Citation: Chun-Chao Yeh, Ke-Jia Jhang, Chin-Chun Chang. An intelligent indoor positioning system based on pedestrian directional signage object detection: a case study of Taipei Main Station[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 266-285. doi: 10.3934/mbe.2020015
[1] | K. Wang, X. Yu, Q. Xiong, et al., Learning to improve WLAN indoor positioning accuracy based on DBSCAN-KRF algorithm from RSS fingerprint data, IEEE Access, 7 (2019), 72308-72315. |
[2] | L. Chen, B. Li, K. Zhao, et al., An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning,Sensors, 13 (2013), 11085-11096. |
[3] | C. H. Lin, L. H. Chen, H. K. Wu, et al., An indoor positioning algorithm based on fingerprint and mobility prediction in RSS fluctuation-prone WLANs, IEEE T. Syst. Man. Cy. S, 6 (2019), 1-11 (Early Access). |
[4] | Md. S. Ifthekhar, N. Saha and Y. M. Jang, Neural network based indoor positioning technique in optical camera communication system, in Proceedings of 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), IEEE Comput. Soc., (2014), 431-435. |
[5] | G. Schroeer, A real-time UWB multi-channel indoor positioning system for industrial scenarios, in Proceedings of 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), IEEE Comput. Soc., (2018), 1-5. |
[6] | X. Gan, B. Yu, Z. Heng, et al., Indoor combination positioning technology of Pseudolites and PDR, in Proceedings of 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), IEEE Comput. Soc., (2018), 1-7. |
[7] | J. Huang, V. Rathod, C. Sun, et al., Speed/accuracy trade-os for modern convolutional object detectors, in Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Comput. Soc., (2017), 3296-3297. |
[8] | R. Girshick, J. Donahue, T. Darrell, et al., Rich feature hierarchies for accu-rate object detection and semantic segmentation, in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Comput. Soc., (2014), 580-587. |
[9] | S. Ren, K. He, R. Girshick, et al., Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE T. Pattern Anal., 39 (2017), 1137-1149. |
[10] | J. Dai, Y. Li, K. He, et al., R-FCN: object detection via region-based fully convolutional networks, preprint,CoRR(2016), arXiv:1605.06409. |
[11] | J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, et al., Selective search for object recognition, Int. J. Comput. Vision, 104 (2013), 154-171. |
[12] | J. Redmon, S. K. Divvala, R. B. Girshick, et al., You only look once: Unified, real-time object detection, CoRR(2015), arXiv:1506.02640. |
[13] | W. Liu, D. Anguelov, D. Erhan, et al., SSD: Single shot multibox detector, in Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision-ECCV 2016. Lect. Notes Comput. Sc.,9905 (2016), 21-37. |
[14] | T. Lin, P. Goyal, R. Girshick, et al., Focal loss for dense object detection, in Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), IEEE Comput. Soc., (2017), 2999-3007. |
[15] | YOLO: Real-Time Object Detection. Available from: https://pjreddie.com/darknet/yolo/. |
[16] | GitHub, tensorflow/models. Available from: https://github.com/tensorflow/models/tree/master/research/object_detection. |
[17] | Taipei Main Station, Wikipedia. Available from: https://en.wikipedia.org/wiki/Taipei_Main_Station. |
[18] | Statistics inquiry, Ministry of transportation and Communications, Taiwan. Available from: http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=emenu. |
[19] | London Waterloo station, Wikipedia, Available from: https://en.wikipedia.org/wiki/London_Waterloo_station. |