 ≤ ρ∗I ≤ ρ0. We define function

F(ρI) =
1
N

N∑
i=1

β ki
〈k〉ρ0 − (µ + Di

I) + δ
′

+

√
[β ki
〈k〉ρ0 − (µ + Di

I) + δ′]2 +
Di

I
Di

S
θ′

2β Di
I

Di
S

− ρI , (4.3)

where δ
′

= β ki
〈k〉ρI(

Di
I

Di
S
− 1), θ

′

= 4β ki
〈k〉ρIDi

I .
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When Di
I = rDi

S (0 < r ≤ 1), we get

F(ρI) =
1
N

N∑
i=1

β ki
〈k〉ρ0 − (µ + Di

I) + δ
′

+

√
[β ki
〈k〉ρ0 − (µ + Di

I) + δ′]2 + θ′

2βr
− ρI ,

where δ
′

= β ki
〈k〉ρI(r − 1), θ

′

= 4β ki
〈k〉ρIDi

I . Especially, when r = 1, then

ρ∗I,i =
β ki
〈k〉ρ0 − (µ + Di

I) +

√
[β ki
〈k〉ρ0 − (µ + Di

I)]2 + θ′

2β
,

ρ∗S ,i =
ki

〈k〉
ρ0 − ρ

∗
I,i,

F(ρI) =
1
N

N∑
i=1

β ki
〈k〉ρ0 − (µ + Di

I) +

√
[β ki
〈k〉ρ0 − (µ + Di

I)]2 + θ′

2β
− ρI .

F(ρ0) < 0 is always satisfied.
When β = βc, we can obtain F(0) = 0;

F
′

(ρI) =
1
N

N∑
i=1

Di
I

ki
〈k〉√

4βDi
I

ki
〈k〉ρI

− 1;

F
′′

(ρI) < 0. So, there is a ρ∗I that makes F(ρ∗I ) = 0.
When β > βc, we can get F(0) > 0. Thus, there is also a ρ∗I that makes F(ρ∗I ) = 0.

Theorem 4.1. There is a unique endemic equilibrium E∗ = (ρ∗S ,1, ρ
∗
S ,2, · · · , ρ

∗
S ,N , ρ

∗
I,1,

ρ∗I,2, · · · , ρ
∗
I,N) of system (2.2), if the infection rate is larger than epidemic threshold β ≥ βc.

Theorem 4.2. In fact it can be proved that the existence of ρ∗I that make (4.3) satisfied, when 0 < r < 1.
Therefore, the existence and uniqueness of the solution are independent of the relation about Di

I ,D
i
S .

5. The stability of endemic equilibrium

The Jacobian matrix of system (2.2) at the endemic equilibrium is

JE∗ =

[
Di

S (Φ − Id) − diag(βρ∗I,i) diag(µ − βρ∗S ,i)
diag(βρ∗I,i) Di

I(Φ − Id) + diag(βρ∗S ,i − µ)

]
.

When r = 1, the above matrix can be transformed into a new matrix as follows:

J
′

E∗ =

[
A
′

O
B
′

C
′

]
.

Thus the characteristic polynomial of J
′

E∗ can be given by PJ′E∗
(λ
′

) = P(λ
′

A′
)P(λ

′

C′
).
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For the matrix A
′

= Di
S (Φ − Id), λ

′

A′
≤ 0 is also satisfied according to section 3. C

′

= diag[β(ρ∗S ,i −
ρ∗I,i)−µ] + Di

I(Φ− Id) is equivalent to the sum of a diagonal matrix and a perturbation matrix. So, using
the general formula of secular equation [35], we can get

N∑
i=1

Di
Iki

〈k〉N
1

(αi − λ
′

C′
)

+ 1 = 0 (1 ≤ i ≤ N), (5.1)

where

αi = [β(ρ∗S ,i − ρ
∗
I,i) − (µ + Di

I)] = −

√{
βki

〈k〉
ρ0 − (µ + Di

I)
}2

+ 4βDi
I

ki

〈k〉
ρ∗I < 0,

are the eigenvalues of diag[β(ρ∗S ,i − ρ
∗
I,i) − µ − Di

I], and λ
′

C′
is an eigenvalue of C

′

. Even αi < λ
′

C′
, but

λ
′

C′
< 0 can not be judged. Then, we prove λ

′

C′
< 0 is satisfied.

Making right side of the second formula of system (2.2) is 0, we can obtain ρ∗I,i(βρ
∗
S ,i−µ) = Di

I(ρ
∗
I,i−

ki
〈k〉 )ρ

∗
I , which is simplified to

〈k〉ρ∗I,i =
Di

Iki

(µ + Di
I) − βρ

∗
S ,i

ρ∗I . (5.2)

Summing over i and dividing by N for Eq (5.2), we obtain 〈k〉N =
∑N

i=1
Di

Iki

(µ+Di
I )−βρ

∗
S ,i
. So, it can be judged

that
N∑

i=1

Di
Iki

(µ + Di
I) − β(ρ∗S ,i − ρ

∗
I,i)

< 〈k〉N. (5.3)

Eq (5.3) can be rewritten as
N∑

i=1

Di
Iki

〈k〉N
1
αi

+ 1 > 0. (5.4)

From Eqs (5.1) and (5.4), it can be inferred that λ
′

C′
< 0. So the eigenvalues of JE∗ is negative.

According to the above statement, we have the following theorem.

Theorem 5.1. The endemic equilibrium E∗ of system (2.2) is always locally asymptotically stable, if it
exists.

6. Numerical simulation and sensitivity analysis

In the above section, we get the equilibrium existence and stability of system (2.2) through
theoretical analysis, and get the epidemic threshold. The following is the numerical simulations.

6.1. On scale-free network

We simulate the spread of disease among N interacting nodes, here N = 100. It is found that there
are two main factors that affect the diffusion rate and epidemic threshold: One is the connectivity
of nodes, and another is the heterogeneity parameter of the traffic flow. On scale-free network, the
adjacency A of order N×N is generated randomly (A is a symmetric matrix with the diagonal elements
are all 0, the other elements are 0 or 1). Then, the degree of node i is the sum of the elements of all
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the rows in line i of Ai j. On scale-free network, the degree distribution obeys power-law distribution
p(k) ∼ k−γ. Therefore, the effect of the parameter ν for the diffusion rate and epidemic threshold
should be explored by some sensitivity analysis about ν. In the real word network, the traffic flow
have a certain heterogeneity. It can be seen from Figure 1a, Di

I increase with the increase of ν, and the
heterogeneity of the diffusion rate also increase. At the same time, the threshold βc is also increase in
Figure 1b. That is to say, the parameter ν increases the epidemic threshold and suppresses the outbreak
of diseases. In the case of β > βc, the endemic equilibrium of the system is locally asymptotically
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Figure 1. Results for SIS model on scale-free networks with ρ0 = 80, µ = 0.212, ω0 = 1.
(a) Relationship between Di

I and ν. (b) Relationship between βc and ν.
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Figure 2. The time evolutions of the density of three different nodes i = 3, 28, 66 on scale-
free networks respectively. Here ρ0 = 80, β = 0.0425, µ = 0.212, ω0 = 1.

stable. When ν = 0.6, the number of susceptible individuals tends to be stable; At the same time, the
number of infected individuals gradually tends to be stable, thus the disease is prevalent. It is shown
that the more developed of city traffic is, the more people will be infected (Figure 1a). And for the
whole system, the change of average density of overall S , I population is similarity (Figure 1b).

For one city, the heterogeneity of traffic flow will also affect the infection rate. For the cities with
larger degree, the greater the ν is, the more the infected individuals are. That is to say, the heterogeneity
of traffic flow has an influence on the spread of the disease. For the cities with smaller degree, with
the increase of ν, the disease will go extinct (Figure 2). In general, the traffic heterogeneity of cities is
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about ν ≈ 0.5 [11], which can inhibit the prevalence of the disease.

6.2. On small-world network

In this section, the spread of disease on the small-world network is studied. The influence of ν
for the diffusion rate and epidemic threshold are shown in Figure 3. In Figure 4, it is the change of
individuals (susceptible and infected) and the overall average density over time. From Figure 5, it
is shown that the influence of ν for the infected individuals and the infection rate. In Figure 7 the
comparison of the epidemic between on the small-world and scale-free networks is given.
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Figure 3. The time evolutions of the density of two different nodes i = 3, 66 with ν,
respectively. Here ρ0 = 80, β = 0.0425, µ = 0.212, ω0 = 1.
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Figure 4. Results for SIS model on small-world network with ρ0 = 80, µ = 0.212, ω0 = 1.
(a) Relationship between Di

I and ν. (b) Relationship between βc and ν.

It can be seen that for the appropriate ν, the greater the degree of the city is, the greater the diffusion
rate (Figure 4). With the increase of ν, Di

I and the epidemic threshold βc all increase. That is also to
say, the parameter ν increases the epidemic threshold and suppresses outbreak of the disease (Figure
5). In the case of β > βc, the endemic equilibrium of the system is locally asymptotically stable. If
the epidemic threshold is reached, the prevalence of the disease will be promoted with increase of
parameter ν (Figure 6). From Figure 7, the system is locally asymptotically stable at the disease-free
equilibrium on the small-world network, while the disease is spreading on the scale-free network. It can
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Figure 5. The time evolutions of the density of three different nodes i = 3, 28, 66 on small-
world network respectively. Here ν = 0.4, ρ0 = 80, β = 0.0425, µ = 0.212, ω0 = 1.
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Figure 6. The time evolutions of the density of three different nodes i = 3, 28, 66 on small-
world network respectively. (a) is the change overall average density of S , I with ν. (b) is
the change of the infection rate for different ν.
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Figure 7. The time evolutions of the density of three different nodes i = 3, 28, 66 on different
networks. (a) is on the small-world network. (b) is on scale-free networks.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7085–7097.



7095

be seen that the disease is more prevalent on the scale-free network than on the small-world network
at the same parameters. The results show that the heterogeneity of traffic flow has a greater impact on
the disease, and the epidemic is easier to be controlled on the small-world network.

7. Conclusion

In this paper, an SIS model in metapopulation networks with heterogeneous diffusion rates is
established. According to the qualitative analysis of dynamics, the existence and stability of the
disease-free equilibrium are analyzed, and the epidemic threshold is obtained. When the epidemic
threshold is reached, the disease-free equilibrium is unstable, and the system has an endemic
equilibrium. It is proved that it is locally asymptotically stable, if the endemic equilibrium is existing.

Due to there is a big difference in the traffic level and population density in each city, the diffusion
rate of each city also have heterogeneity. In this paper, we consider the spread of disease with
heterogeneity of the degree and heterogeneity of diffusion rate, which is more suitable for the real
world. Based on this study, the relationship among the diffusion rate, connectivity and the
heterogeneity of traffic flow are given. There are two conclusions: On the one hand, for the larger
degree nodes, the number of infected individuals is higher than the smaller one. When the epidemic
threshold is reached, the more developed of city is, the higher the diffusion rate is, which result in the
large number of individuals enter from other nodes. Therefore, this increases the spread of disease; on
the other hand, from the view of disease control, heterogeneity of the traffic flow by increase the
epidemic threshold, can improve the ability to control the disease. Finally, numerical simulations are
compared on the scale-free network and the small-world network.

In this paper, because the eigenvalues of the Jacobian matrixes at the equilibria could not be
directly calculated, we estimated them by using other methods. In addition, we consider that the
diffusion rate from different cities is the same, and the diffusion rate, which is proportion to the traffic
flow, will be discussed in the future.
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