Research article

Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups

  • Received: 17 February 2022 Revised: 23 October 2022 Accepted: 09 December 2022 Published: 22 February 2023
  • 37J39, 65P10, 70G65, 70H33

  • This paper develops the theory of discrete Dirac reduction of discrete Lagrange–Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange–Pontryagin principle, and show that they both lead to the same discrete Lagrange–Poincaré–Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.

    Citation: Álvaro Rodríguez Abella, Melvin Leok. Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups[J]. Journal of Geometric Mechanics, 2023, 15(1): 319-356. doi: 10.3934/jgm.2023013

    Related Papers:

  • This paper develops the theory of discrete Dirac reduction of discrete Lagrange–Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange–Pontryagin principle, and show that they both lead to the same discrete Lagrange–Poincaré–Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.



    加载中


    [1] R. Abraham, J. Marsden, Foundations of Mechanics, 2nd edition, Addison-Wesley, 1978, (with the assistance of Tudor Ratiu and Richard Cushman).
    [2] P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. https://doi.org/10.1515/9781400830244
    [3] V. Arnold, On the differential geometry of Lie groups of infinite dimension and its applications to the hydrodynamics of perfect fluids, Ann. Fourier Inst., 16 (1966), 319–361.
    [4] V. Arnold, Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, Springer-Verlag, 1989, Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein.
    [5] M. Barbero Liñán, D. Martín de Diego, Bäcklund transformations in discrete variational principles for Lie–Poisson equations, in Discrete Mechanics, Geometric Integration and Lie–Butcher Series (eds. K. Ebrahimi-Fard and M. Barbero Liñán), Springer International Publishing, Cham, 2018,315–332.
    [6] A. Bloch, L. Colombo, F. Jiménez, The variational discretization of the constrained higher-order Lagrange–Poincaré equations, Discrete Contin. Dyn. Syst., 39 (2019), 309–344. https://doi.org/10.3934/dcds.2019013 doi: 10.3934/dcds.2019013
    [7] A. Bobenko, Y. Suris, Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products, Lett. Math. Phys., 49 (1999), 79–93. https://doi.org/10.1023/A:1007654605901 doi: 10.1023/A:1007654605901
    [8] M. I. Caruso, J. Fernández, C. Tori, M. Zuccalli, Discrete mechanical systems in a Dirac setting: a proposal, 2022, URL https://arXiv.org/abs/2203.05600.
    [9] J. Fernández, M. Zuccalli, A geometric approach to discrete connections on principal bundles, J. Geom. Mech., 5 (2013), 433–444. https://doi.org/10.3934/jgm.2013.5.433 doi: 10.3934/jgm.2013.5.433
    [10] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-preserving algorithms for ordinary differential equations, vol. 31 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, 2006.
    [11] S. Jalnapurkar, M. Leok, J. Marsden, M. West, Discrete Routh reduction, J. Phys. A: Math. Gen., 39 (2006), 5521. https://doi.org/10.1088/0305-4470/39/19/S12 doi: 10.1088/0305-4470/39/19/S12
    [12] S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A: Math. Gen., 39 (2006), 5509. https://doi.org/10.1088/0305-4470/39/19/S11 doi: 10.1088/0305-4470/39/19/S11
    [13] T. Lee, M. Leok, N. Mcclamroch, Lagrangian mechanics and variational integrators on two-spheres, Int. J. Numer. Methods Eng., 79 (2009), 1147–1174. https://doi.org/10.1002/nme.2603 doi: 10.1002/nme.2603
    [14] M. Leok, J. Marsden, A. Weinstein, A discrete theory of connections on principal bundles, 2005, URL https://arXiv.org/abs/math/0508338.
    [15] M. Leok, T. Ohsawa, Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systems, AIP Conference Proceedings, 1260 (2010), 91–102. https://doi.org/10.1063/1.3479325 doi: 10.1063/1.3479325
    [16] M. Leok, T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics, Found. Comput. Math., 11 (2011), 529–562. https://doi.org/10.1007/s10208-011-9096-2 doi: 10.1007/s10208-011-9096-2
    [17] M. Leok, J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31 (2011), 1497–1532. https://doi.org/10.1093/imanum/drq027 doi: 10.1093/imanum/drq027
    [18] Z. Ma, C. Rowley, Lie–Poisson integrators: A Hamiltonian, variational approach, Int. J. Numer. Methods Eng., 82 (2010), 1609–1644. https://doi.org/10.1002/nme.2812 doi: 10.1002/nme.2812
    [19] J. Marrero, D. Martín de Diego, E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313. https://doi.org/10.1088/0951-7715/19/6/006 doi: 10.1088/0951-7715/19/6/006
    [20] J. Marsden, Lectures on Mechanics, Lecture note series. London Mathematical Society, Cambridge University Press, 1992.
    [21] J. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler–Poincaré and Lie–Poisson equations, Nonlinearity, 12 (1999), 1647–1662. https://doi.org/10.1088/0951-7715/12/6/314 doi: 10.1088/0951-7715/12/6/314
    [22] J. Marsden, S. Pekarsky, S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. Phys., 36 (2000), 140–151. https://doi.org/10.1016/S0393-0440(00)00018-8 doi: 10.1016/S0393-0440(00)00018-8
    [23] J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, vol. 17 of Texts in Applied Mathematics, 2nd edition, Springer-Verlag, 1999.
    [24] J. Marsden, J. Scheurle, Lagrangian reduction and the double spherical pendulum, Z. angew. Math. Phys., 44 (1993), 17–43. https://doi.org/10.1007/BF00914351 doi: 10.1007/BF00914351
    [25] J. E. Marsden, J. Scheurle, The reduced Euler-Lagrange equations, Fields Institute Communications, 1.
    [26] J. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), 121–130. https://doi.org/10.1016/0034-4877(74)90021-4 doi: 10.1016/0034-4877(74)90021-4
    [27] J. Marsden, M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 317–514. https://doi.org/10.1017/S096249290100006X doi: 10.1017/S096249290100006X
    [28] K. R. Meyer, Symmetries and integrals in mechanics, Dynamical Systems (ed. M. M. Peixoto), Academic Press, 1973,259–272. https://doi.org/10.1016/B978-0-12-550350-1.50025-4
    [29] J. Moser, A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun.Math. Phys., 139 (1991), 217–243. https://doi.org/10.1007/BF02352494 doi: 10.1007/BF02352494
    [30] A. Natale, C. Cotter, A variational H(div) finite-element discretization approach for perfect incompressible fluids, IMA J. Numer. Anal., 38 (2017), 1388–1419. https://doi.org/10.1093/imanum/drx075 doi: 10.1093/imanum/drx075
    [31] H. Parks, M. Leok, Variational integrators for interconnected Lagrange–Dirac systems, J. Nonlinear Sci., 27 (2017), 1399–1434. https://doi.org/10.1007/s00332-017-9364-7 doi: 10.1007/s00332-017-9364-7
    [32] D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. Marsden, M. Desbrun, Structure-preserving discretization of incompressible fluids, Phys. D, 240 (2011), 443–458, https://doi.org/10.1016/j.physd.2010.10.012 doi: 10.1016/j.physd.2010.10.012
    [33] S. Smale, Topology and mechanics. Ⅰ, Inventiones Math., 10 (1970), 305–331. https://doi.org/10.1007/BF01418778 doi: 10.1007/BF01418778
    [34] W. M. Tulczyjew, Geometric Formulations of Physical Theories: Statics and Dynamics of Mechanical Systems, vol. 11 of Monographs and Textbooks in Physical Science Lecture Notes, Bibliopolis, 1989.
    [35] A. J. van der Schaft, Port-Hamiltonian systems: an introductory survey, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 1339–1365.
    [36] J. Vankerschaver, Euler–Poincaré reduction for discrete field theories, J. Math. Phys., 48 (2007), 032902. https://doi.org/10.1063/1.2712419 doi: 10.1063/1.2712419
    [37] J. Vankerschaver, F. Cantrijn, Discrete Lagrangian field theories on Lie groupoids, J. Geom. Phys., 57 (2007), 665–689. https://doi.org/10.1016/j.geomphys.2006.05.006 doi: 10.1016/j.geomphys.2006.05.006
    [38] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Graduate Texts in Mathematics, Springer New York, 2013.
    [39] A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Proc. AMS, 7 (1996), 207–231.
    [40] H. Yoshimura, J. Marsden, Dirac structures in Lagrangian mechanics Part Ⅰ: Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133–156. https://doi.org/10.1016/j.geomphys.2006.02.009 doi: 10.1016/j.geomphys.2006.02.009
    [41] H. Yoshimura, J. Marsden, Dirac structures in Lagrangian mechanics Part Ⅱ: Variational structures, J. Geom. Phys., 57 (2006), 209–250. https://doi.org/10.1016/j.geomphys.2006.02.012 doi: 10.1016/j.geomphys.2006.02.012
    [42] H. Yoshimura, J. Marsden, Dirac cotangent bundle reduction, J. Geom. Mech., 1 (2009), 87–158. https://doi.org/10.3934/jgm.2009.1.87 doi: 10.3934/jgm.2009.1.87
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1293) PDF downloads(57) Cited by(2)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog