Research article Special Issues

Hyperbolastic type-III diffusion process: Obtaining from the generalized Weibull diffusion process

  • Received: 29 July 2019 Accepted: 11 October 2019 Published: 04 November 2019
  • The modeling of growth phenomena has become a matter of great interest in many different fields of application and research. New stochastic models have been developed, and others have been updated to this end. The present paper introduces a diffusion process whose main characteristic is that its mean function belongs to a wide family of curves derived from the classic Weibull curve. The main characteristics of the process are described and, as a particular case, a diffusion process is considered whose mean function is the hyperbolastic curve of type Ⅲ, which has proven useful in the study of cell growth phenomena. By studying its estimation we are able to describe the behavior of such growth patterns. This work considers the problem of the maximum likelihood estimation of the parameters of the process, including strategies to obtain initial solutions for the system of equations that must be solved. Some examples are provided based on simulated sample paths and real data to illustrate the development carried out.

    Citation: Antonio Barrera, Patricia Román-Roán, Francisco Torres-Ruiz. Hyperbolastic type-III diffusion process: Obtaining from the generalized Weibull diffusion process[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 814-833. doi: 10.3934/mbe.2020043

    Related Papers:

  • The modeling of growth phenomena has become a matter of great interest in many different fields of application and research. New stochastic models have been developed, and others have been updated to this end. The present paper introduces a diffusion process whose main characteristic is that its mean function belongs to a wide family of curves derived from the classic Weibull curve. The main characteristics of the process are described and, as a particular case, a diffusion process is considered whose mean function is the hyperbolastic curve of type Ⅲ, which has proven useful in the study of cell growth phenomena. By studying its estimation we are able to describe the behavior of such growth patterns. This work considers the problem of the maximum likelihood estimation of the parameters of the process, including strategies to obtain initial solutions for the system of equations that must be solved. Some examples are provided based on simulated sample paths and real data to illustrate the development carried out.


    加载中


    [1] A. Tsoularis and J. Wallace, Analysis of logistic growth models, Math. Biosci., 179 (2002), 21-55, DOI: 10.1016/S0025-5564(02)00096-2
    [2] J. Xia and S. Wan, Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe, Ann. Bot., 111 (2013), 1207-1217, DOI: 10.1093/aob/mct079
    [3] S. A. Pardo, A. B.Cooper and N. K. Dulvy, Avoiding fishy growth curves, Methods Ecol. Evol., 4 (2013), 353-360, DOI: 10.1111/2041-210x.12020
    [4] Y. H. Hsieh, D. N. Fisman and J. Wu, On epidemic modeling in real time: an application to the 2009 Novel A (H1N1) influenza outbreak in Canada, BMC Res. Notes, 3 (2010), 283, DOI: 10.1186/1756-0500-3-283
    [5] S. P. Cairns, D. M. Robinson and D. S. Loiselle, Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle, Exp. Physiol., 93 (2008), 851-862, DOI: 10.1113/expphysiol.2007.041285
    [6] L. E. Bergues-Cabrales, A. Ramírez-Aguilera, R. Placeres-Jiménez, et al., Mathematical modeling of tumor growth in mice following low-level direct electric current, Math. Comput. Simul., 78 (2008), 112-120, DOI: 10.1016/j.matcom.2007.06.004
    [7] D. Dingli, M. D. Cascino, K. Josic, et al., Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78, DOI: 10.1016/j.mbs.2005.11.001
    [8] B. Gallagher, Peak oil analyzed with a logistic function and idealized Hubbert curve, Energy Policy, 39 (2011), 709-802, DOI: 10.1016/j.enpol.2010.10.053
    [9] M. Höök, L. Junchen, N. Oba, et al., Descriptive and predictive growth curves in energy system analysis, Nat. Resour. Res., 20 (2011), 103-116, DOI:10.1007/s11053-011-9139-z
    [10] P. R. Koya and A. T. Goshu, Solutions of rate-state equation describing biological growths, Am. J. Math. Stat., 3 (2013), 305-331, DOI: 10.5923/j.ajms.20130306.02
    [11] P. R. Koya and A. T. Goshu, Generalized mathematical model for biological growths, Open J. Model. Simul., 1 (2013), 42-53, DOI: 10.4236/ojmsi.2013.14008
    [12] R. Bürger, G. Chowell and L. Y. Lara-Díaz, Comparative analysis of phenomenological growth models applied to epidemic outbreaks, Math. Biosci. Eng., 16 (2019), 4250-4273, DOI: 10.3934/mbe.2019212
    [13] M. Tabatatai, D. K. Williams and Z. Bursac, Hyperbolastic growth models: theory and application, Theor. Biol. Med. Model., 2 (2005), 1-13, DOI: 10.1186/1742-4682-2-14
    [14] W. Eby, M. Tabatabai and Z. Bursac, Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulphoxide, BMC Cancer, 10 (2010), 509, DOI: 10.1186/1471-2407-10-509
    [15] M. Tabatabai, Z. Bursac, W. Eby, et al., Mathematical modeling of stem cell proliferation, Med. Biol. Eng. Comput., 49 (2011), 253-262, DOI: 10.1007/s11517-010-0686-y
    [16] M. Tabatabai, W. Eby and Z. Bursac, Oscillabolastic model, a new model for oscillatory dynamics, applied to the analysis of Hes1 gene expression and Ehrlich ascites tumor growth, J. Biomed. Inform., 45 (2012), 401-407, DOI: 10.1016/j.jbi.2011.11.016
    [17] M. Tabatabai, W. Eby, K. Singh, et al., T model of growth and its application in systems of tumorimmune dynamics, Math. Biosci. Eng., 10 (2013), 925-938, DOI: 10.3934/mbe.2013.10.925
    [18] W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech. Trans. ASME, 18 (1951), 293-297.
    [19] P. Rosin and E. Rammler, The laws governing the fineness of powdered coal, J. Inst. Fuel., 7(1933), 29-36.
    [20] G. A. Seber and C. J. Wild, Nonlinear Regression, John Wiley & Sons Inc, Hoboken, New Jersey, 2003.
    [21] D. J. Mahanta and M. Borah, Parameter Estimation of Weibull Growth Models in Forestry, Int. J. Math. Trends Techn., 8 (2014), 157-163, DOI: 10.14445/22315373/IJMTT-V8P521
    [22] J. Swintek, M. Etterson, K. Flynn, et al., Optimized temporal sampling designs of the Weibull growth curve with extensions to the von Bertalanffy model, Environmetrics, e2552 (2019), DOI:doi.org/10.1002/env.2552
    [23] A. K. Pradhan, M. Li, Y. Li, et al., A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breasts during refrigerated and frozen storage, Poultry Sci., 91 (2012), 1482-1488, DOI: 10.3382/ps.2011-01851 doi: 10.3382/ps.2011-01851
    [24] J. L. Rocha and S. M. Aleixo, An extension of Gompertzian growth dynamics: Weibull and Fréchet models, Math. Biosci. Eng., 10 (2013), 379-398, DOI: 10.3934/mbe.2013.10.379
    [25] D. Rodríguez-Pérez, Package growth models, R package version 1.2 (2013). Available from http://cran.r-project.org/package=growthmodels
    [26] H. C. Tuckwell and J. A. Koziol, Logistic population growth under random dispersal, Bull. Math. Biol., 49 (1987), 495-506, DOI: 10.1016/S0092-8240(87)80010-1
    [27] R. M. Capocelli and L. M. Ricciardi, Growth with regulation in random environment, Kybernetik, 15 (1974), 147-157. DOI:10.1007/BF00274586
    [28] L. Ferrante, S. Bompadre, L. Possati, et al., Parameter estimation in a Gompertzian stochastic model for tumor growth, Biometrics, 56 (2000), 1076-1081, DOI: 10.1111/j.0006-341X.2000.01076.x
    [29] C. F. Lo, A modified stochastic Gompertz model for tumor cell growth, Comput. Math. Method M., 11 (2010), 3-11, DOI: 10.1080/17486700802545543
    [30] G. Albano, V. Giorno, P. Román-Román, et al., Inference on a stochastic two-compartment model in tumor growth, Comput. Stat. Data An., 56 (2012), 1723-1736, DOI: 10.1016/j.csda.2011.10.016
    [31] P. Román-Román, S. Román-Román, J. J. Serrano-Pérez, et al., Modeling tumor growth in the presence of a therapy with an effect on rate growth and variability by means of a modified Gompertz diffusion process, J. Theor. Biol., 407 (2016), 1-17, DOI: 10.1016/j.jtbi.2016.07.023
    [32] V. Giorno, P. Román-Román, S. Spina, et al., Estimating a non-homogeneous Gompertz process with jumps as model of tumor dynamics, Comput. Stat. Data An., 107 (2017), 18-31, DOI: 10.1016/j.csda.2016.10.005
    [33] Q. Lv and J. W. Pitchford, Stochastic von Bertalanffy models, with applications to fish recruitment, J. Theor. Biol., 244 (2007), 640-655, DOI:10.1016/j.jtbi.2006.09.009
    [34] P. Román-Román, D. Romero and F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data, J. Theor. Biol., 263 (2010), 59-69, DOI: 10.1016/j.jtbi.2009.12.009
    [35] P. Román-Román and F. Torres-Ruiz, Modeling logistic growth by a new diffusion process: application to biological systems, BioSystems, 110 (2012), 9-21, DOI: 10.1016/j.biosystems.2012.06.004
    [36] P. Román-Román and F. Torres-Ruiz, A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search, App. Math. Comput., 266 (2015), 579-598, DOI:10.1016/j.amc.2015.05.096
    [37] A. Barrera, P. Román-Román and F. Torres-Ruiz, A hyperbolastic type-I diffusion process: Parameter estimation by means of the firefly algorithm, BioSystems, 163 (2018), 11-22, DOI: 10.1016/j.biosystems.2017.11.001
    [38] P. Román-Román, J. J. Serrano-Pérez and F. Torres-Ruiz, A note on estimation of multi-sigmoidal Gompertz functions with random noise, Mathematics, 7 (2019), 541, DOI:10.3390/math7060541
    [39] P. Román-Román, J. J. Serrano-Pérez and F. Torres-Ruiz, Some notes about inference for the lognormal diffusion process with exogenous factors, Mathematics, 6 (2018), 85, DOI:10.3390/math6050085
    [40] R. G. Rutledge and D. Stewart, A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR, BMC Biotechnol., 8 (2008), 48, DOI:10.1186/1472-6750-8-47
    [41] R. G. Rutledge and C. Côt, Mathematics of quantitative kinetic PCR and the application of standard curves, Nucleic Acids Res., 31 (2003), e93, DOI:10.1093/nar/gng093
    [42] G. J. Boggy and P. J. Woolf, A mechanistic model of PCR for accurate quantification of quantitative PCR data, PLoS One, 5 (2010), e12355, DOI:10.1371/journal.pone.0012355
    [43] A. N. Spiess, C. Feig and C. Ritz, Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry, BMC Bioinforma., 9 (2008), 221, DOI:10.1186/14712105-9-221
    [44] A. N. Spiess, S. Rdiger, M. Burdukiewicz, et al., System-specific periodicity in quantitative realtime polymerase chain reaction data questions threshold-based quantitation, Sci. Rep., 6 (2016), 38951, DOI:10.1038/srep38951
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3717) PDF downloads(435) Cited by(4)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog