Citation: Antonio Barrera, Patricia Román-Roán, Francisco Torres-Ruiz. Hyperbolastic type-III diffusion process: Obtaining from the generalized Weibull diffusion process[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 814-833. doi: 10.3934/mbe.2020043
[1] | A. Tsoularis and J. Wallace, Analysis of logistic growth models, Math. Biosci., 179 (2002), 21-55, DOI: 10.1016/S0025-5564(02)00096-2 |
[2] | J. Xia and S. Wan, Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe, Ann. Bot., 111 (2013), 1207-1217, DOI: 10.1093/aob/mct079 |
[3] | S. A. Pardo, A. B.Cooper and N. K. Dulvy, Avoiding fishy growth curves, Methods Ecol. Evol., 4 (2013), 353-360, DOI: 10.1111/2041-210x.12020 |
[4] | Y. H. Hsieh, D. N. Fisman and J. Wu, On epidemic modeling in real time: an application to the 2009 Novel A (H1N1) influenza outbreak in Canada, BMC Res. Notes, 3 (2010), 283, DOI: 10.1186/1756-0500-3-283 |
[5] | S. P. Cairns, D. M. Robinson and D. S. Loiselle, Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle, Exp. Physiol., 93 (2008), 851-862, DOI: 10.1113/expphysiol.2007.041285 |
[6] | L. E. Bergues-Cabrales, A. Ramírez-Aguilera, R. Placeres-Jiménez, et al., Mathematical modeling of tumor growth in mice following low-level direct electric current, Math. Comput. Simul., 78 (2008), 112-120, DOI: 10.1016/j.matcom.2007.06.004 |
[7] | D. Dingli, M. D. Cascino, K. Josic, et al., Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78, DOI: 10.1016/j.mbs.2005.11.001 |
[8] | B. Gallagher, Peak oil analyzed with a logistic function and idealized Hubbert curve, Energy Policy, 39 (2011), 709-802, DOI: 10.1016/j.enpol.2010.10.053 |
[9] | M. Höök, L. Junchen, N. Oba, et al., Descriptive and predictive growth curves in energy system analysis, Nat. Resour. Res., 20 (2011), 103-116, DOI:10.1007/s11053-011-9139-z |
[10] | P. R. Koya and A. T. Goshu, Solutions of rate-state equation describing biological growths, Am. J. Math. Stat., 3 (2013), 305-331, DOI: 10.5923/j.ajms.20130306.02 |
[11] | P. R. Koya and A. T. Goshu, Generalized mathematical model for biological growths, Open J. Model. Simul., 1 (2013), 42-53, DOI: 10.4236/ojmsi.2013.14008 |
[12] | R. Bürger, G. Chowell and L. Y. Lara-Díaz, Comparative analysis of phenomenological growth models applied to epidemic outbreaks, Math. Biosci. Eng., 16 (2019), 4250-4273, DOI: 10.3934/mbe.2019212 |
[13] | M. Tabatatai, D. K. Williams and Z. Bursac, Hyperbolastic growth models: theory and application, Theor. Biol. Med. Model., 2 (2005), 1-13, DOI: 10.1186/1742-4682-2-14 |
[14] | W. Eby, M. Tabatabai and Z. Bursac, Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulphoxide, BMC Cancer, 10 (2010), 509, DOI: 10.1186/1471-2407-10-509 |
[15] | M. Tabatabai, Z. Bursac, W. Eby, et al., Mathematical modeling of stem cell proliferation, Med. Biol. Eng. Comput., 49 (2011), 253-262, DOI: 10.1007/s11517-010-0686-y |
[16] | M. Tabatabai, W. Eby and Z. Bursac, Oscillabolastic model, a new model for oscillatory dynamics, applied to the analysis of Hes1 gene expression and Ehrlich ascites tumor growth, J. Biomed. Inform., 45 (2012), 401-407, DOI: 10.1016/j.jbi.2011.11.016 |
[17] | M. Tabatabai, W. Eby, K. Singh, et al., T model of growth and its application in systems of tumorimmune dynamics, Math. Biosci. Eng., 10 (2013), 925-938, DOI: 10.3934/mbe.2013.10.925 |
[18] | W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech. Trans. ASME, 18 (1951), 293-297. |
[19] | P. Rosin and E. Rammler, The laws governing the fineness of powdered coal, J. Inst. Fuel., 7(1933), 29-36. |
[20] | G. A. Seber and C. J. Wild, Nonlinear Regression, John Wiley & Sons Inc, Hoboken, New Jersey, 2003. |
[21] | D. J. Mahanta and M. Borah, Parameter Estimation of Weibull Growth Models in Forestry, Int. J. Math. Trends Techn., 8 (2014), 157-163, DOI: 10.14445/22315373/IJMTT-V8P521 |
[22] | J. Swintek, M. Etterson, K. Flynn, et al., Optimized temporal sampling designs of the Weibull growth curve with extensions to the von Bertalanffy model, Environmetrics, e2552 (2019), DOI:doi.org/10.1002/env.2552 |
[23] | A. K. Pradhan, M. Li, Y. Li, et al., A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breasts during refrigerated and frozen storage, Poultry Sci., 91 (2012), 1482-1488, DOI: 10.3382/ps.2011-01851 doi: 10.3382/ps.2011-01851 |
[24] | J. L. Rocha and S. M. Aleixo, An extension of Gompertzian growth dynamics: Weibull and Fréchet models, Math. Biosci. Eng., 10 (2013), 379-398, DOI: 10.3934/mbe.2013.10.379 |
[25] | D. Rodríguez-Pérez, Package growth models, R package version 1.2 (2013). Available from http://cran.r-project.org/package=growthmodels |
[26] | H. C. Tuckwell and J. A. Koziol, Logistic population growth under random dispersal, Bull. Math. Biol., 49 (1987), 495-506, DOI: 10.1016/S0092-8240(87)80010-1 |
[27] | R. M. Capocelli and L. M. Ricciardi, Growth with regulation in random environment, Kybernetik, 15 (1974), 147-157. DOI:10.1007/BF00274586 |
[28] | L. Ferrante, S. Bompadre, L. Possati, et al., Parameter estimation in a Gompertzian stochastic model for tumor growth, Biometrics, 56 (2000), 1076-1081, DOI: 10.1111/j.0006-341X.2000.01076.x |
[29] | C. F. Lo, A modified stochastic Gompertz model for tumor cell growth, Comput. Math. Method M., 11 (2010), 3-11, DOI: 10.1080/17486700802545543 |
[30] | G. Albano, V. Giorno, P. Román-Román, et al., Inference on a stochastic two-compartment model in tumor growth, Comput. Stat. Data An., 56 (2012), 1723-1736, DOI: 10.1016/j.csda.2011.10.016 |
[31] | P. Román-Román, S. Román-Román, J. J. Serrano-Pérez, et al., Modeling tumor growth in the presence of a therapy with an effect on rate growth and variability by means of a modified Gompertz diffusion process, J. Theor. Biol., 407 (2016), 1-17, DOI: 10.1016/j.jtbi.2016.07.023 |
[32] | V. Giorno, P. Román-Román, S. Spina, et al., Estimating a non-homogeneous Gompertz process with jumps as model of tumor dynamics, Comput. Stat. Data An., 107 (2017), 18-31, DOI: 10.1016/j.csda.2016.10.005 |
[33] | Q. Lv and J. W. Pitchford, Stochastic von Bertalanffy models, with applications to fish recruitment, J. Theor. Biol., 244 (2007), 640-655, DOI:10.1016/j.jtbi.2006.09.009 |
[34] | P. Román-Román, D. Romero and F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data, J. Theor. Biol., 263 (2010), 59-69, DOI: 10.1016/j.jtbi.2009.12.009 |
[35] | P. Román-Román and F. Torres-Ruiz, Modeling logistic growth by a new diffusion process: application to biological systems, BioSystems, 110 (2012), 9-21, DOI: 10.1016/j.biosystems.2012.06.004 |
[36] | P. Román-Román and F. Torres-Ruiz, A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search, App. Math. Comput., 266 (2015), 579-598, DOI:10.1016/j.amc.2015.05.096 |
[37] | A. Barrera, P. Román-Román and F. Torres-Ruiz, A hyperbolastic type-I diffusion process: Parameter estimation by means of the firefly algorithm, BioSystems, 163 (2018), 11-22, DOI: 10.1016/j.biosystems.2017.11.001 |
[38] | P. Román-Román, J. J. Serrano-Pérez and F. Torres-Ruiz, A note on estimation of multi-sigmoidal Gompertz functions with random noise, Mathematics, 7 (2019), 541, DOI:10.3390/math7060541 |
[39] | P. Román-Román, J. J. Serrano-Pérez and F. Torres-Ruiz, Some notes about inference for the lognormal diffusion process with exogenous factors, Mathematics, 6 (2018), 85, DOI:10.3390/math6050085 |
[40] | R. G. Rutledge and D. Stewart, A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR, BMC Biotechnol., 8 (2008), 48, DOI:10.1186/1472-6750-8-47 |
[41] | R. G. Rutledge and C. Côt, Mathematics of quantitative kinetic PCR and the application of standard curves, Nucleic Acids Res., 31 (2003), e93, DOI:10.1093/nar/gng093 |
[42] | G. J. Boggy and P. J. Woolf, A mechanistic model of PCR for accurate quantification of quantitative PCR data, PLoS One, 5 (2010), e12355, DOI:10.1371/journal.pone.0012355 |
[43] | A. N. Spiess, C. Feig and C. Ritz, Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry, BMC Bioinforma., 9 (2008), 221, DOI:10.1186/14712105-9-221 |
[44] | A. N. Spiess, S. Rdiger, M. Burdukiewicz, et al., System-specific periodicity in quantitative realtime polymerase chain reaction data questions threshold-based quantitation, Sci. Rep., 6 (2016), 38951, DOI:10.1038/srep38951 |