Research article Special Issues

Effect of the electromagnetic induction on a modified memristive neural map model


  • Received: 29 July 2023 Revised: 04 September 2023 Accepted: 11 September 2023 Published: 18 September 2023
  • The significance of discrete neural models lies in their mathematical simplicity and computational ease. This research focuses on enhancing a neural map model by incorporating a hyperbolic tangent-based memristor. The study extensively explores the impact of magnetic induction strength on the model's dynamics, analyzing bifurcation diagrams and the presence of multistability. Moreover, the investigation extends to the collective behavior of coupled memristive neural maps with electrical, chemical, and magnetic connections. The synchronization of these coupled memristive maps is examined, revealing that chemical coupling exhibits a broader synchronization area. Additionally, diverse chimera states and cluster synchronized states are identified and discussed.

    Citation: Prasina Alexander, Fatemeh Parastesh, Ibrahim Ismael Hamarash, Anitha Karthikeyan, Sajad Jafari, Shaobo He. Effect of the electromagnetic induction on a modified memristive neural map model[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 17849-17865. doi: 10.3934/mbe.2023793

    Related Papers:

  • The significance of discrete neural models lies in their mathematical simplicity and computational ease. This research focuses on enhancing a neural map model by incorporating a hyperbolic tangent-based memristor. The study extensively explores the impact of magnetic induction strength on the model's dynamics, analyzing bifurcation diagrams and the presence of multistability. Moreover, the investigation extends to the collective behavior of coupled memristive neural maps with electrical, chemical, and magnetic connections. The synchronization of these coupled memristive maps is examined, revealing that chemical coupling exhibits a broader synchronization area. Additionally, diverse chimera states and cluster synchronized states are identified and discussed.



    加载中


    [1] M. Courbage, V. I. Nekorkin, Map based models in neurodynamics, Int. J. Bifurcation Chaos, 20 (2010), 1631–1651. https://doi.org/10.1142/S0218127410026733 doi: 10.1142/S0218127410026733
    [2] B. Ibarz, J. M. Casado, M. A. Sanjuán, Map-based models in neuronal dynamics, Phys. Rep., 501 (2011), 1–74. https://doi.org/10.1016/j.physrep.2010.12.003 doi: 10.1016/j.physrep.2010.12.003
    [3] A. Holko, M. Mȩdrek, Z. Pastuszak, K. Phusavat, Epidemiological modeling with a population density map-based cellular automata simulation system, Expert Syst. Appl., 48 (2016), 1–8. https://doi.org/10.1016/j.eswa.2015.08.018 doi: 10.1016/j.eswa.2015.08.018
    [4] V. V. Tarasova, V. E. Tarasov, Logistic map with memory from economic model, Chaos Solitons Fractals, 95 (2017), 84–91. https://doi.org/10.1016/j.chaos.2016.12.012 doi: 10.1016/j.chaos.2016.12.012
    [5] K. Tanaka, T. Kinkyo, S. Hamori, Financial hazard map: Financial vulnerability predicted by a random forests classification model, Sustainability, 10 (2018), 1530. https://doi.org/10.3390/su10051530 doi: 10.3390/su10051530
    [6] Z. Hua, Y. Zhou, Exponential chaotic model for generating robust chaos, IEEE Trans. Syst. Man Cybern., 51 (2019), 3713–3724. https://doi.org/10.1109/TSMC.2019.2932616 doi: 10.1109/TSMC.2019.2932616
    [7] M. Ausloos, The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications, Springer Science & Business Media, 2006.
    [8] B. Cessac, B. Doyon, M. Quoy, M. Samuelides, Mean-field equations, bifurcation map and route to chaos in discrete time neural networks, Physica D, 74 (1994), 24–44. https://doi.org/10.1016/0167-2789(94)90024-8 doi: 10.1016/0167-2789(94)90024-8
    [9] Q. Xu, T. Liu, S. Ding, H. Bao, Z. Li, B. Chen, Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with memristive electromagnetic induction, Cognit. Neurodyn., 17 (2023), 755–766. https://doi.org/10.1007/s11571-022-09866-3 doi: 10.1007/s11571-022-09866-3
    [10] I. Bashkirtseva, L. Ryashko, J. M. Seoane, M. A. Sanjuán, Noise-induced complex dynamics and synchronization in the map-based Chialvo neuron model, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106867. https://doi.org/10.1016/j.cnsns.2022.106867 doi: 10.1016/j.cnsns.2022.106867
    [11] J. Sausedo-Solorio, A. Pisarchik, Synchronization of map-based neurons with memory and synaptic delay, Phys. Lett. A, 378 (2014), 2108–2112. https://doi.org/10.1016/j.physleta.2014.05.003 doi: 10.1016/j.physleta.2014.05.003
    [12] I. Franović, V. Miljković, Power law behavior related to mutual synchronization of chemically coupled map neurons, Eur. Phys. J. B, 76 (2010), 613–624. https://doi.org/10.1140/epjb/e2010-00205-4 doi: 10.1140/epjb/e2010-00205-4
    [13] Q. Xu, T. Liu, C. T. Feng, H. Bao, H. G. Wu, B. C. Bao, Continuous non-autonomous memristive Rulkov model with extreme multistability, Chin. Phys. B, 30 (2021), 128702. https://doi.org/10.1088/1674-1056/ac2f30 doi: 10.1088/1674-1056/ac2f30
    [14] S. He, K. Rajagopal, A. Karthikeyan, A. Srinivasan, A discrete Huber-Braun neuron model: From nodal properties to network performance, Cognit. Neurodyn., 17 (2023), 301–310. https://doi.org/10.1007/s11571-022-09806-1 doi: 10.1007/s11571-022-09806-1
    [15] F. Wang, H. Cao, Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 481–489. https://doi.org/10.1016/j.cnsns.2017.08.027 doi: 10.1016/j.cnsns.2017.08.027
    [16] Y. Li, C. Li, Y. Zhao, S. Liu, Memristor-type chaotic mapping, Chaos, 32 (2022). https://doi.org/10.1063/5.0082983
    [17] X. Zhang, C. Li, E. Dong, Y. Zhao, Z. Liu, A conservative memristive system with amplitude control and offset boosting, Int. J. Bifurcation Chaos, 32 (2022), 2250057. https://doi.org/10.1142/S0218127422500572 doi: 10.1142/S0218127422500572
    [18] Y. Jiang, C. Li, C. Zhang, Y. Zhao, H. Zang, A double-memristor hyperchaotic oscillator with complete amplitude control, IEEE Trans. Circuits Syst. I, 68 (2021), 4935–4944. https://doi.org/10.1109/TCSI.2021.3121499 doi: 10.1109/TCSI.2021.3121499
    [19] H. Jeong, L. Shi, Memristor devices for neural networks, J. Phys. D, 52 (2018), 023003. https://doi.org/10.1088/1361-6463/aae223 doi: 10.1088/1361-6463/aae223
    [20] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932 doi: 10.1038/nature06932
    [21] H. Wang, C. L. Li, S. Banerjee, S. B. He, Novel memristor and memristor-based applications, Eur. Phys. J. Spec. Top., 231 (2022), 2973–2977. https://doi.org/10.1140/epjs/s11734-022-00697-1 doi: 10.1140/epjs/s11734-022-00697-1
    [22] M. Ge, Y. Jia, Y. Xu, L. Yang, Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation, Nonlinear Dyn., 91 (2018), 515–523. https://doi.org/10.1007/s11071-017-3886-2 doi: 10.1007/s11071-017-3886-2
    [23] S. P. Adhikari, C. Yang, H. Kim, L. O. Chua, Memristor bridge synapse-based neural network and its learning, IEEE Trans. Neural Networks Learn. Syst., 23 (2012), 1426–1435. https://doi.org/10.1109/TNNLS.2012.2204770 doi: 10.1109/TNNLS.2012.2204770
    [24] J. C. Magee, C. Grienberger, Synaptic plasticity forms and functions, Ann. Rev. Neurosci., 43 (2020), 95–117. https://doi.org/10.1146/annurev-neuro-090919-022842 doi: 10.1146/annurev-neuro-090919-022842
    [25] C. Chen, F. Min, Y. Zhang, B. Bao, Memristive electromagnetic induction effects on Hopfield neural network, Nonlinear Dyn., 106 (2021), 2559–2576. https://doi.org/10.1007/s11071-021-06910-5 doi: 10.1007/s11071-021-06910-5
    [26] S. Hu, Y. Liu, Z. Liu, T. Chen, J. Wang, Q. Yu, et al., Associative memory realized by a reconfigurable memristive Hopfield neural network, Nat. Commun., 6 (2015), 7522. https://doi.org/10.1038/ncomms8522 doi: 10.1038/ncomms8522
    [27] K. Rajagopal, A. Karthikeyan, S. Jafari, F. Parastesh, C. Volos, I. Hussain, Wave propagation and spiral wave formation in a Hindmarsh-Rose neuron model with fractional-order threshold memristor synapse, Int. J. Mod. Phys. B, 34 (2020), 2050157. https://doi.org/10.1142/S021797922050157X doi: 10.1142/S021797922050157X
    [28] Q. Xu, Z. Ju, S. Ding, C. Feng, M. Chen, B. Bao, Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model, Cognit. Neurodyn., 16 (2022), 1221–1231. https://doi.org/10.1007/s11571-021-09764-0 doi: 10.1007/s11571-021-09764-0
    [29] S. Qiao, C. Gao, Complex dynamics of a non-smooth temperature-sensitive memristive Wilson neuron model, Commun. Nonlinear Sci. Numer. Simul., 125 (2023), 107410. https://doi.org/10.1016/j.cnsns.2023.107410 doi: 10.1016/j.cnsns.2023.107410
    [30] C. Li, Y. Yang, X. Yang, Y. Lu, Application of discrete memristors in logistic map and Hindmarsh-Rose neuron, Eur. Phys. J. Spec. Top., 231 (2022), 3209–3224. https://doi.org/10.1140/epjs/s11734-022-00645-z doi: 10.1140/epjs/s11734-022-00645-z
    [31] Q. Lai, C. Lai, H. Zhang, C. Li, Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption, Chaos Solitons Fractals, 158 (2022), 112017. https://doi.org/10.1016/j.chaos.2022.112017 doi: 10.1016/j.chaos.2022.112017
    [32] C. Gao, S. Qiao, X. An, Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model, Chaos Solitons Fractals, 160 (2022), 112281. https://doi.org/10.1016/j.chaos.2022.112281 doi: 10.1016/j.chaos.2022.112281
    [33] S. Qiao, C. Gao, X. An, Hidden dynamics and control of a Filippov memristive hybrid neuron model, Nonlinear Dyn., 111 (2023), 10529–10557. https://doi.org/10.1016/j.chaos.2022.112017 doi: 10.1016/j.chaos.2022.112017
    [34] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93–153. https://doi.org/10.1016/j.physrep.2008.09.002 doi: 10.1016/j.physrep.2008.09.002
    [35] Z. Wang, R. Ramamoorthy, X. Xi, H. Namazi, Synchronization of the neurons coupled with sequential developing electrical and chemical synapses, Math. Biosci. Eng., 19 (2022), 1877–1890. https://doi.org/10.3934/mbe.2022088 doi: 10.3934/mbe.2022088
    [36] S. N. Chowdhury, S. Majhi, M. Ozer, D. Ghosh, M. Perc, Synchronization to extreme events in moving agents, New J. Phys., 21 (2019), 073048. https://doi.org/10.1088/1367-2630/ab2a1f doi: 10.1088/1367-2630/ab2a1f
    [37] G. Vivekanandhan, H. Natiq, Y. Merrikhi, K. Rajagopal, S. Jafari, Dynamical analysis and synchronization of a new memristive Chialvo neuron model, Electronics, 12 (2023), 545. https://doi.org/10.3390/electronics12030545 doi: 10.3390/electronics12030545
    [38] S. He, Complexity and chimera states in a ring-coupled fractional-order memristor neural network, Front. Appl. Math. Stat., 6 (2020), 24. https://doi.org/10.3389/fams.2020.00024 doi: 10.3389/fams.2020.00024
    [39] Z. Wang, H. Tian, O. Krejcar, H. Namazi, Synchronization in a network of map-based neurons with memristive synapse, Eur. Phys. J. Spec. Top., 231 (2022), 4057–4064. https://doi.org/10.1140/epjs/s11734-022-00691-7 doi: 10.1140/epjs/s11734-022-00691-7
    [40] F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, et al., Chimeras, Phys. Rep., 898 (2021), 1–114. https://doi.org/10.1016/j.physrep.2020.10.003 doi: 10.1016/j.physrep.2020.10.003
    [41] S. Majhi, B. K. Bera, D. Ghosh, M. Perc, Chimera states in neuronal networks: A review, Phys. Life Rev., 28 (2019), 100–121. https://doi.org/10.1016/j.plrev.2018.09.003 doi: 10.1016/j.plrev.2018.09.003
    [42] I. Franović, K. Todorović, N. Vasović, N. Burić, Cluster synchronization of spiking induced by noise and interaction delays in homogenous neuronal ensembles, Chaos, 22 (2012). https://doi.org/10.1063/1.4753919
    [43] I. Franović, K. Todorović, N. Vasović, N. Burić, Spontaneous formation of synchronization clusters in homogenous neuronal ensembles induced by noise and interaction delays, Phys. Rev. Lett., 108 (2012), 094101. https://doi.org/10.1103/PhysRevLett.108.094101 doi: 10.1103/PhysRevLett.108.094101
    [44] M. Mehrabbeik, F. Parastesh, J. Ramadoss, K. Rajagopal, H. Namazi, S. Jafari, Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps, Math. Biosci. Eng., 18 (2021), 9394–9409. https://doi.org/10.3934/mbe.2021462 doi: 10.3934/mbe.2021462
    [45] K. Li, B. Bao, J. Ma, M. Chen, H. Bao, Synchronization transitions in a discrete memristor-coupled bi-neuron model, Chaos Solitons Fractals, 165 (2022), 112861. https://doi.org/10.1016/j.chaos.2022.112861 doi: 10.1016/j.chaos.2022.112861
    [46] B. Ramakrishnan, M. Mehrabbeik, F. Parastesh, K. Rajagopal, S. Jafari, A new memristive neuron map model and its network's dynamics under electrochemical coupling, Electronics, 11 (2022), 153. https://doi.org/10.3390/electronics11010153
    [47] S. Wang, Z. Wei, Synchronization of coupled memristive Hindmarsh–Rose maps under different coupling conditions, AEU-Int. J. Electron. Commun., 161 (2023), 154561. https://doi.org/10.1016/j.aeue.2023.154561 doi: 10.1016/j.aeue.2023.154561
    [48] G. Baghdadi, S. Jafari, J. C. Sprott, F. Towhidkhah, M. H. Golpayegani, A chaotic model of sustaining attention problem in attention deficit disorder, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 174–185. https://doi.org/10.1016/j.cnsns.2014.05.015 doi: 10.1016/j.cnsns.2014.05.015
    [49] B. Bao, H. Qian, Q. Xu, M. Chen, J. Wang, Y. Yu, Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network, Front. Comput. Neurosci., 11 (2017), 81. https://doi.org/10.3389/fncom.2017.00081 doi: 10.3389/fncom.2017.00081
    [50] D. Ding, J. Luo, X. Shan, Y. Hu, Z. Yang, L. Ding, Coexisting behaviors of a fraction-order novel hyperbolic-type memristor Hopfield neuron network based on three neurons, Int. J. Mod. Phys. B, 34 (2020), 2050302. https://doi.org/10.1142/S0217979220503026 doi: 10.1142/S0217979220503026
    [51] R. Li, Z. Wang, E. Dong, A new locally active memristive synapse-coupled neuron model, Nonlinear Dyn., 104 (2021), 4459–4475. https://doi.org/10.1007/s11071-021-06574-1 doi: 10.1007/s11071-021-06574-1
    [52] K. Li, H. Bao, H. Li, J. Ma, Z. Hua, B. Bao, Memristive Rulkov neuron model with magnetic induction effects, IEEE Trans. Ind. Inf., 18 (2021), 1726–1736. https://doi.org/10.1109/TⅡ.2021.3086819 doi: 10.1109/TⅡ.2021.3086819
    [53] S. Garai, S. Karmakar, S. Jafari, N. Pal, Coexistence of triple, quadruple attractors and Wada basin boundaries in a predator-prey model with additional food for predators, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107208. https://doi.org/10.1016/j.cnsns.2023.107208 doi: 10.1016/j.cnsns.2023.107208
    [54] Y. Zhou, J. Gao, K. D. White, I. Merk, K. Yao, Perceptual dominance time distributions in multistable visual perception, Biol. Cybern., 90 (2004), 256–263. https://doi.org/10.1007/s00422-004-0472-8 doi: 10.1007/s00422-004-0472-8
    [55] D. Durstewitz, G. Deco, Computational significance of transient dynamics in cortical networks, Eur. J. Neurosci., 27 (2008), 217–227. https://doi.org/10.1111/j.1460-9568.2007.05976.x doi: 10.1111/j.1460-9568.2007.05976.x
    [56] T. Ionescu, Exploring the nature of cognitive flexibility, New Ideas Psychol., 30 (2012), 190–200. https://doi.org/10.1016/j.newideapsych.2011.11.001 doi: 10.1016/j.newideapsych.2011.11.001
    [57] Y. Xu, Y. Jia, J. Ma, A. Alsaedi, B. Ahmad, Synchronization between neurons coupled by memristor, Chaos Solitons Fractals, 104 (2017), 435–442. https://doi.org/10.1016/j.chaos.2017.09.002 doi: 10.1016/j.chaos.2017.09.002
    [58] P. Zhou, Y. Xu, J. Ma, Dynamical and coherence resonance in a photoelectric neuron under autaptic regulation, Physica A, 620 (2023), 128746. https://doi.org/10.1016/j.physa.2023.128746 doi: 10.1016/j.physa.2023.128746
    [59] A. N. Pisarchik, A. E. Hramov, Coherence resonance in neural networks: Theory and experiments, Phys. Rep., 1000 (2023), 1–57. https://doi.org/10.1016/j.physrep.2022.11.004 doi: 10.1016/j.physrep.2022.11.004
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1292) PDF downloads(91) Cited by(2)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog