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Abstract: In this paper, we investigated leader-following consensus control for nonlinear multi-
agent systems (MASs) experiencing denial-of-service (DoS) attacks. We proposed a distributed
control strategy incorporating an adaptive scheme and a state feedback control gain to eliminate the
effects of system nonlinear dynamics and uncertainties. In addition, we introduced a dynamic event-
triggered control (DETC) to minimize the utilization of communication resources. Finally, we provided
simulation results to show the validity of the proposed approach.
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1. Introduction

In recent years, multi-agent consensus control has been recognized as a vital element of distributed
collaborative control for applications such as distributed computing, unmanned aerial vehicle
formation, and intelligent transportation systems. Researchers have shown significant interest in this
area, and a wide range of control mechanisms have been explored in the past few years. These control
mechanisms include adaptive [1–4], fault-tolerant [5], impulse [6, 7], and sliding mode [8] methods.

In practical systems, the stability of the system state is susceptible to disruption from unexpected
factors, including nonlinear dynamics and system uncertainties. Existing research has primarily
focused on continuous-time systems, where the state information of intelligent agents is continuously
transmitted between nodes, leading to significant network usage and energy consumption. However,
the development of event-triggered control solves this problem by avoiding constant communication.
Earlier studies on event-triggered control that can be found have investigated centralized, distributed,
and self-triggered event-triggered control techniques [9–11]. One researcher proposed an adaptive
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event-triggered control scheme for strongly connected networks that dynamically adjusted the
triggering time interval on the basis of sampled data [12]. Another mechanism using a dynamic
event-triggering mechanism was proposed to reduce communication resource wastage compared with
traditional event-triggering mechanisms [13]. Others have assumed that system parameters such as
the efficiency factor of the executor, external disturbances, and precursor control input signals are all
unknown and introduced a fault-tolerant control to obtain sufficient conditions for consistent
tracking [14]. However, these findings primarily investigate traditional event triggering mechanisms.
In [15, 16], researchers proposed a dynamic event-triggered mechanism, which can significantly
reduce the number of triggers and conserve communication resources. researchers respectively
proposed centralized and distributed dynamic event-triggered mechanisms in [15, 16], while scholars
suggested both centralized and distributed mechanisms in [17], verifying their superiority.

However, the rapid growth of network information technologies has also led to a rise in cyber
attacks. Among them, denial-of-service (DoS) attacks are the most common, being relatively easy to
execute in the attack space. These attacks usually target the controller or exhaust the resources of the
target system directly, resulting in the system being unable to provide normal services or
communication. In some cases, these attacks cause the system to crash. Therefore, countering DoS
attacks has received significant research attention. Researchers studied the multi-agent
systems(MASs) under DoS attacks in given attack frequency and upper bounds on attack
duration [18, 19]. Compared with linear systems, nonlinear MASs are more widely used in real life.
Among these, a secure controller based on event triggering was proposed to solve the lead-following
consensus problem of second-order nonlinear systems [20]. This is more common than linear
systems. Another proposal was for an event-triggered adaptive fault-tolerant control strategy, which
reduced the computational cost of heterogeneity [21]. For nonperiodic DoS attacks, the upper bounds
of network attacks, actuator failures, attack duration, and frequency are obtained. Another method
uses a security mechanism employing a prediction-based switching observer scheme to address the
issue of invalidation in event-triggered mechanisms during attack intervals [22]. A novel framework
for observer-based event-triggered containment control, taking into account the occurrence of DoS
attacks, has also been introduced [23]. This framework establishes a resilient event-triggered
controller, using a specially designed observer. The goal is to achieve consistent control of MASs in
the presence of DoS attacks.

Based on these observations, we aim to explore the security consensus problem of nonlinear MAS
with external disturbances under DoS attacks in this paper. Our contributions are as follows.

1) In this paper, a nonlinear system with external disturbances is considered, and the effects of the
nonlinear dynamics and uncertainty of the system are eliminated by designing an adaptive scheme
and state-feedback control gains by updating the laws of the adaptive parameters online.

2) Compared with [22, 23], a dynamic variable is introduced to adjust the triggering instances
under DoS attacks. Therefore, the event-triggered mechanism proposed in this paper is more flexible
and can effectively save communication resources. In addition, continuous communication between
agents is not required to determine whether a trigger condition satisfies the trigger condition.
Notation R is the set of real numbers, and RN×N is the set of N × N real matrix. ∥·∥ represents a
Euclidean norm of vectors or matrices. The superscripts A−1 and AT represent the inverse and
transpose of matrix A. λmax(A) is the maximum eigenvalue, and λmin(A) is the minimum eigenvalue of
matrix A. D+(·) denotes the righthand derivative of a function, and

⊗
is Kronecker product.
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diag {A1, · · · , An} is the diagonal matrix. ∩ is the intersection of sets, and ∪ denotes the union of sets.

2. Problem statement and preliminaries

2.1. Communication graphs

For a given MAS, the digraph G is (V,E), where V = {1, 2, · · · ,N} is the set of nodes, and E ⊆
V × V represents the edge set of followers. The information exchange between each node can be
described by the adjacency matrix A and the Laplacian matrix L. A =

[
ai j

]
∈ RN×N if agents i and j

communicate with one another, ai j = 1; otherwise ai j = 0 and L =
[
li j

]
∈ Rn×n where L = D − A, The

degree matrix D = diag(di) with di =
∑N

i=1 ai j. In this paper, we assume that the agents are linked by a
balancing topology, i.e., ai j = a ji. If the agent i communicates with the leader, then bi = 1; otherwise,
bi = 0.

2.2. MAS modeling

For a leader-following system, the dynamics of the leader are described by the equation

ẋ0 = Ax0 + f (t, x0(t)). (2.1)

The ith follower system is
ẋi = Axi + Bui(t) + f (t, xi(t)) + wi. (2.2)

In the preceding, x(t) ∈ Rn are positions of the agent, ui(t) ∈ R is the control input, A ∈ Rn×n and
B ∈ Rn×p are system matrices, f (x) is a nonlinear function, and wi is the uncertainty input satisfying

wi ≤ ςi1 |u| + ςi2 |x| + γi, (2.3)

where ςi1 < 1,ςi2 and γi are unknown constants.
Lemma 1. If the nonlinear function f (t, xi(t)), i = 1, 2, ..., is continuously differentiable in a region
S ∈ R2 and xi(t0) ∈ S , then for any xi(t0) ∈ S , the following formula is satisfied:

f (xi(t), t) − f (xi(t0), t) =
∂ f (·)
∂xi
× (xi(t) − xi(t0)), (2.4)

where f (·) = f (xi(t0)) + ∆(xi(t) − xi(t0)), 0 < ∆ < 1.
Assumption 1. If there is a continuously differentiable function f (t, xi(t)) and the highest order s ∈
{1, 2, · · ·N}, there exist bounded positive scalars δix, such that∣∣∣∣∣∂ f (zi)

∂xi

∣∣∣∣∣ ≤ δixxis, (2.5)

where xis = |xi|
s + |xi|

s−1 + · · · + 1, s ≥ 1. We also need some assumptions to ensure that the purpose is
achieved.
Assumption 2. A, B can be stabilized, and the digraph G is strongly connected.
Next, we define the position errors ei(t):

ei(t) =
N∑

j=0, j,i

ai j(xi(t) − x j(t)) + bi(xi(t) − x0(t)). (2.6)
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According to Definition 1, we have

ėi(t) =
N∑

j=0, j,i

ai j(ẋi(t) − ẋ j(t)) + bi(ẋi(t) − ẋ0(t))

=

N∑
j=0, j,i

ai j(A(xi − x j) + B(ui − u j)+

[ f (t, xi(t)) − f (t, x j(t))] + (wi − w j))+
bi(A(xi − x0) + Bui) + wi+

bi[ f (t, xi(t)) − f (t, x0(t))]

=

N∑
j=0, j,i

Aai j((xi − x j) + bi(xi − x0))+

Bai j(ui − u j) + ai j
∂ f (zi)
∂xi

(xi(t) − x j(t0))+

ai j(wi − w j)) + bi(Bui + wi))+

bi[
∂ f (zi)
∂xi

(xi(t) − x0(t))]

=

N∑
j=0, j,i

A(ai j(xi − x j) + bi(xi − x0))+

∂ f (zi)
∂xi

[ai j(xi(t) − x j(t0)) + bi(xi(t) − x0(t))]+

ai j(B(ui − u j)) + (wi − w j)) + bi(Bui + wi))

. (2.7)

We also have

ė(t) = (L + L0)(Bu(t) + w(t)) + (A +
∂ f (zi)
∂x

)e(t), (2.8)

where e(t) = [e1(t), e2(t), · · · , ei(t)],
∂ f (zi)
∂x = diagN

i=1[∂ f (zi)
∂xi

], L0 = diagN
i=1[bi]. L is defined as

li j =

{∑N
k=1,k,i aik, j = i
−ai j, j , i

. (2.9)

,then Eq (2.8) can be expressed as

ė(t) = (A + ∆A)e(t) + L̄ ⊗ (Bu(t) + w(t)), (2.10)

where A =
[
IN×N 0

0 0

]
, L̄ =

[
0

L + L0

]
, ∆A =

[
0 0
0 ∂ f (zi)

∂x

]
.

Definition 1. MAS (2.1) and (2.2) are said to have consensus if each agent’s position state in the
system satisfies

lim
t→∞
∥xi(t) − x0(t)∥ = 0, i = 1, 2, · · · ,N. (2.11)
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2.3. Controller design

The distributed adaptive control input is

ui(t) = kiei(t) − ēiΨi(t), (2.12)

where ēi =
∑N

j=1 a jie ji, aii = ai0+
∑N

j=1, j,i ai j. ki is the control gain determined based on the linear matrix
inequality(LMI)

(A + L̄ ⊗ BK)T P + P(A + L̄ ⊗ BK) ≤ 0, (2.13)

where P =
[

P0 0N×N

0N×N IN×N

]
> 0,K = diag[ki], andP0 is a positive definition matrix. Ψi(t) is defined as

Ψi =

 1
1−ςi1

( ςi1 |kiei |+ςi2 |xis |+γi
|ei |

+
2δ̂ix |e|2 xis

|ei |
2 ), ei , 0

0, ei = 0
(2.14)

where δ̂ix is the estimate of unknown parameters δix. The following describes the updated laws for the
adaptive parameters:

dδ̂i

dt
= |ei|

2 xis. (2.15)

Since δi is an unknown constant, defined as δ̃i(t) = δ̂i(t) − δi, the adaptive error systems are described
by

dδ̃i

dt
=

dδ̂i

dt
. (2.16)

It follows from Eq (2.12) that
u(t) = ke(t) − ēΨ(t), (2.17)

where k(t) = [k1(t), k2(t), · · · ]T and ē = [ē1, ē2 · · · ēn]. According to Eqs (2.11) and (2.15), we have

ė(t) = (A + L̄ ⊗ BK)e(t) + ∆Ae(t) − L̄(BēvΨ(t)) − L̄w(t). (2.18)

Next, we define the event trigger time series as
{
t j
k

}
for the jth agent. Therefore, the next triggering

time ti
k+1 for the ith agent can be expressed as

ti
k+1 = inf

{
t > ti

k|Hi(t) ≥ 0
}
. (2.19)

The function Hi(·) is given by

Hi(·) = −θiχi(t) + αi ∥qi(t)∥2 − ηi ∥ei(t)∥2 , (2.20)

where θi > 0,αi, ηi ∈ R
n > 0. qi(t) is defined as the measurement error according to Eq (2.6):

qi(t) = ei(ti
k) − ei(t). (2.21)

χi(t) satisfies
χ̇i(t) = −βiχi(t) + ηi ∥ei(t)∥2 − αi ∥qi(t)∥2 , (2.22)

where βi > 0, initial value χi(0) > 0 could be randomly selected, and ti
0 = 0.

Remark 1: The internal dynamic variable updates according to internal variables such as
self-feedback, measurement error, and neighborhood error. In comparison with the conventional static
triggering strategy [22, 23], the dynamic event triggered control protocol we proposed can more
effectively reduce network communication and save resources.
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3. Cyber attack model

A DoS attack aims to block the communication channels so the targeted system cannot exchange
information normally. Communication channels are not the only things affected by DoS attacks
because the attacks can damage communication equipment along with hindering data transmission,
measurement, and control channels simultaneously. DoS attacks are extremely destructive to the
system, but their energy consumption requires attackers to replenish energy supplies after the attack is
over, which takes time. Therefore, the time series can be split into two sections based on whether a
DoS assault was launched. In the absence of the DoS attack, the system functions and communicates
properly. However, in the presence of a DoS attack, communication is cut off, and the controller stops
functioning. Here, we assume that the time interval of DoS attacks is {tm}m∈N, where tm is the moment
of the DoS attack, and [tm, tm + ∆m] is the mth DoS time interval, and ∆m is the time duration of the
mth attack. The DoS attack interval is the same for all multi-agents. Thus, the set time instants where
communication is blocked (the interval of the DoS attack) are

Ξa(t0, t) =

⋃
m∈N

[tm, tm + ∆m]

 ∩ [t0, t] . (3.1)

Similarly, the sequence of time intervals without attacks is given by

Ξs(t0, t) = [t0, t] \ Ξa(t0, t). (3.2)

Because of the recovery mechanism, the MAS cannot immediately restore communication after the
end of a DoS attack, and due to the event-triggering mechanism, there is an upper bound for the time
when the two events occur consecutively. We assume that they can exist at the same time. Therefore,
the actual DoS attack lasts longer, and consequently, the mth DoS attack’s actual time frame may be
described as

[
tm, tm + ∆̄m

]
. The new time period of the DoS attack is as follows:

Ξ̃a(t0, t) =

⋃
m∈N

[
tm, tm + ∆̄m

] ∩ [t0, t] (3.3)

Ξ̃s(t0, t) = [t0, t] \ Ξ̃a(t0, t) (3.4)

Assumption 2. Define na(t0, t) as the number of attacks in the period [t0, t], so the attack frequency
Fa(t0, t) > 0 satisfies

Fa(t0, t) =
na(t0, t)
t − t0

. (3.5)

Assumption 3. Define Na(t0, t) as the total time interval of the DoS attack in the period [t0, t]. The
constants T0 ≥ 0, F0 ≥ 0, 0 < 1

T1
< 1, 0 < 1

F1
< 1 are such that

|Ξa(t0, t)| ≤ Ξ0 +
t − t0

T1
and (3.6)

Na(t0, t) ≤ F0 +
t − t0

F1
, (3.7)
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where 1
T1

is the attack strength.
Lemma 1. Previous research considers Eq (2.1) and this DoS attack model under Assumptions 2 and
3 [18]. If the Lyapunov function V1(t),V2(t) satisfies{

V̇1(t) ≤ −l0V(t) + τ0 t ∈ Ξ̃s

V̇2(t) ≤ l1V(t) + τ1 t ∈ Ξ̃a
, (3.8)

where l0, l1, τ0, τ1 are positive constants. T1, F1 defined in Assumption 3 satisfies

1
T1
<

l0 − η
∗

l0 + l1

1
F1
<

η∗

2 ln κ + (l0 + l1)ρ

, (3.9)

where 0 < η∗ < l0 is the time to restore communication. ρ > 0,κ ≥ 1 is a constant satisfying{
κV2((tm + ∆̄m)−) − V1(tm + ∆̄m) ≥ 0

κV1(t−m) − V2(tm+1) ≥ 0
. (3.10)

Thus, we say that V(t) are bounded.
Remark 2: Lemma 1 gives an upper bound on DoS attack frequency and duration, ensuring that

the Lyapunov function remains stable over the entire time span [18].
Remark 3: The DoS attack considered in this paper mainly attacks the communication channels

between agents. Thus, when the DoS attack comes, there is no information interaction between
neighboring agents, and the event-triggering control is not triggered. In addition, we consider a
DETC. Compared with the traditional event-triggering control, we introduce a dynamic variable that
uses communication resources more effectively. In the simulation section below, we compare our
method with the traditional event-triggering mechanism.

4. Stability analysis

In this section, we prove system stability. Our presentation has two sections: the stability study of
the MAS (2.1) and (2.2) under a DoS attack and the proof of non-Zeno behavior.

Theorem 1. For the MAS (2.1) and (2.2) under DoS attacks, we consider Assumption 1 and the
controller (2.12). If the LMI (2.13) satisfies (A + L̄ ⊗ BK)T P + P(A + L̄ ⊗ BK) ≤ ξiP, where ξi ∈ Rn =

σiηi, σi > 1, then a feasible solution exists and the MAS is said to achieve leader-following consensus.

Proof of Theorem 1. The system stability proof is also divided into two parts. The communication of
the system is damaged under a DoS attack, but the system is not always in an impassable state. The
proof is divided between DoS attacks and non-DoS attacks, as per the prior section. When there are
non-DoS attacks in the system, we consider the Lyapunov function

W(t) = V(t) +
N∑

i=1

χi(t) = eT (t)Pe(t) +
N∑

i=1

κ−1
i δ̃

2
i +

N∑
i=1

χi(t). (4.1)

It follows from Eqs (2.20)–(2.22) that

χ̇i = −βiχi − θiχi. (4.2)
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The preceding implies that
χi(t) ≥ χi(0)e−(βi+θi)t > 0, (4.3)

which leads to W(t) > 0.
The derivative of W is

Ẇ(t) = eT [(A + L̄ ⊗ BK)T P + P(A + L̄ ⊗ BK)]e+
2eT P∆Ae − 2eT PL̄ēΨ(t) + 2eT PL̄w(t)+

N∑
i

2κ−1
i

˙̃δiδ̃i +

N∑
i=1

χ̇i(t).

(4.4)

According to Eq (2.3), the condition in Assumption 1, and the control protocol in Eq (2.12), we
have

Ẇ(t) ≤ eT [(A + L̄ ⊗ BK)T P + P(A + L̄ ⊗ BK)]e+

2
N∑

i=1

|e|2
∂ f (zi)
∂xi

− 2
N∑

i=1

|e|2Ψi+

2
N∑

i=1

|e| (ςi1 |u| + ςi2 |x| + δi)+

N∑
i

2κ−1
i

˙̃δiδ̃i +

N∑
i=1

χ̇i(t)

≤ eT [(A + L̄ ⊗ BK)T P + P(A + L̄ ⊗ BK)]e+

2
N∑

i=1

δix |e|2 xis − 2
N∑

i=1

|e|2 (1 − ςi1)Ψi+

2
N∑

i=1

|e| (ςi1 |kiei| + ςi2 |x| + δi)

+

N∑
i

2κ−1
i

˙̃δiδ̃i +

N∑
i=1

χ̇i(t).

(4.5)

Choosing Ψi(t) as in Eq (2.15), we obtain

Ẇ(t) ≤ eT [(A + L̄ ⊗ BK)T P + P(A + L̄ ⊗ BK)]e−

2
N∑

i=1

δix |e|2 xis +

N∑
i

2κ−1
i

˙̃δiδ̃i +

N∑
i=1

χ̇i(t)

≤ eT [(A + L̄ ⊗ BK)T P + P(A + L̄ ⊗ BK)]e+
N∑

i=1

χ̇i(t)

. (4.6)

On the other hand
N∑

i=1

ξieT
i (t)Pei(t) ≤ λmax(P)

N∑
i=1

ξi ∥ei(t)∥2 . (4.7)
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Based on the condition in Theorem 1, Eq (2.22), and Eq (4.6), we have

Ẇ(t) ≤ −
N∑

i=1

(ξi − ηi) ∥ei(t)∥2 −
N∑

i=1

αi ∥qi(t)∥2 −
N∑

i=1

βiχi

≤ −

N∑
i=1

ηi(σi − 1) ∥ei(t)∥2 −
N∑

i=1

βiχi,

(4.8)

then

Ẇ(t) ≤ −(σM − 1)
N∑

i=1

ξi ∥ei(t)∥2 −
N∑

i=1

βiχi

≤ −l0W(t) + τ0

, (4.9)

where l0 = min([(σM−1)/λmax(P)], 1, βm) > 0, σM = max[σi], βm = min[βi], τ0 =
∑N

i=1 κ
−1
i δ̃

2
i , l0, andτ0

are positive constants.
When there are DoS attacks in the system, then communication and control channel blockages exist.

In this case, the control input becomes 0, ui(t) = 0, so the Lyapunov function can be expressed as

V(t) = eT (t)Pe(t) +
N∑

i=1

κ−1
i δ̃

2
i . (4.10)

Similar to (4.4), (4.10) can be written as

V̇(t) ≤ V(t) + 2
N∑

i=1

δix |e|2 xis + 2
N∑

i=1

|e| (ςi2 |x| + δi)

≤ l1V(t) + τ1,

(4.11)

where l1 = 1, and τ1 = 2
∑N

i=1 δix |e|2 xis + 2
∑N

i=1 |e| (ςi2 |x| + δi). According to the conditions of (3)
and Assumption 1, we know that τ1 has an upper bound. From Lemma 1, we know that the system
stabilizes in a limited time under a DoS attack. The proof is completed.

Next is the proof of no Zeno behavior. We assume that there is a positive constant T0 such that
limk→∞ ti

k = T0. Based on the property of limit, we know that for any ε0 > 0, there exists N(ε0) such
that ti

k ∈ (T0 − ε0,T0 + ε0),∀k ≥ N(ε0). This means ti
N(ε0+1) − ti

N(ε0) < 2ε0.

According to (4.11), W(t) gradually decreases to 0, Then ξmλmin(P) ∥ei(t)∥2 ≤ V(t) < W(t).
Therefore, we have

∥ei(t)∥ ≤

√
W0

ξmλmin(P)
= ϖ0. (4.12)
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Because ∥ei(t)∥ and ∥qi(t)∥ are bounded, the Dini derivative of ∥qi(t)∥ is

D+ ∥qi(t)∥ ≤ ∥q̇i(t)∥

=

∥∥∥∥∥∥∥−
N∑

j=1

ai j(ẋi(t) − ẋ j(t)) + bi(ẋi(t) − ẋ0(t))

∥∥∥∥∥∥∥
≤ ∥A + ∆A∥ ∥ei(t)∥ +

∥∥∥L̄∥∥∥ ∥B∥ ∥∥∥∥∥∥∥
N∑

j=1

(ui(t))

∥∥∥∥∥∥∥+∥∥∥L̄∥∥∥ ∥wi(t)∥

≤
∥∥∥Ā∥∥∥ϖ0 +

∥∥∥L̄∥∥∥ ∥B∥M1 + ∥L∥M2 = Ŵ0

, (4.13)

where Ā = A + ∆A. According to Eqs (2.3), (2.12), and (2.14), we obtain ui(t). wi(t) has an upper
bound, and M1,M2 is their upper bound.

Since only the trigger condition in Eq (2.19) is met and the event is triggered when ∥qi(t)∥ is reset

to 0, then ∥qi(t)∥ ≥
√
ηi
αi
∥ei(t)∥2 + θiαi

χi ≥

√
θi
αi
χi, ti−

k , k = 1, 2 · · · , which implies that

∥∥∥qi(ti−
k )
∥∥∥ ≥ √ θi

αi
χi(ti−

k ) =

√
θi
αi
χi(0)e−

βi+θi
2 ti−k , (4.14)

then, we can obtain

ti
N(ε0+1) − ti

N(ε0) ≥
1

Ŵ0

√
θi
αi
χi(0)e−

βi+θ1
2 ti−N(ε0+1) . (4.15)

If ε0 > 0 is a solution of
1

Ŵ0

√
θi
αi
χi(0)e−

βi+θi
2 TO = 2ε0e

βi+θi
2 ε0 , (4.16)

then

ti
N(ε0+1) − ti

N(ε0) ≥
1

Ŵ0

√
θi
αi
χi(0)e−

βi + θi
2

(T0 + ε0) = 2ε0. (4.17)

As a result, the aforementioned assumption is false, concluding the evidence that the agent i does
not have Zeno behavior. □

5. Simulation

To show the efficacy of the proposed control strategy, we present a simulation example in this
section. Our simulation uses MASs composed of six agents as shown in Figure 1, where agent 1 is the
leader, and others are followers. The system is

ẋi(t) = Axi(t) + Bui(t) + (−sin(xi(t)) + 1.5cos(2.5 ∗ t)) + wi

The system parameters are set as

A =
[

0 I3

A1 A2

]
, B =

[
0
I3

]
Mathematical Biosciences and Engineering Volume 21, Issue 2, 3304–3318.
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Figure 1. Graph G in the example.

Figure 2. The control input’s response curves.

A1 =


0 0 0
0 2ϕ2 0
0 0 −ϕ2

 , A2 =


0 2ϕ 0
−2ϕ 0 0

0 0 0


ςi1 = 0.1 ×

√
1 + i2, ςi2 = 0.5 ×

√
1 + i2

In this example, we consider the flight of an aircraft, ϕ = 0.002 is the angular velocity of the aircraft,
and I3 represents the identity matrix of 3 × 3.

αi = 87.5, βi = 0.004, θi = 3.5

ηi =
[
0.21 0.105 0.105 0.21 0.21 0.105

]
Figures 2 and 3 show the response curves and consistency errors of the system state for all agents.

They show that the followers’ states converge toward those of the leader as time progresses. Figures 3
and 4 show the control input curves and event trigger time instant for all agents. There are four times
DoS attacks, with T0 = 3, F0 = 4. The duration of the DoS attack is |Ξa(0, 40)| = 3.5. In Table 1, we
can see that the dynamic event-triggered mechanism proposed in this paper has far fewer triggering
instances in the same time than the other two literatures [22, 23], which can effectively save
communication resources. In addition, continuous communication between agents is not required to
determine whether a trigger condition satisfies a trigger condition. Considering the static

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3304–3318.
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Figure 3. The consensus errors’ response curves.

Figure 4. Position’s response curves.

event-triggered control protocol, we have

ti
k+1 = inf

{
t > ti

k| ∥qi(t)∥2 − ρ ∥ei(t)∥2 ≥ 0
}

ti
k+1 = inf

{
t > ti

k| ∥qi(t)∥ − ϱ ∥ei(t)∥ ≥ 0
}

where ρ and ϱ are positive constants. Our DETC effectively reduces communication frequency.

6. Conclusions

In this paper, we propose a dynamic event-triggered adaptive control approach to address the leader-
following consensus problem for nonlinear MASs experiencing DoS attacks. We have presented a

Figure 5. Event trigger time instant for all agents.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3304–3318.
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Table 1. Compared with the traditional triggering protocols in [0,40 s].

Agent i 1 2 3 4 5 6
[22] 260 1897 1914 1704 1635 1861
[23] 1632 1899 1917 1694 1633 1869
Our DETC 50 65 70 106 42 6

distributed control strategy and adaptive update laws to ensure system stability in the presence of
uncertainties. The Lyapunov stability theory is used to derive conditions for achieving consensus. The
DoS attacks considered here mainly target the MASs’ communication channels. In reality, there are
other types, scales, and levels of DoS attacks. Formulating mathematical models of these other types
of DoS attacks and solving these models is the direction of our future research.
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