Research article Special Issues

Finite-time stability of equilibrium solutions for the inertial neural networks via the figure analysis method

  • Received: 25 August 2022 Revised: 10 November 2022 Accepted: 22 November 2022 Published: 06 December 2022
  • The existence and finite-time stability (FTS) of equilibrium point (EP) for a kind of inertial neural networks (INNS) with varying-time delays is studied. Firstly, by adopting the degree theory and the maximum-valued method, a sufficient condition in the existence of EP is attained. Then by adopting the maximum-valued approach and the figure analysis approach, without adopting the matrix measure theory, linear matrix inequality (LMI), and FTS theorems, a sufficient condition in the FTS of EP for the discussed INNS is proposed.

    Citation: Huaying Liao, Zhengqiu Zhang. Finite-time stability of equilibrium solutions for the inertial neural networks via the figure analysis method[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3379-3395. doi: 10.3934/mbe.2023159

    Related Papers:

  • The existence and finite-time stability (FTS) of equilibrium point (EP) for a kind of inertial neural networks (INNS) with varying-time delays is studied. Firstly, by adopting the degree theory and the maximum-valued method, a sufficient condition in the existence of EP is attained. Then by adopting the maximum-valued approach and the figure analysis approach, without adopting the matrix measure theory, linear matrix inequality (LMI), and FTS theorems, a sufficient condition in the FTS of EP for the discussed INNS is proposed.



    加载中


    [1] K. L. Babcock, R. M. Westervelt, Stability and dynamics of simple electronic neural networks with added inertia, Phys. D, 23 (1986), 464–469. https://doi.org/10.1016/0167-2789(86)90152-1 doi: 10.1016/0167-2789(86)90152-1
    [2] Z. Q. Zhang, Z. Y. Quan, Global exponential stability via inequality technique for inertial BAM neural networks with time delays, Neurocomputing, 151 (2015), 1316–1326. https://doi.org/10.1016/j.neucom.2014.10.072 doi: 10.1016/j.neucom.2014.10.072
    [3] S. H. Yu, Z. Q. Zhang, Z. Y. Quan, New global exponential stability conditions for inertial Cohen-Grossberg neural networks with time delays, Neurocomputing, 151 (2015), 1446–1454. https://doi.org/10.1016/j.neucom.2014.10.043 doi: 10.1016/j.neucom.2014.10.043
    [4] N. Cui, H. J. Jiang, C. Hu, A. Abdurahman, Global asymptotic and robust stability of inertial neural networks with proportional delays, Neurocomputing, 272 (2018), 326–333. https://doi.org/10.10-16/j.neucom.2017.07.001 doi: 10.10-16/j.neucom.2017.07.001
    [5] W. Zhang, T. W. Huang, X. He, C. D. Li, Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses, Neural Networks, 95 (2017), 102–109. https://doi.org/10.1016/j.neunet.2017.03.012 doi: 10.1016/j.neunet.2017.03.012
    [6] D. Q. Ouyang, J. Shao, C. Hu, Stability property of impulsive inertial neural networks with unbounded time delay and saturating actuators, Neural Comput. Appl., 32 (2020), 6571–6580. https://link.springer.com/article/10.1007/s00521-019-04115-x doi: 10.1007/s00521-019-04115-x
    [7] G. D. Zhang, Z. G. Zeng, Exponential stability for a class of memristive neural networks with mixed time-varying delays, Appl. Math.Comput., 321 (2018), 544–554. https://doi.org/10.1016/j.amc.2017.11.022 doi: 10.1016/j.amc.2017.11.022
    [8] Z. Q. Zhang, J. D. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800
    [9] Z. Q. Zhang, J. D. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum value approach, IEEE Trans. Fuzzy Syst., 30 (2022), 1436–1446. https://doi.org/10.1109/TFUZZ.2021.3059953 doi: 10.1109/TFUZZ.2021.3059953
    [10] Z. Q. Zhang, M. Chen, A. L. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills, Neurocomputing, 373 (2020), 15–23. https://doi.org/10.1016/j.neucom.2019.09.034 doi: 10.1016/j.neucom.2019.09.034
    [11] C. Aouiti, F. Miaadi, Finite-time stability of neutral Hopfield neural networks with mixed delays, Neural Process. Lett., 48 (2018), 1645–1669. https://doi.org/10.1007/s11063-018-9791-y doi: 10.1007/s11063-018-9791-y
    [12] J. Tan, C. D. Li, Finite-time stability of neural networks with impulse effect and time-varying delay, Neural Process. Lett., 46 (2017), 29–39. https://doi.org/10.1007/s11063-016-9570-6 doi: 10.1007/s11063-016-9570-6
    [13] Z. Y. Yang, J. Zhang, Y. Q. Niu, Finite-time stability of fractional-order bidirectional associative memory neural networks with mixed time-varying delays, J. Appl. Comput., 63 (2020), 501–522. https://doi.org/10.1007/s12190-020-01327-6 doi: 10.1007/s12190-020-01327-6
    [14] Z. Y. Zhang, X. P. Liu, R. N. Guo, C. Lin, Finite-time stability for delayed complex-valued BAM neural networks, Neural Process. Lett., 48 (2018), 179–193. https://doi.org/10.1007/s11063-017-9710-7 doi: 10.1007/s11063-017-9710-7
    [15] X. J. Yang, Q. K. Song, Y. R. Liu, Z. J. Zhao, Finite-time stability analysis of fractional-order neural networks with delay, Neurocomputing, 152 (2015), 19–26. https://doi.org/10.1016/j.neucom.2014.11.023 doi: 10.1016/j.neucom.2014.11.023
    [16] Z. W. Cai, L. H. Huang, Finite-time stability of delayed memristive neural networks: discontinuous state-feedback and adaptive control approach, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 856–868. https://doi.org/10.1109/TNNLS.2017.2651023 doi: 10.1109/TNNLS.2017.2651023
    [17] C. Aouiti, X. D. Li, F. Miaadi, A new LMI approach to finite-time and fixed time stability of high-order class of BAM neural networks with time-varying delays, Neural Process. Lett., 50 (2019), 815–838. https://doi.org/10.1007/s11063-018-9939-9 doi: 10.1007/s11063-018-9939-9
    [18] X. Xing, D. Y. Yao, Q. Lu, X. C. Li, Finite-time stability of Markovian jump neural networks with partly unknown transition probabilities, Neurocomputing, 159 (2015), 282–287. https://doi.org/10.1016/j.neucom.2015.01.033 doi: 10.1016/j.neucom.2015.01.033
    [19] Y. Q. Ke, Finite-time stability of fractional order BAM neural networks with time delay, J. Discrete Math. Sci. Cryptography, 20 (2017), 681–693. https://doi.org/10.1080/09720529.2017.1339435 doi: 10.1080/09720529.2017.1339435
    [20] X. S. Ding, J. D. Cao, X. Zhao, F. E. Alsaadi, Finite-time stability of fractional-order complex-valued neural networks with time delays, Neural Processing Lett., 46 (2017), 561–580. https://doi.org/10.1007/s11063-017-9604-8 doi: 10.1007/s11063-017-9604-8
    [21] M. W. Zheng, L. X. Li, H. P. Peng, J. H. Xiao, Y. X. Yang, H. Zhao, Finite-time stability analysis for neutral-type neural networks with hybird time-varying delays without using Lyapunov method, Neurocomputing, 238 (2017), 67–75. https://doi.org/10.1016/j.cnsns.2017.11.025 doi: 10.1016/j.cnsns.2017.11.025
    [22] C. Rajivganthi, S. Lakshmanan, P. Muthukumar, Finite-time stability analysis for fractional-order Cohen-Grossberg BAM neural networks with time delays, Neural Comput. Appl., 29 (2018), 1309–1320. https://link.springer.com/article/10.1007/s00521-016-2641-9 doi: 10.1007/s00521-016-2641-9
    [23] S. Tyagi, S. C. Martha, Finite-time stability for a class of fractional-order fuzzy neural networks with proportional delay, Fuzzy Sets Syst., 381 (2020), 68–77. https://doi.org/10.1016/j.fss.2019.04.010 doi: 10.1016/j.fss.2019.04.010
    [24] S. Ali, G. Narayanan, Z. Orman, V. Shekher, S. Arik, Finite-time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays, Neural Process. Lett., 51 (2020), 407–426. https://doi.org/10.1007/s11063-019-10097-7 doi: 10.1007/s11063-019-10097-7
    [25] C. Y. Chen, S. Zhu, Y. C. Wei, Finite-time stability of delayed memristor-based fractional-order neural networks, IEEE Trans. Cybern., 50 (2020), 1607–1616. https://doi.org/10.1109/TCYB.2018.2876901 doi: 10.1109/TCYB.2018.2876901
    [26] X. Y. Chen, L. H. Huang, Z. Y. Guo, Finite time stability of periodic solution for Hopfield neural networks with discontinuous activation, Neurocomputing, 103 (2013), 43–49. https://doi.org/10.1016/j.neucom.2012.08.026 doi: 10.1016/j.neucom.2012.08.026
    [27] Z. Q. Zhang, D. L. Hao, Global asymptotic stability for complex-valued neural networks with time-varying delays via new Lyapunov functionals and complex-valued inequalities, Neural Process. Lett., 48 (2018), 995–1017. https://doi.org/10.1007/s11063-017-9757-5 doi: 10.1007/s11063-017-9757-5
    [28] Z. Q. Zhang, J. D. Cao, D. M. Zhou, Novel finite-time Novel LMI-based condition on global asymptotic stability for a class of Cohen-Grossberg BAM networks with extended activation functions, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 1161–1172. https://doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800
    [29] Z. Q. Zhang, W. B. Liu, D. M. Zhou, Global asymptotic stability to a generalized Cohen-Grossberg BAM neural networks of neutral type delays, Neural Networks, 25 (2012), 94–105. https://doi.org/10.1016/j.neunet.2011.07.006 doi: 10.1016/j.neunet.2011.07.006
    [30] Z. Q. Zhang, Y. Yang, Y. S. Huang, Global exponential stability of interval general BAM neural networks with reaction-diffusion terms and multiple time-varying delays, Neural Networks, (2011), 457–465. https://doi.org/10.1016/j.aml.2006.01.005 doi: 10.1016/j.aml.2006.01.005
    [31] Y. X. Wang, Z. Y. Guo, T. W. Huang, S. P. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous-periodic sampling algorithm, Appl. Math. Comput., 83 (2020), 125379. https://doi.org/10.1016/j.amc.2020.125379 doi: 10.1016/j.amc.2020.125379
    [32] Y. X. Wang, Y. T. Cao, Z. Y. Guo, S. P. Wen, Passivity and passification of memristive recurrent neural networks with multiproportional delays and impulse, Appl. Math. Comput., 369 (2020), 124838. https://doi.org/10.1016/j.amc.2019.124838 doi: 10.1016/j.amc.2019.124838
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1044) PDF downloads(41) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog