We derive the equations of motion of an action-dependent version of the Einstein-Hilbert Lagrangian as a specific instance of the Herglotz variational problem. Action-dependent Lagrangians lead to dissipative dynamics, which cannot be obtained with the standard method of Lagrangian field theory. First-order theories of this kind are relatively well understood, but examples of singular or higher-order action-dependent field theories are scarce. This work constitutes an example of such a theory. By casting the problem in clear geometric terms, we are able to obtain a Lorentz invariant set of equations, which contrasts with previous attempts.
Citation: Jordi Gaset, Arnau Mas. A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian[J]. Journal of Geometric Mechanics, 2023, 15(1): 357-374. doi: 10.3934/jgm.2023014
We derive the equations of motion of an action-dependent version of the Einstein-Hilbert Lagrangian as a specific instance of the Herglotz variational problem. Action-dependent Lagrangians lead to dissipative dynamics, which cannot be obtained with the standard method of Lagrangian field theory. First-order theories of this kind are relatively well understood, but examples of singular or higher-order action-dependent field theories are scarce. This work constitutes an example of such a theory. By casting the problem in clear geometric terms, we are able to obtain a Lorentz invariant set of equations, which contrasts with previous attempts.
[1] | K. Grabowska, J. Grabowski, A geometric approach to contact Hamiltonians and contact Hamilton–Jacobi theory, J. Phys. A-Math. Theor., 55 (2022), 435204. https://doi.org/10.1088/1751-8121/ac9adb doi: 10.1088/1751-8121/ac9adb |
[2] | J. Gaset, X. Gràcia, M. Muñoz-Lecanda, X. Rivas, N. Román-Roy, New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries, Int. J. Geom. Methods. M., 17 (2020), 2050090. https://doi.org/10.1142/S0219887820500905 doi: 10.1142/S0219887820500905 |
[3] | A. Bravetti, Contact geometry and thermodynamics, Int. J. Geom. Methods. M., 16 (2019), 1940003. https://doi.org/10.1142/s0219887819400036 doi: 10.1142/s0219887819400036 |
[4] | R. Mrugala, J. D. Nulton, J. C. Schön, P. Salamon, Contact structure in thermodynamic theory, Rep. Math. Phys., 29 (1991), 109–121. https://doi.org/10.1016/0034-4877(91)90017-H doi: 10.1016/0034-4877(91)90017-H |
[5] | A. A. Simoes, M. de León, M. L. Valcázar, D. M. de Diego, Contact geometry for simple thermodynamical systems with friction, P. Roy. Soc. A-Math. Phy., 476 (2020), 20200244. https://doi.org/10.1098/rspa.2020.0244 doi: 10.1098/rspa.2020.0244 |
[6] | F. M. Ciaglia, H. Cruz, G. Marmo, Contact manifolds and dissipation, classical and quantum, Ann. Phys-New. York., 398 (2018), 159–179. https://doi.org/10.1016/j.aop.2018.09.012 doi: 10.1016/j.aop.2018.09.012 |
[7] | S. I. Goto, Contact geometric descriptions of vector fields on dually flat spaces and their applications in electric circuit models and nonequilibrium statistical mechanics, J. Math. Phys., 57 (2016). https://doi.org/10.1063/1.4964751 doi: 10.1063/1.4964751 |
[8] | M. J. Lazo, J. Paiva, J. T. S. Amaral, G. S. F. Frederico, Action principle for action-dependent Lagrangians toward nonconservative gravity: Accelerating universe without dark energy, Phys. Rev. D., 95 (2017), 101501. https://doi.org/10.1103/PhysRevD.95.101501 doi: 10.1103/PhysRevD.95.101501 |
[9] | D. Sloan, New action for cosmology, Phys. Rev. D., 102 (2021), 043524. 10.1103/PhysRevD.103.043524 doi: 10.1103/PhysRevD.103.043524 |
[10] | J. Gaset, A. Marín-Salvador, Application of Herglotz's variational principle to electromagnetic systems with dissipation, Int. J. Geom. Methods. M., 19 (2022), 2250156. https://doi.org/10.1142/S0219887822501560 doi: 10.1142/S0219887822501560 |
[11] | H. Geiges, An Introduction to Contact Topology, Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511611438 |
[12] | M. Lainz, M. de León, Contact Hamiltonian Systems, J. Math. Phys., 60 (2019), 102902. https://doi.org/10.1063/1.5096475 doi: 10.1063/1.5096475 |
[13] | M. de León, M. Lainz, A review on contact Hamiltonian and Lagrangian systems, arXiv: 2011.05579 [math-ph]. |
[14] | M. de León, M. Lainz, Singular Lagrangians and precontact Hamiltonian systems, Int. J. Geom. Methods. M., 16 (2019), 1950158. https://doi.org/10.1142/S0219887819501585 doi: 10.1142/S0219887819501585 |
[15] | M. de León, J. Gaset, M. Laínz, M. C. Muñoz-Lecanda, N. Román-Roy, Higher-order contact mechanics, Ann. Phys-New. York., 425 (2021), 168396. https://doi.org/10.1016/j.aop.2021.168396 doi: 10.1016/j.aop.2021.168396 |
[16] | M. de León, J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, Time-dependent contact mechanics, Monatsh. Math., (2022). https://doi.org/10.1007/s00605-022-01767-1 doi: 10.1007/s00605-022-01767-1 |
[17] | J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, N. Román-Roy, A contact geometry framework for field theories with dissipation, Ann. Phys-New. York., 414 (2020), 168092. https://doi.org/10.1016/j.aop.2020.168092 doi: 10.1016/j.aop.2020.168092 |
[18] | J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, N. Román-Roy, A K-contact Lagrangian formulation for nonconservative field theories, Rep. Math. Phys., 87 (2021), 347–368. https://doi.org/10.1016/S0034-4877(21)00041-02 doi: 10.1016/S0034-4877(21)00041-02 |
[19] | B. Georgieva, R. Guenther, T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911–3927. https://doi.org/10.1063/1.1597419 doi: 10.1063/1.1597419 |
[20] | M. de León, J. Gaset, M. C. Muñoz-Lecanda, X. Rivas, N. Román-Roy, Multicontact formulation for non-conservative field theories, J. Phys. A-Math. Theor., (2023). |
[21] | G. J. Olmo, D. Rubiera-Garcia, A. Wojnar, Stellar structure models in modified theories of gravity: lessons and challenges, Phys. Rep., 876 (2020), 1–75. https://doi.org/10.1016/j.physrep.2020.07.001 doi: 10.1016/j.physrep.2020.07.001 |
[22] | T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, I. Sawicki, Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A, Phys. Rev. Lett., 119 (2017), 1–6. https://doi.org/10.1103/PhysRevLett.119.251301 doi: 10.1103/PhysRevLett.119.251301 |
[23] | J. A. P. Paiva, M. J. Lazo, V. T. Zanchin, Generalized nonconservative gravitational field equations from Herglotz action principle, Phys. Rev. D., 105 (2022), 124023. https://doi.org/10.1103/PhysRevD.105.124023 doi: 10.1103/PhysRevD.105.124023 |
[24] | A. Mas Dorca, A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian, Universitat Autònoma de Barcelona. |
[25] | G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, 1930. |
[26] | M. León de, M. Lainz, M. C. Muñoz-Lecanda, The Herglotz Principle and Vakonomic Dynamics, In: Geometric Science of Information, 12829 (2021), 183–190. https://doi.org/10.1007/978-3-030-80209-7-21 |
[27] | M. J. Lazo, J. Paiva, J. T. S. Amaral, G. S. F. Frederico, An action principle for action-dependent Lagrangians: Toward an action principle to non-conservative systems, J. Math. Phys., 59 (2018), 032902. https://doi.org/10.1063/1.5019936 doi: 10.1063/1.5019936 |
[28] | G. Xavier, J. Marín-Solano, M. C. Muñoz-Lecanda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127–148. |
[29] | J. Gaset, M. Lainz, A. Mas, X. Rivas, The Herglotz variational principle for dissipative field theories, arXiv: 2211.17058 [math-ph]. |
[30] | S. M. Carroll, Lecture Notes on General Relativity, arXiv: gr-qc/9712019. |
[31] | J. Gaset, N. Román-Roy, Multisymplectic unified formalism for Einstein-Hilbert gravity, J. Math. Phys., 59 (2018). https://doi.org/10.1063/1.4998526 doi: 10.1063/1.4998526 |
[32] | M. E. Rosado, M. J. Muñoz, Second-order Lagrangians admitting a first-order Hamiltonian formalism, Ann. Mat. Pur. Appl., 197 (2018), 357–397. https://doi.org/10.1007/s10231-017-0683-y doi: 10.1007/s10231-017-0683-y |
[33] | M. de León, J. Gaset, M. Lainz, Inverse problem and equivalent contact systems, J. Geom. Phys., 176 (2022), 104500. https://doi.org/10.1016/j.geomphys.2022.104500 doi: 10.1016/j.geomphys.2022.104500 |
[34] | G. Jordi R. Narciso, New symplectic approach to the Metric-Affine (Einstein-Palatini) action for gravity, J. Geom. Phys., 11 (2019), 361-396. https://doi.org/10.3934/jgm.2019019 doi: 10.3934/jgm.2019019 |
[35] | D. Vey, Multisymplectic formulation of vielbein gravity: Ⅰ. De Donder–Weyl formulation, Hamiltonian (n-1)-forms, Classical. Quant. Grav., 32 (2015), 095005. https://doi.org/10.1088/0264-9381/32/9/095005 doi: 10.1088/0264-9381/32/9/095005 |