
http://www.aimspress.com/journal/mbe

MBE, 21(2): 3319–3334.
DOI: 10.3934/mbe.2024147
Received: 19 December 2023
Revised: 17 January 2024
Accepted: 20 January 2024
Published: 04 February 2024

Research article

Synchronization of inertial complex-valued memristor-based neural networks
with time-varying delays

Pan Wang*, Xuechen Li and Qianqian Zheng

School of Science, Xuchang University, Xuchang 461000, China

* Correspondence: Email: wp521009@126.com.

Abstract: The synchronization of inertial complex-valued memristor-based neural networks
(ICVMNNs) with time-varying delays was explored in the paper with the non-separation and non-
reduced approach. Sufficient conditions required for the exponential synchronization of the ICVMNNs
were identified with the construction of comprehensive Lyapunov functions and the design of a novel
control scheme. The adaptive synchronization was also investigated based on the derived results, which
is easier to implement in practice. What’s more, a numerical example that verifies the obtained results
was presented.

Keywords: inertial complex-valued neural networks; exponential synchronization; adaptive
synchronization; memristor

1. Introduction

Memristor, initiated by Chua in 1971, can simulate the human brain [1–4]. Owing to its advantages,
it has been introduced into neural networks to elaborate their dynamical behavior [5–9]. In-depth
research on the theory and the dynamical behavior gives rise to the inertial neural network (INN),
which was discussed in 1986 by introducing inductance into the neural current to represent its inertial
characteristics [10]. The application of inertial terms in neural networks, which has a strong biological
background, not only improves the performance of neural networks in the disorder search, but also serves
as an essential method to make the designed neural networks generate chaos and bifurcation behaviors.
Additionally, second-order differential equations are employed to detail the dynamical models of the
INNs [11]. The study on the dynamic behavior of INNs with memristors enjoys practical significance
and theoretical value, as previous studies have proved second-order neural networks advantages over
first-order counterparts in terms of complex dynamics and biological context [12–17].

Synchronization refers to the dynamical behavior of a coupled system reaching an identical state
simultaneously. The synchronization problems that are critical among the many behaviors vary in forms,
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such as finite-time synchronization, adaptive synchronization, preassigned-time synchronization, and
exponential synchronization. Studies on such problems of INNs have been rich with fruitful results [18–23],
including the finite-time and fixed-time synchronization [24–29], the quasi-synchronization [30], the
passivity-based synchronization [31], and the exponential synchronization [32]. These papers share
one commonality; namely, second-order neural networks are usually converted into first-order neural
networks, which both enlarge the dimension of the model and complicate the theoretical analysis.
Therefore, attempts are made in this paper to address the synchronization problems of INNs based on
the direct analysis method.

The complex-valued neural networks (CVNNs) are proposed to generalize the real-valued neural
networks (RVNNs). The CVNNs have been proven to outperform the RVNNs regarding computational
power and processing speed, which justifies the wide application of the former. Physically speaking,
CVNNs and memristors work together to fully use the advantages of memory. Meanwhile, the memristor-
based neural networks (MNNs) are more capable of conveying genetic information and more correctly
characterizing the physical systems seen in the real world. The study of complex-valued memristor-
based neural networks (CVMNNs) is essential for more accurate modeling of dynamic processes based
on the aforementioned qualities. A common practice for the study of CVNNs is to split them into two
RVNNs, and then discuss them separately afterward [33–38]. However, such a move increases the model’s
dimension and the computation’s difficulty, which naturally leads to exploration concerning the analysis of
the synchronization problem of CVNNs, incorporating the non-separation approach grounded in complex
functions theory and utilizing appropriate Lyapunov functions. Though the non-separation approach
is simpler and more effective, existing papers that utilize the approach to address the synchronization
problem of complex-valued INNs are few, which makes the topic more challenging.

The paper aims to elucidate the synchronization of inertial complex-valued memristor-based neural
networks (ICVMNNs) with time-varying delays with previous works as reference. The following reveals
the features of this paper:

(1) The model proposed in this paper takes into account factors such as memristors and inertial terms.
This makes the model considered more versatile and practical.

(2) Compared with existing results, this paper delves into the synchronization problem of ICVMNNs by
combining the non-separation method and complex functions theory. This approach complements
and extends the synchronization issues observed in first-order CVNNs.

(3) Instead of the reduced-order approach frequently used before, the construction of an improved
Lyapunov function is employed in this paper to investigate the synchronization problem of INNs.

(4) The paper considers exponential synchronization, which offers a faster convergence rate.
Additionally, it explores the more implementation-friendly adaptive synchronization to ensure
practical applicability.

The following explains the framework of this paper. Problems are formulated in Section 2. The
exponential synchronization and adaptive synchronization are established in Sections 3 and 4,
respectively. Section 5 presents a numerical example, while, Section 6 draws a conclusion.

Notations : Throughout this paper, Λ = {1, 2, · · · , n}. Additionally, R, C, and Cn represent the set
of real numbers, the set of complex numbers, and the set of n-dimensional complex-value vectors,
respectively. For u ∈ C, the norm is defined as |u| =

√
uu, where u is the conjugate of u. For

u = (u1, u2, · · · , un)T ∈ Cn, the norm is denoted by ∥u∥ =
√∑n

l=1 |ul|
2.
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2. Problem description

A class of the ICVMNNs with time-varying delays is presented as follows:

ül(t) = − clu̇l(t) − alul(t) +
n∑

q=1

alq(ul(t)) fq(uq(t))

+

n∑
q=1

blq(ul(t))gq(uq(t − πq(t))) + Il(t),

(2.1)

where l ∈ Λ; ul(t) ∈ C is the neural state variable of the lth neuron at time t; u̇l(t) is the first-
order derivative of ul(t); ül(t) is the second-order derivative representing the inertial term of system
(2.1). cl > 0 and al > 0 are constants; al denotes the rate at which the lth neuron will reset its
potential to the resting state in isolation when disconnected from the network and external input; fq(·)
and gq(·) : C → C are the activation functions; τq(t) is the real-valued time delay, which satisfies
0 < πq(t) < π̄ = maxq∈Λ supt∈R{πq(t)}, and π′q(t) < π̂ = maxq∈Λ supt∈R{π

′
q(t)} < 1; Il(t) ∈ C denotes the

input; alq(·) and blq(·) denote real-valued memristive connection weights. According to the characteristics
of memristor, in this paper we set

alq(ul(t)) =
{
âlq, |ul(t)| ≤ Υl,

ǎlq, |ul(t)| > Υl,
, blq(ul(t)) =

{
b̂lq, |ul(t)| ≤ Υl,

b̌lq, |ul(t)| > Υl,

where Υl > 0 is the switching jump, and âlq, ǎlq, b̂lq, b̌lq are known constants. For the convenience
of calculation, it may be useful to denote a+lq = max{|âlq|, |ǎlq|}, b+lq = max{|b̂lq|, |b̌lq|}, a∗lq = |âlq − ǎlq|,
b∗lq = |b̂lq − b̌lq|, l, q ∈ Λ.

The initial condition of (2.1) is defined as

ul(s) = φl(s), u̇l(s) = φ̂l(s), s ∈ [−π̄, 0],

where φl(·) and φ̂l(·) are bounded continuous functions, l ∈ Λ.
The corresponding response system is proposed by the following equation:

ω̈l(t) = − clω̇l(t) − alωl(t) +
n∑

q=1

alq(ωl(t)) fq(ωq(t))

+

n∑
q=1

blq(ωl(t))gq(ωq(t − πq(t))) + Il(t) +Wl(t),

(2.2)

where ωl(t) ∈ C is the neural state variable and Wl(t) denotes a controller that will be designed. The
meanings of other notations are given the same as that presented in system (2.1). The initial condition
of (2.2) is defined as

ωq(s) = ψl(s), v̇l(s) = ψ̂l(s), s ∈ [−π̄, 0],

where ψl(s) and ψ̂l(s) are bounded continuous functions, l ∈ Λ.
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Denote æl(t) = ωl(t) − ul(t), then

æ̈l(t) = − clæ̇l(t) − alæl(t) +
n∑

q=1

alq(ωl(t)) f̃q(æq(t))

+

n∑
q=1

[alq(ωl(t)) − alq(ul(t))] fq(uq(t))

+

n∑
q=1

blq(ωl(t))g̃q(æq(t − πq(t))) +
n∑

q=1

[blq(ωl(t))

− blq(ul(t))]gq(uq(t − πq(t))) +Wl(t),

(2.3)

where f̃q(æq(t)) = fq(ωq(t))− fq(uq(t)) and g̃q(æq(t−πq(t))) = gq(ωq(t−πq(t)))−gq(uq(t−πq(t))), l, q ∈ Λ.

Definition 2.1. ICVMNNs (2.1) and (2.2) are said to be globally exponentially synchronized if there
exist constants ν > 0 and L > 0 such that

∥æ(t)∥ ≤ Le−νt, t ≥ 0.

Assume that the following conditions hold:

(H1) functions fq and gq are Lipschitz continuous. That is, there exist constants Fq > 0, Gq > 0, such
that for all u, ω ∈ C,

| fq(u) − fq(ω)| ≤ Fq|u − ω|, |gq(u) − gq(ω)| ≤ Gq|u − ω|,

and | fq(·)| ≤ M, |gq(·)| ≤ N, where M and N are positive constants, q ∈ Λ.

3. The exponentially synchronization

To implement the exponential synchronization of the ICVMNNs (2.1) and (2.2), we design the
controllers as follows:

Wl(t) = −blæl(t) − plæ̇l(t), (3.1)

where bl > 0 and pl > 0 denote control gains to be determined, l ∈ Λ.
Assume that the following conditions hold:

(H2) for any l ∈ Λ, there exist nonzero constants αl, βl, and αlβl > 0 and positive constants γl, ν such
that

Θl ≤ 0, Ψl ≤ 0, Π2
l ≤ 4ΘlΨl,

where

Θl =ν(γl + β
2
l ) − αlβl(al + bl) +

1
2

n∑
q=1

[
(α2

q + αqβq)a+qlFl

+ αlβlb
+
lqGq + 2αlβl(a∗lqM + b∗lqN) + (α2

q + αqβq)b+qlGl
e2νπ̄

1 − π̂

]
,

Ψl =αlβl − α
2
l (cl + pl − ν) +

1
2

n∑
q=1

α2
l

(
2(a∗lqM + b∗lqN) + a+lqFq + b

+
lqGq

)
,

Πl =γl + β
2
l − α

2
l (al + bl) − αlβl(cl + pl − 2ν).
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Theorem 3.1. Let (H1) and (H2) hold, then the systems (2.1) and (2.2) can achieve exponential
synchronization under the feedback controller (3.1).

Proof. Consider the Lyapunov functional:

V(t) =
1
2

n∑
l=1

γlæl(t)æl(t)e2νt +
1
2

n∑
l=1

e2νt(αlæ̇l(t) + βlæl(t))(αlæ̇l(t) + βlæl(t))

+
1
2

n∑
l=1

n∑
q=1

(α2
l b
+
lq + αlβlb

+
lq)

Gqe2νπ̄

1 − π̂

∫ t

t−πq(t)
æq(s)æq(s)e2νsds.

Calculating the derivative of V(t):

V̇(t)

≤ e2νt
n∑

l=1

{[
ν(γl + β

2
l ) − αlβl(al + bl) +

n∑
q=1

αlβl(a∗lqM + b∗lqN)
]
æl(t)æl(t)

+

[
αlβl − α

2
l (cl + pl − ν) +

n∑
q=1

α2
l (a∗lqM + b∗lqN)

]
æ̇l(t)æ̇l(t)

+

(
γl + β

2
l − α

2
l (al + bl) − αlβl(cl + pl − 2ν)

)
Re(æ̇l(t)æl(t))

}
+

1
2

n∑
l=1

n∑
q=1

(α2
l b
+
lq + αlβlb

+
lq)Gqe2νt

( e2νπ̄

1 − π̂
æq(t)æq(t) − æq(t − πq(t))æq(t − πq(t))

)
+e2νt

n∑
l=1

n∑
q=1

α2
l

[
a
+
lqRe(æ̇l(t) f̃q(æq(t))) + b+lqRe(æ̇l(t)g̃q(æq(t − πq(t))))

]
+e2νt

n∑
l=1

n∑
q=1

αlβl

[
a
+
lqRe(æl(t) f̃q(æq(t))) + b+lqRe(æl(t)g̃q(æq(t − πq(t))))

]
. (3.2)

By means of the theory of complex functions and (H1),

n∑
l=1

n∑
q=1

α2
l a
+
lqRe(æ̇l(t) f̃q(æq(t)))

≤
1
2

n∑
l=1

n∑
q=1

(
α2

l a
+
lqFqæ̇l(t)æ̇l(t) + α2

qa
+
qlFlæl(t)æl(t)

)
, (3.3)

n∑
l=1

n∑
q=1

α2
l b
+
lqRe(æ̇l(t)g̃q(æq(t − πq(t))))

≤
1
2

n∑
l=1

n∑
q=1

α2
l b
+
lqGq

(
æ̇l(t)æ̇l(t) + æq(t − πq(t))æq(t − πq(t))

)
, (3.4)

n∑
l=1

n∑
q=1

αlβla
+
lqRe(æl(t) f̃q(æq(t)))
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≤
1
2

n∑
l=1

n∑
q=1

(
αlβla

+
lqFqæl(t)æl(t) + αqβqa

+
qlFlæl(t)æl(t)

)
, (3.5)

n∑
l=1

n∑
q=1

αlβlb
+
lqRe(æl(t)g̃q(æq(t − πq(t))))

≤
1
2

n∑
l=1

n∑
q=1

αlβlb
+
lqGq

(
æl(t)æl(t) + æq(t − πq(t))æq(t − πq(t))

)
. (3.6)

Submit (3.3)–(3.6) into (3.2), and we have

V̇(t) ≤ e2νt
n∑

l=1

{
ν(γl + β

2
l ) − αlβl(al + bl) +

1
2

n∑
q=1

[
(α2

q + αqβq)a+qlFl

+αlβl(a+lqFq + b
+
lqGq) + 2αlβl(a∗lqM + b∗lqN)

]
+

1
2

n∑
q=1

(α2
q

+αqβq)b+qlGl
e2νπ̄

1 − π̂

}
æl(t)æl(t) + e2νt

n∑
l=1

[
αlβl − α

2
l (cl + pl − ν)

+
1
2

n∑
q=1

α2
l

(
2(a∗lqM + b∗lqN) + a+lqFq + b

+
lqGq

)]
æ̇l(t)æ̇l(t)

+e2νt
n∑

l=1

(
γl + β

2
l − α

2
l (al + bl) − αlβl(cl + pl − 2ν)

)
Re(æ̇l(t)æl(t))

= e2νt
n∑

l=1

[
Θlæl(t)æl(t) + Ψlæ̇l(t)æ̇l(t) +

Πl

2

(
æ̇l(t)æl(t) + æ̇l(t)æl(t)

)]
.

Let △ = {l ∈ Λ : Θl = 0}, and from (H2), we have Πl = 0 for l ∈ △. Meanwhile, note that Θl ≤ 0,
Ψl ≤ 0, and Π2

l ≤ 4ΘlΨl, then

V̇(t) ≤ e2νt
n∑

l∈Λ\∆

Θl

(
æ̇l(t) +

Πl

2Θl
æl(t)
)(

æ̇l(t) +
Πl

2Θl
æl(t)
)

+e2νt
n∑

l∈Λ\∆

(
Ψl −

Π2
l

4Θl

)
æl(t)æl(t)

≤ 0,

which implies that V(t) ≤ V(0), t ≥ 0. Thus, one has

∥æ(t)∥ ≤

√
2V(0)
γ−

e−νt, t ≥ 0,

where γ− = minl∈Λ{γl}. The proof is complete.

Specifically, if αl = βl for all l ∈ Λ, (H2) can be replaced as:
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(H3) for any l ∈ Λ, there exists nonzero constant αl such that the control gains bl and pl in (3.1) satisfy

bl > −al +
1
2

n∑
q=1

(
a
+
lqFq + b

+
lqGq + 2(a∗lqM + b∗lqN)

)
+

n∑
q=1

α2
q

α2
l

(a+qlFl +
b+qlGl

1 − π̂
),

pl > 1 − cl +
1
2

n∑
q=1

(
a
+
lqFq + b

+
lqGq + 2(a∗lqM + b∗lqN)

)
,

bl + pl > 1 − cl − al.

Therefore, we can draw the following corollary:

Corollary 3.1. If (H1) and (H3) hold, the systems (2.1) and (2.2) are exponentially synchronized under
the controller (3.1).

The proof is similar to the proof of the Corollary 1 in [39], and it is omitted here.

Remark 3.1. By simplifying the parameter settling of αl and βl, l ∈ Λ, Corollary 3.1 can be obtained
based on Theorem 3.1, and thus, the conditions in Theorem 3.1 are more flexible and general. Meanwhile,
(H3) in Corollary 3.1 provides a more explicit gain control scheme that may be more applicable in
practical situations.

Remark 3.2. In [40], the authors used a non-reduced order approach to study the global dissipativity
of inertial RVNNs. Compared with the work, a more general class of inertial CVNNs is considered in
this paper.

4. The adaptive synchronization

From (H3), exponential synchronization is guaranteed as long as the feedback gains bl and pl in (3.1)
are large enough. In practice, however, this is not desirable from a cost control perspective. Therefore,
the following adaptive control schemes are designed:

Wl(t) = −bl(t)æl(t) − pl(t)æ̇l(t),
ḃl(t) = λl(æl(t)æl(t) + Re(æ̇l(t)æl(t))),
ṗl(t) = ρl(æ̇l(t)æ̇l(t) + Re(æ̇l(t)æl(t))),

(4.1)

where λl > 0, ρl > 0, l ∈ Λ.

Theorem 4.1. Let (H1) holds, then the systems (2.1) and (2.2) can achieve adaptive synchronization
under the feedback controller (4.1).

Proof. Consider the Lyapunov functional:

V1(t) =
1
2

n∑
l=1

γ̃læl(t)æl(t) +
1
2

n∑
l=1

α̃l(æ̇l(t) + æl(t))(æ̇l(t) + æl(t))

+

n∑
l=1

n∑
q=1

α̃lb
+
lqGq

1 − π̂

∫ t

t−πq(t)
æq(s)æq(s)ds
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+
1
2

n∑
l=1

α̃l

λl
(b̃l − bl(t))2 +

1
2

n∑
l=1

α̃l

ρl
( p̃l − pl(t))2,

where α̃l > 0. Constants b̃l, p̃l, and γ̃l > 0 will be given later.
Calculating the derivative of V1(t):

V̇1(t) =
1
2

n∑
l=1

γ̃l

(
æ̇l(t)æl(t) + æl(t)æ̇l(t)

)
+

1
2

n∑
l=1

α̃l(æ̈l(t) + æ̇l(t))

×(æ̇l(t) + æl(t)) + α̃l(æ̇l(t) + æl(t))(æ̈l(t) + æ̇l(t))
]

+

n∑
l=1

n∑
q=1

α̃lb
+
lqGq

1 − π̂

(
æq(t)æq(t) − æq(t − πq(t))æq(t − πq(t))(1 − π′q(t))

)
+

n∑
l=1

α̃l(bl(t) − b̃l)
(
æl(t)æl(t) + Re(æ̇l(t)æl(t))

)
+

n∑
l=1

α̃l(pl(t) − p̃l)
(
æ̇l(t)æ̇l(t) + Re(æ̇l(t)æl(t))

)
≤

n∑
l=1

{[ n∑
q=1

α̃l(a∗lqM + b∗lqN) − α̃l(al + b̃l)
]
æl(t)æl(t)

+

[
α̃l(1 − cl − p̃l) +

n∑
q=1

α̃l(a∗lqM + b∗lqN)
]
æ̇l(t)æ̇l(t)

+(γ̃l + α̃l(1 − b̃l − p̃l − cl − al))Re(æ̇l(t)æl(t))

+

n∑
l=1

n∑
q=1

α̃lb
+
lqGq

(æq(t)æq(t)
1 − π̂

− æq(t − πq(t))æq(t − πq(t))
)

+

n∑
l=1

n∑
q=1

α̃l

[
a
+
lqRe(æ̇l(t) f̃q(æq(t))) + b+lqRe(æ̇l(t)g̃q(æq(t − πq(t))))

]
+

n∑
l=1

n∑
q=1

α̃l

[
a
+
lqRe(æl(t) f̃q(æq(t))) + b+lqRe(æl(t)g̃q(æq(t − πq(t))))

]
.

Similarly, one has

V̇1(t) ≤
n∑

l=1

{[
− α̃l(al + b̃l) +

n∑
q=1

α̃l

(
a
∗
lqM + b∗lqN +

1
2

(a+lqFq + b
+
lqGq)
)

+

n∑
q=1

α̃q(a+qlFl +
b+qlGl

1 − π̂
)
]
æl(t)æl(t) + α̃l

[
(1 − cl − p̃l)

+

n∑
q=1

(
a
∗
lqM + b∗lqN +

1
2

(a+lqFq + b
+
lqGq)
)]

æ̇l(t)æ̇l(t)

+[γ̃l + α̃l(1 − b̃l − p̃l − cl − al)]Re(æ̇l(t)æl(t))
}
.
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For l ∈ Λ, choose

b̃l = −al +

n∑
q=1

(
a
∗
lqM + b∗lqN +

1
2

(a+lqFq + b
+
lqGq)
)

+

n∑
q=1

α̃q

α̃l
(a+qlFl +

b+qlGl

1 − π̂
) +

µ

α̃l
,

p̃l = 1 − cl +

n∑
q=1

(
a
∗
lqM + b∗lqN +

1
2

(a+lqFq + b
+
lqGq)
)
,

γ̃l = α̃l(b̃l + p̃l + cl + al − 1), (4.2)

where µ > 0. From (4.2), it is easy to get that γ̃l > 0, then one has

V̇1(t) ≤ −µ
n∑

l=1

æl(t)æl(t).

Thus

lim
t→+∞

∫ t

0

n∑
l=1

æl(s)æl(s)ds ≤
V1(0)
µ

< +∞.

By virtue of the of Barbalat lemma, it yields

lim
t→+∞

n∑
l=1

æl(t)æl(t) = 0.

Hence, the dynamics of systems (2.1) and (2.2) are adaptively synchronized. The proof is complete.

Remark 4.1. In neural networks, time delay is inevitable due to the finite transmission speed and signal
propagation time ( [41–43]). According to Theorems 3.1 and 4.1, time delays affect the synchronization
result.

Remark 4.2. Some results have been made in studying synchronization issues in ICVMNNs ( [44, 45]).
However, traditional techniques primarily rely on the reduced-order separation method, where the
second order is reduced to the first, simultaneously converting the complex-valued neural network into
real-valued neural networks. This process results in a doubling of dimensionality and computational
effort. In contrast, the approach we adopt in this paper is to design controllers for the original system
rather than the reduced-order and separation conversion system. This strategy is considered more
practical and highly relevant to real-world applications.

5. Numerical simulation

Consider the following ICVMNNs with time-varying delays:

ül(t) = −clu̇l(t) − alul(t) +
n∑

q=1

alq(ul(t)) fq(uq(t))
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+

n∑
q=1

blq(ul(t))gq(uq(t − πq(t))) + Il(t), (5.1)

and the response system is described as:

ω̈l(t) = −clω̇l(t) − alωq(t) +
n∑

q=1

alq(ωl(t)) fq(ωq(t))

+

n∑
q=1

blq(ωl(t))gq(ωq(t − πq(t))) + Il(t) +Wl(t), (5.2)

where l, q ∈ Λ = {1, 2}, π1(t) = π2(t) = 1+sin 2t
4 , c1 = 0.8, c2 = 1.5, a1 = 0.8, a2 = 1.2, I1 = sin t + i sin 2t,

I2 = cos t + i sin t, fq(·) = gq(·) = tanh(Re(·)) + i sin(Im(·)), and

a11(·) =
{

1.0, | · | ≤ 0.4,
0.8, | · | > 0.4,

a12(·) =
{

2.0, | · | ≤ 0.4,
2.2, | · | > 0.4,

a21(·) =
{
−1.0, | · | < 0.4,
−0.8, | · | > 0.4,

a22(·) =
{
−1.8, | · | < 0.4,
−2.0, | · | > 0.4,

b11(·) =
{

0.9, | · | < 0.4,
0.8, | · | > 0.4,

b12(·) =
{
−1.2, | · | < 0.4,
−1.4, | · | > 0.4,

b21(·) =
{

1.2, | · | < 0.4,
1.0, | · | > 0.4,

b22(·) =
{
−2.0, | · | < 0.4,
−1.8, | · | > 0.4.

The initial values are selected as φ1(s) = 2+3i, φ2(s) = −3+0.5i, φ̂1(s) = φ̂2(s) = −2+2i, ψ1(s) = −1+i,
ψ2(s) = 2 − 2i, ψ̂1(s) = ψ̂2(s) = −1 + 2i, s ∈ [−0.5, 0], l = 1, 2. The state responses of systems (5.1) and
(5.2) are shown in Figure 1. Figure 2 is the phase plot of the state real part and imaginary part of system
(5.1). Figure 3 illustrates the evolutions of the synchronization errors without control.
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Figure 1. The trajectories of ICVMNNs (5.1) and (5.2) without control, respectively.
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Figure 2. The phase plot of states real part and imaginary part of ul(t), l= 1, 2.
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Figure 3. The evolutions of æl(t) without control, l= 1, 2.
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Figure 4. The evolutions of æl(t) under controller (3.1), l= 1, 2.

Choose α1 = 1, α2 = 1.2. It follows from (H3) that b1 > 9.35, b2 > 11.9, p1 > 2.65, and
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p2 > 4.2. From Corollary 3.1, the ICVMNNs (5.1) and (5.2) with the controller (3.1) are exponentially
synchronized by the controller gains b1 = 9.6, b2 = 12, p1 = 3, and p2 = 4.5, which is demonstrated by
Figure 4.

Furthermore, considering the adaptive control scheme (4.1), let λl = 0.3, λ2 = 0.5, ρl = 0.4, ρ2 = 0.6.
By using the Theorem 4.1, the adaptive synchronization is obtained, which is shown in Figure 5.
Moreover, the trajectory of the controllers (3.1) and (4.1) are exhibited in Figure 6.
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Figure 5. The evolutions of æl(t) under controller (4.1), l= 1, 2.
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Figure 6. The trajectories of controller (3.1) and (4.1), respectively.

Remark 5.1. The aforementioned example illustrates that while exponential synchronization is quicker, the
feedback control parameters needed to achieve it are considerably larger than those required for adaptive
synchronization. Hence, adaptive synchronization proves to be more suitable for practical applications.

6. Conclusions

The synchronization problem of ICVMNNs with time-varying delays is elucidated in the paper, given
the practical significance and theoretical value of the dynamic behavior of INNs. A novel controller is
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developed based on the Lyapunov functions to realize the exponential synchronization of the studied
system. An adaptive controller is also designed to accomplish asymptotical synchronization, which is
simpler and better for practical engineering applications. The non-separation and nondecreasing order
method are adopted in the paper, which has never been seen before. Furthermore, the settling time of
fixed-time synchronization is proven to not depend on the system’s initial conditions, which is more in
line with the requirements in practical applications. However, studies on fixed-time synchronization of
ICVMNNs are still rare, requiring further attention to these interesting and challenging issues.
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