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Abstract: In this paper, we define a cohomology theory for differential Lie algebras of any weight. As
applications of the cohomology, we study abelian extensions and formal deformations of differential
Lie algebras of any weight. Finally, we consider homotopy differential operators on L∞ algebras and
2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term L∞
algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras
with 2-differential operators of any weight.
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1. Introduction

Derivations play a crucial role in studying deformation formulas [1], differential Galois theory [2]
and homotopy algebras [3]. They also are useful of control systems theory [4,5] and gauge algebras [6].
The authors studied the operad of associative algebras with derivation in [7]. Recently, the authors
introduced Lie algebras with derivations, and studied their cohomology and deformations, extensions
in [8]. Later, Das [9] considered the similar results for Leibniz algebras with derivations. The authors
studied cohomology of Leibniz triple systems with derivations in [10].

More and more scholars have begun to pay close attention to the structures of any weight thanks to
the result of outstanding work [11, 12], all kinds of Rota-Baxter algebras of any weight [13–18]
appear successively. In order to study non-abelian extensions of Lie algebras. The notion of crossed
homomorphisms of Lie algebras was introduced by Lue [19], which was applied to study the
representations of Cartan Lie algebras [20]. For λ ∈ k, the notion of a differential algebra of weight λ
was first introduced by Guo and Keigher [21], which generalizes simultaneously the concept of the
classical differential algebra and difference algebra [22]. Applying the same method as for differential
Lie algebras of weight λ. Later, the authors defined the cohomology of relative difference Lie
algebras, and studied some properties in [23]. Our aim in this paper is to consider Lie algebras with
differential operators of weight λ (also known as differential Lie algebras). More precisely, we define
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a cohomology theory for differential Lie algebras and consider some properties.
The paper is organized as follows. In Section 2, we consider the representations of differential Lie

algebras of any weight. In Section 3, we define a cohomology theory for differential Lie algebras of
any weight. In Section 4, we study central extensions of differential Lie algebras of any weight. In
Section 5, we study formal deformations of differential Lie algebras of any weight. In Section 6, we
consider homotopy differential operators on L∞ algebras and 2-differential operators of any weight
on Lie 2-algebras. In Section 7, we prove that the category of 2-term L∞ algebras with homotopy
differential operator of any weight and the category of Lie 2-algebras with 2-differential operators of
any weight are equivalent.

Throughout this paper, k denotes a field of characteristic zero. All the vector spaces, algebras, linear
maps and tensor products are taken over k unless otherwise specified.

2. Representations of differential Lie algebras of any weight

For λ ∈ k. A differential operator of weight λ on a Lie algebra g is a linear operator dg : g→ g such
that

dg([a, b]) = [dg(a), b] + [a, dg(b)] + λ[dg(a), dg(b)], ∀a, b ∈ g. (2.1)

We denote by Derλ(g) the set of differential operators of weight λ of the Lie algebra g.

Definition 2.1. Denote a Lie algebra g with a differential operator dg ∈ Derλ(g) by (g, dg) and we call
it a differential Lie algebra.

Definition 2.2. Given two differential Lie algebras (g, dg), (h, dh), a homomorphism of differential Lie
algebras is a Lie algebra homomorphism φ : g→ h such that φ ◦ dg = dh ◦ φ. We denote by LieDλ the
category of differential Lie algebras and their morphisms.

To simply notations, for all the above notions, we will often suppress the mentioning of the weight
λ unless it needs to be specified.

Definition 2.3. (i) A representation over the differential Lie algebra (g, dg) is a pair (V, dV), where
dV ∈ Endk(V), and (V, ρ) is a representation over the Lie algebra g, such that ∀x ∈ g, v ∈ V, the
following identity holds:

dV(ρ(x)v) = ρ(dg(x))v + ρ(x)dV(v) + λρ(dg(x))dV(v).

(ii) Given two representations (U, ρU , dU), (V, ρV , dV) over (g, dg), a linear map f : U → V is called a
homomorphism of representations, if f ◦ dU = dV ◦ f and

f ◦ ρU(a) = ρV(a) ◦ f , ∀a ∈ g.

One denotes by (g, dg)-Rep the category of representations over the differential Lie algebra (g, dg).

Example 2.4. Any differential Lie algebra (g, dg) is a representation over itself with

ρ : g→ Endk(g), a 7→ (b 7→ [a, b]).

It is called the adjoint representation over the differential Lie algebras (g, dg).
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Example 2.5. Let (V, ρ) be a representation of a Lie algebra g. Then the pair (V, IdV) is a representation
of the differential Lie algebra (g,Idg) of weight −1.

Example 2.6. Let (g, dg) be a differential Lie algebra of weight λ and (V, dV) be a representation of it.
Then for κ , 0 ∈ k, the pair (V, κdV) is a representation of the differential Lie algebra (g, κdg) of any
weight 1

κ
λ.

The following result is easily to check and we omit it.

Proposition 2.7. Let (V, dV) be a representation of the differential Lie algebra (g, dg) of weight λ. Then
(g ⊕ V, dg ⊕ dV) is a differential Lie algebra, where

[a + u, b + v] = [a, b] + ρ(a)v − ρ(b)u, ∀a, b ∈ g, u, v ∈ V.

3. Cohomology of differential Lie algebras of any weight

Recall that the cochain complex of Lie algebra g with coefficients in representation V is the cochain
complex

(C∗Lie(g,V) = ⊕∞n=0Cn
Lie(g,V), ∂∗Lie),

and the coboundary operator

∂n
Lie : Cn

Lie(g,V) −→ Cn+1
Lie (g,V), n ⩾ 0

is given by

∂n
Lie f (x1, . . . , xn+1) =

n+1∑
i=1

(−1)i+nρ(xi) f (x1, . . . , x̂i, . . . , xn+1)

+

n∑
1≤i< j≤n+1

(−1)i+ j+n+1 f ([xi, x j], x1, . . . , x̂i, . . . , x̂ j, . . . , xn+1),

for all f ∈ Cn
Lie(g,V), x1, . . . , xn+1 ∈ g. The corresponding cohomology is denoted by H∗Lie(g,V). When

V is the adjoint representation, we write Hn
Lie(g) = Hn

Lie(g,V), n ≥ 0.
In the following, we will define the cohomology of the differential Lie algebra (g, dg) of weight λ

with coefficients in the representation (V, dV).
Define

Cn
LieDλ

(g,V) :=


Cn

Lie(g,V) ⊕Cn−1
Lie (g,V), n ≥ 2,

C1
Lie(g,V) = Hom(g,V), n = 1,

C0
Lie(g,V) = V, n = 0.

(3.1)

and define a linear map δ : Cn
Lie(g,V)→ Cn

Lie(g,V) (n ≥ 1) by

δ fn(x1, . . . , xn) :=
n∑

k=1

λk−1
∑

1≤i1<···<ik≤n

fn(x1, . . . , dg(xi1), . . . , dg(xik), . . . , xn) − dV fn(x1, . . . , xn),

for any fn ∈ Cn
LieDλ

(g,V) and

δv = −dV(v), ∀v ∈ C0
LieDλ

(g,V) = V.
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Lemma 3.1. We have ∂Lie ◦ δ = δ ◦ ∂Lie.

Theorem 3.2. The pair (C∗LieDλ
(g,V), ∂LieDλ

) is a cochain complex. So ∂2
LieDλ
= 0.

Proof. For any v ∈ C0
LieDλ

(g,V), we have

∂2
LieDλ

v = ∂LieDλ
(∂LieDλ

v, δv) = (∂2
Liev, ∂Lieδv − δ∂Liev) = 0.

Given any f ∈ Cn
Lie(g,V), g ∈ Cn−1

Lie (g,V) with n ≥ 1, we have

∂2
LieDλ

( f , g) = ∂LieDλ
(∂Lie f , ∂Lieg + (−1)nδ f ) = (∂2

Lie f , ∂Lie(∂Lieg + (−1)nδ f ) + (−1)n+1δ∂Lie f ) = 0.

Hence, the proof is finished.

Definition 3.3. The cohomology of the cochain complex (C∗LieDλ
(g,V), ∂LieDλ

), denoted by H∗LieDλ
(g,V),

is called the cohomology of the differential Lie algebra (g, dg) of weight λ.

4. Abelian extensions of differential Lie algebras of any weight

In this section, we show that abelian extensions of differential Lie algebras are classified by the
second cohomology.

Definition 4.1. An abelian extension of differential Lie algebras is a short exact sequence of
homomorphisms of differential Lie algebras

0 −−−−−→ V
i

−−−−−→ ĝ
p

−−−−−→ g −−−−−→ 0

dV

y dḡ

y dg

y
0 −−−−−→ V

i
−−−−−→ ĝ

p
−−−−−→ g −−−−−→ 0

such that [u, v]V = 0 for all u, v ∈ V.

(ĝ, dĝ) is called an abelian extension of (g, dg) by (V, dV).

Definition 4.2. Let (ĝ1, dĝ1) and (ĝ2, dĝ2) be two abelian extensions of (g, dg) by (V, dV). They are said
to be isomorphic if there exists ζ : (ĝ1, dĝ1) ↔ (ĝ2, dĝ2) is an isomorphism of differential Lie algebras
such that:

0 −−−−−→ (V, dV)
i

−−−−−→ (ĝ1, dĝ1)
p1
−−−−−→ (g, dg) −−−−−→ 0∥∥∥∥ ζ

y ∥∥∥∥
0 −−−−−→ (V, dV)

i
−−−−−→ (ĝ2, dĝ2)

p2
−−−−−→ (g, dg) −−−−−→ 0.

A section of an abelian extension (ĝ, dĝ) of (g, dg) by (V, dV) is a linear map s : g → ĝ satisfying
p ◦ s = Idg.

Given a section s : g→ ĝ, define ρ : g→ Endk(V) by

ρ(x)v := ρ(s(x))v, ∀x ∈ g, v ∈ V.
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Proposition 4.3. With the above notations, (V, dV) is a representation over the differential Lie algebra
(g, dg).

Proof. Firstly, we prove that ρ is a Lie algebra homomorphism, in fact, for any x, y ∈ g, v ∈ V , we have

ρ([x, y])(v) = ρ(s([x, y]))v = ρ([s(x), s(y)])v = ρ(x)ρ(y)(v) − ρ(y)ρ(x)(v).

Moreover, we obtain

dV(ρ(x)v) = dV(ρ(s(x))v) = dĝ(ρ(s(x))v)
= ρ(dĝ)(s(x))v + ρ(s(x))dĝ(v) + λρ(dĝ(s(x)))dĝ(v)
= ρ(s(dg(x)))v + ρ(s(x))dV(v) + λρ(s(dg(x)))dV(v)
= ρ(dg(x))v + ρ(x)dV(v) + λρ(dg(x))dV(v).

Hence, (V, dV) is a representation over (g, dg).

We further consider linear maps ψ : g ⊗ g→ V and χ : g→ V by

ψ(x, y) = [s(x), s(y)] − s([x, y]), ∀x, y ∈ g,

χ(x) = dĝ(s(x)) − s(dg(x)), ∀x ∈ g.

The differential Lie algebra structure on g⊕V with a multiplication [·, ·]ψ and the differential operator
dχ defined by

[x + u, y + v]ψ = [x, y] + ρ(x)v − ρ(y)u + ψ(x, y), ∀x, y ∈ g, u, v ∈ V, (4.1)
dχ(x + v) = dg(x) + χ(x) + dV(v), ∀x ∈ g, v ∈ V. (4.2)

Proposition 4.4. The triple (g ⊕ V, [·, ·]ψ, dχ) is a differential Lie algebra if and only if (ψ, χ) is a
2-cocycle.

Proof. For any x, y, z ∈ g, By (4.1), we have

ψ(x, [y, z]) + ψ(x, ψ(y, z)) + ψ(y, [z, x]) + ψ(y, ψ(z, x)) + ψ(z, [x, y]) + ψ(z, ψ(x, y)) = 0. (4.3)

Since dχ satisfies Eq (2.1), we deduce that

χ([x, y]) − ρ(x)χ(y) − λρ(dg(x))χ(y) + ρ(y)χ(x) + λρ(dg(y))χ(x) (4.4)
+ dV(ψ(x, y)) − ψ(dg(x), y) − ψ(x, dg(y)) − λψ(dg(x), dg(y)) = 0.

Therefore, (ψ, χ) is a 2-cocycle.
Conversely, if (ψ, χ) satisfies Eqs (4.3) and (4.4), direct verification that (g ⊕ V, [·, ·]ψ, dχ) is a

differential Lie algebra.

In the following, we will classify abelian extensions of differential Lie algebras.

Theorem 4.5. Let V be a vector space and dV ∈ Endk(V). Then abelian extensions of a differential Lie
algebra (g, dg) by (V, dV) are classified by H2

LieDλ
(g,V) of (g, dg).
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Proof. Let (ĝ, dĝ) be an abelian extension of (g, dg) by (V, dV). We choose a section s : g→ ĝ to obtain
a 2-cocycle (ψ, χ) and let s1 and s2 be two distinct sections providing 2-cocycles (ψ1, χ1) and (ψ2, χ2)
respectively. Define ϕ : g→ V by ϕ(x) = s1(x) − s2(x), we have

ψ1(x, y) = [s1(x), s1(y)] − s1([x, y])
= [s2(x) + ϕ(x), s2(y) + ϕ(y)] − (s2([x, y]) + ϕ([x, y]))
= ([s2(x), s2(y)] − s2([x, y])) + [s2(x), ϕ(y)] + [ϕ(x), s2(y)] − ϕ([x, y])
= ([s2(x), s2(y)] − s2([x, y])) + [x, ϕ(y)] + [ϕ(x), y] − ϕ([x, y]
= ψ2(x, y) + ∂ϕ(x, y)

and

χ1(x) = dĝ(s1(x)) − s1(dg(x))
= dĝ(s2(x) + ϕ(x)) − (s2(dg(x)) + ϕ(dg(x)))
= (dĝ(s2(x)) − s2(dg(x))) + dV(ϕ(x)) − ϕ(dg(x))
= χ2(x) + dV(ϕ(x)) − ϕ(dg(x))
= χ2(x) − δϕ(x).

That is, (ψ1, χ1) = (ψ2, χ2) + ∂LieDλ
(ϕ). Thus (ψ1, χ1) and (ψ2, χ2) are in the same cohomological

class in H2
LieDλ

(g,V).
Next, we prove that isomorphic abelian extensions give rise to the same element in H2

LieDλ
(g,V).

Assume that (ĝ1, dĝ1) and (ĝ2, dĝ2) are two isomorphic abelian extensions of (g, dg) by (V, dV) with the
associated homomorphism ζ : (ĝ1, dĝ1) → (ĝ2, dĝ2). Let s1 be a section of (ĝ1, dĝ1). As p2 ◦ ζ = p1, we
have

p2 ◦ (ζ ◦ s1) = p1 ◦ s1 = Idg.

Therefore, ζ ◦ s1 is a section of (ĝ2, dĝ2). Denote s2 := ζ ◦ s1. Since ζ is a homomorphism of
differential Lie algebras such that ζ |V = IdV , we have

ψ2(x, y) = [s2(x), s2(y)] − s2([x, y]) = [ζ(s1(x)), ζ(s1(y))] − ζ(s1([x, y]))
= ζ([s1(x), s1(y)] − s1([x, y])) = ζ(ψ1(x, y))
= ψ1(x, y)

and

χ2(x) = dĝ2(s2(x)) − s2(dg(x)) = dĝ2(ζ(s1(x))) − ζ(s1(dg(x)))
= ζ(dĝ1(s1(x)) − s1(dg(x))) = ζ(χ1(x))
= χ1(x).

Therefore, the result can be obtained.
Conversely, given two 2-cocycles (ψ1, χ1) and (ψ2, χ2), we can construct two abelian extensions

(g ⊕ V, [·, ·]ψ1 , dχ1) and (g ⊕ V, [·, ·]ψ2 , dχ2) via Eqs (4.1) and (4.2), and then there exists a linear map
ϕ : g→ V such that

(ψ1, χ1) = (ψ2, χ2) + ∂LieDλ
(ϕ).
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Define ζ : g ⊕ V → g ⊕ V by
ζ(x, v) := (x, ϕ(x) + v).

Then ζ is an isomorphism of these two abelian extensions.

5. Deformations of differential Lie algebras of any weight

In this section, we show that if H2
LieDλ

(g, g) = 0, then the differential Lie algebra (g, dg) is rigid.
Let (g, dg) be a differential Lie algebra. Denote by µg the multiplication of g. Consider the 1-

parameterized family

µt =

∞∑
i=0

µiti, µi ∈ C2
Lie(g, g), dt =

∞∑
i=0

diti, di ∈ C1
Lie(g, g).

Definition 5.1. A 1-parameter formal deformation of a differential Lie algebra (g, dg) is a pair (µt, dt)
which endows the k[[t]]-module (g[[t]], µt, dt) with the differential Lie algebra over k[[t]] such that
(µ0, d0) = (µg, dg).

Given any differential Lie algebra (g, dg), interpret µg and dg as the formal power series µt and dt

with µi = δi,0µg and di = δi,0dg respectively for all i ≥ 0. Then (g[[t]], µg, dg) is a 1-parameter formal
deformation of (g, dg).

The pair (µt, dt) generates a 1-parameter formal deformation of the differential Lie algebra (g, dg) if
and only if the following identities hold:

0 = µt(x, µt(y, z)) + µt(y, µt(z, x)) + µt(z, µt(x, y)), (5.1)
dt(µt(x, y)) = µt(dt(x), y) + µt(x, dt(y)) + λµt(dt(x), dt(y)),∀x, y, z ∈ g. (5.2)

Expanding these identities and collecting coefficients of tn, we see that Eqs (5.1) and (5.2) are
equivalent to the systems of identities:

0 =

n∑
i=0

µi(x, µn−i(y, z)) + µi(y, µn−i(z, x)) + µi(z, µn−i(x, y)), (5.3)∑
k,l≥0
k+l=n

dlµk(x, y) =
∑
k,l≥0
k+l=n

(µk(dl(x), y) + µk(x, dl(y))) + λ
∑
k,l,m≥0

k+l+m=n

µk(dl(x), dm(y)). (5.4)

Remark 5.2. For n = 0, Eq (5.3) is equal to the Jabobi identity of µg, and Eq (5.4) is equal to the fact
that dg is a differential operator of weight λ.

Proposition 5.3. Let (g[[t]], µt, dt) be a 1-parameter formal deformation of a differential Lie algebra
(g, dg). Then (µ1, d1) is a 2-cocycle of the differential Lie algebra (g, dg) with the coefficient in the
adjoint representation (g, dg).

Proof. For n = 1, Eq (5.3) is equal to ∂Lieµ1 = 0, and Eq (5.4) is equal to

∂Lied1 + δµ1 = 0.

Thus for n = 1, Eqs (5.3) and (5.4) imply that (µ1, d1) is a 2-cocycle.
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If µt = µg in the above 1-parameter formal deformation of the differential Lie algebra (g, dg), we
obtain a 1-parameter formal deformation of the differential operator dg. Consequently, we have

Corollary 5.4. Let dt be a 1-parameter formal deformation of the differential operator dg. Then d1 is
a 1-cocycle of the differential operator dg with coefficients in the adjoint representation (g, dg).

Proof. In the special case when n = 1, Eq (5.4) is equal to ∂Lied1 = 0, which implies that d1 is a
1-cocycle of the differential operator dg with coefficients in the adjoint representation (g, dg).

Definition 5.5. The 2-cocycle (µ1, d1) is called the infinitesimal of the 1-parameter formal deformation
(g[[t]], µt, dt) of (g, dg).

Definition 5.6. Two 1-parameter formal deformations (g[[t]], µt, dt) and (g[[t]], µ̄t, d̄t) of (g, dg) are said
to be equivalent if there exists a formal isomorphism from (g[[t]], µ̄t, d̄t) to (g[[t]], µt, dt) is a power
series Φt =

∑
i≥0 ϕiti : g[[t]]→ g[[t]], where ϕi : g→ g are linear maps with ϕ0 = Idg, such that

Φt ◦ µ̄t = µt ◦ (Φt × Φt), (5.5)
Φt ◦ d̄t = dt ◦ Φt. (5.6)

Theorem 5.7. The infinitesimals of two equivalent 1-parameter formal deformations of (g, dg) are in
the same cohomology class H2

LieDλ
(g, g).

Proof. Let Φt : (g[[t]], µ̄t, d̄t)→ (g[[t]], µt, dt) be a formal isomorphism. For all x, y ∈ g, we have

Φt ◦ µ̄t(x, y) = µt ◦ (Φt × Φt)(x, y),
Φt ◦ d̄t(x) = dt ◦ Φt(x).

Furthermore, we obtain

µ̄1(x, y) = µ1(x, y) + [ϕ1(x), y] + [x, ϕ1(y)] − ϕ1([x, y]),
d̄1(x) = d1(x) + dg(ϕ1(x)) − ϕ1(dg(x)).

Thus, we have
(µ̄1, d̄1) = (µ1, d1) + ∂LieDλ

(ϕ1),

which implies that [(µ̄1, d̄1)] = [(µ1, d1)] in H2
LieDλ

(g, g).

Definition 5.8. A 1-parameter formal deformation (g[[t]], µt, dt) of (g, dg) is said to be trivial if it is
equal to the deformation (g[[t]], µg, dg), that is, there exists Φt =

∑
i≥0 ϕiti : g[[t]] → g[[t]], where

ϕi : g→ g are linear maps with ϕ0 = Idg, such that

Φt ◦ µt = µg ◦ (Φt × Φt), (5.7)
Φt ◦ dt = dg ◦ Φt. (5.8)

Definition 5.9. A differential Lie algebra (g, dg) is said to be rigid if every 1-parameter formal
deformation is trivial.

Theorem 5.10. Regarding (g, dg) as the adjoint representation over itself, if H2
LieDλ

(g, g) = 0, the
differential Lie algebra (g, dg) is rigid.
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Proof. Let (g[[t]], µt, dt) be a 1-parameter formal deformation of (g, dg). By Proposition 5.3, (µ1, d1) is
a 2-cocycle. By H2

LieDλ
(g, g) = 0, there exists a 1-cochain ϕ1 ∈ C1

Lie(g, g) such that

(µ1, d1) = −∂LieDλ
(ϕ1). (5.9)

Then setting Φt = Idg + ϕ1t, we have a deformation (g[[t]], µ̄t, d̄t), where

µ̄t(x, y) =
(
Φ−1

t ◦ µt ◦ (Φt × Φt)
)
(x, y),

d̄t(x) =
(
Φ−1

t ◦ dt ◦ Φt
)
(x).

Thus, (g[[t]], µ̄t, d̄t) is equivalent to (g[[t]], µt, dt). Furthermore, we have

µ̄t(x, y) = (Idg − ϕ1t + ϕ2
1t2 + · · · + (−1)iϕi

1ti + · · · )(µt(x + ϕ1(x)t, y + ϕ1(y)t)),
d̄t(x) = (Idg − ϕ1t + ϕ2

1t2 + · · · + (−1)iϕi
1ti + · · · )(dt(x + ϕ1(x)t)).

Therefore,

µ̄t(x, y) = [x, y] + (µ1(x, y) + [x, ϕ1(y)] + [ϕ1(x), y] − ϕ1([x, y]))t + µ̄2(x, y)t2 + · · · ,

d̄t(x) = dg(x) + (dg(ϕ1(x)) + d1(x) − ϕ1(dg(x)))t + d̄2(x)t2 + · · · .

By Eq (5.9), we have

µ̄t(x, y) = [x, y] + µ̄2(x, y)t2 + · · · ,

d̄t(x) = dg(x) + d̄2(x)t2 + · · · .

Then by repeating the argument, we can show that (g[[t]], µt, dt) is equivalent to (g[[t]], µg, dg). Thus,
(g, dg) is rigid.

6. Homotopy differential operators of any weight on 2-term L∞-algebras

In this section, we pay our attention to the homotopy differential operator of any weight on 2-term
L∞-algebras introduced by [24].

Definition 6.1. A 2-term L∞-algebra consists of

• a complex of vector spaces L1
d
−→ L0,

• bilinear maps l2 : Li ⊗ L j → Li+ j, where i + j ≤ 1,
• a skew-symmetric trilinear map l3 : L0 ⊗ L0 ⊗ L0 → L1, satisfying:

(a) l2(a, b) = −l2(b, a), l2(a, u) = −l2(u, a),
(b) dl2(a, u) = l2(a, du), l2(du, v) = l2(u, dv),
(c) dl3(a, b, c) = l2(l2(a, b), c) − l2(l2(a, c), b) − l2(a, l2(b, c)),
(d) l3(a, b, du) = l2(l2(a, b), u) − l2(a, l2(b, u)) − l2(l2(a, u), b),
(e) l2(xa, l3(b, c,w)) + l2(l3(a, c,w), b) − l2(l3(a, b,w), c) + l2(l3(a, b, c),w) = l3(l2(a, b), c,w)
−l3(l2(a, c), b,w) + l3(l2(a,w), b, c) + l3(a, l2(b, c),w) + l3(a, l2(b,w), c) + l3(a, b, l2(c,w)).

for any a, b, c,w ∈ L0 and u, v ∈ L1.
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One denotes a 2-term L∞-algebra as above by (L1
d
−→ L0, l2, l3). A 2-term L∞-algebra is called

skeletal if d = 0.

Definition 6.2. Let L = (L1
d
−→ L0, l2, l3) and L′ = (L′1

d′
−→ L′0, l

′
2, l
′
3) be two 2-term L∞-algebras. A

morphism f : L→ L′ consists of
• a chain map f : L → L′ (which consists of linear maps f0 : L0 → L′0 and f1 : L1 → L′1 with
f0 ◦ d = d′ ◦ f1 ),
• a bilinear map f2 : L0 ⊗ L0 → L′1 satisfying

(a) d( f2(a, b)) = f0(l2(a, b)) − l′2( f0(a), f0(b)),

(b) f2(a, du) = f1(l2(a, u)) − l′2( f0(a), f1(u)),

(c) f1(l3(a, b, c)) + l′2( f0(a, b), f0(c)) − l′2( f2(a, c), f0(b)) − l′2( f0(a), f2(b, c))

+ f2(l2(a, b), c) − f2(l2(a, c), b) − f2(a, l2(b, c)) − l′3( f0(a), f0(b), f0(c)) = 0,

for any a, b, c ∈ L0 and u ∈ L1.

If f = ( f0, f1, f2) : L → L′ and g = (g0, g1, g2) : L′ → L′′ are two morphism of 2-term L∞-algebras,
their composition g ◦ f : L→ L′′ is defined by (g ◦ f )0 = g0 ◦ f0, (g ◦ f )1 = g1 ◦ f1 and

(g ◦ f )2(a, b) = g2( f0(a), f0(b)) + g1( f2(a, b)), ∀a, b ∈ L0.

For any 2-term L∞-algebra L, the identity morphism IdL : L→ L is given by the identity chain map
L→ L together with (IdL)2 = 0.

The collection of 2-term L∞-algebras and morphisms between them form a category. We denote
this category by 2Lie∞.

Definition 6.3. Let L = (L1
d
−→ L0, l2, l3) be a 2-term L∞-algebra. A homotopy differential operator of

weight λ on it consists of a chain map of the underlying chain complex (i.e., linear maps θ0 : L0 → L0

and θ1 : L1 → L1 with θ0◦d = d◦θ1 ) and a bilinear map θ2 : L0⊗L0 → L1 such that for any a, b, c ∈ L0

and u ∈ L1, the following identities are hold

(a) d(θ2(a, b)) = θ0(l2(a, b)) − l2(θ0(a), b) − l2(a, θ0(b)) − λl2(θ0(a), θ0(b)),

(b) θ2(a, du) = θ1(l2(a, u)) − l2(θ0(a), u) − l2(a, θ1(u)) − λl2(θ0(a), θ1(u)),

(c) l3(θ0(a), b, c) + l3(a, θ0(b), c) + l3(a, b, θ0(c)) − θ1(l3(a, b, c))

= l2(θ2(a, b), c) − l2(θ2(a, c), b) − l2(a, θ2(b, c)) + θ2(l2(a, b), c) − θ2(l2(a, c), b) − θ2(a, l2(b, c)).

A 2-term L∞-algebra with a homotopy differential operator of weight λ as above denoted by the pair

((L1
d
−→ L0, l2, l3), (θ0, θ1, θ2)). A 2-term L∞-algebra with a homotopy differential operator of weight λ

is said to be skeletal if the underlying 2-term L∞-algebra is skeletal, i.e., d = 0.

Definition 6.4. Let ((L1
d
−→ L0, l2, l3), (θ0, θ1, θ2)) and ((L′1

d′
−→ L′0, l

′
2, l
′
3), (θ′0, θ

′
1, θ
′
2)) be two 2-term

L∞-algebras with homotopy differential operators of weight λ. A morphism between them consists
of a morphism ( f0, f1, f2) between the underlying 2-term L∞-algebras and a linear map Ψ : L0 → L′1
satisfying

(1) Ψ ◦ ϕ0 = ϕ
′
1 ◦ Ψ,
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(2) f0(θ0(a)) − θ′0( f0(a)) = d′(Ψ(a)),
(3) f1(θ1(u)) − θ′1( f1(u)) = Ψ(da),
(4) f1(θ2(a, b)) − θ′2( f0(a), f0(b)) = θ′1( f2(a, b)) − f2(θ0(a), b) − f2(a, θ0(b))
+Ψ(l2(a, b)) − l′2(Ψ(a), f0(b)) − l′2( f0(a),Ψ(b)).

We denote the category of 2-term L∞-algebras with homotopy differential operators of weight λ and
morphisms between them by 2LieDλ∞.

Theorem 6.5. There is a one-to-one correspondence between skeletal 2-term L∞-algebras with
homotopy differential operators with weight λ and tuples ((g, dg), (V, dV), (θ, θ)), where (g, dg) is a
differential Lie algebra of weight λ , (V, dV) is a representation and (θ, θ) is a 3-cocycle of the
differential Lie algebra of weight λ with coefficients in the representation.

Proof. Let (L1
0
−→ L0, l2, l3, (θ0, θ1, θ2)) be a skeletal 2-term L∞-algebra with a homotopy differential

operator of weight λ. Then θ0 is a differential operator of weight λ for the Lie algebra (L0, l2). We have
that (L1, θ1) is a representation of the differential Lie algebra (L0, θ0) of weight λ from Definition 6.3.
According to the condition (c) in Definition 6.3, we have ∂LieDλ

(θ2) + δ(l3) = 0. Therefore (l3,−θ2) is a
3-cocycle.

Conversely, define L0 = L, L1 = V and θ0 = dg, θ1 = dV , θ2 = −θ. We define multiplications
l2 : Li ⊗ L j → Li+ j and l3 : L0 ⊗ L0 ⊗ L0 → L1 by

l2(a, b) = [a, b], l2(a, u) = [a, u], l2(u, a) = [u, a], l3 = 0,

for a, b, c ∈ L0 = L and u ∈ L1 = V . Then it is easy to verify that ((L1
0
−→ L0, l2, l3), (θ0, θ1, θ2)) is

a skeletal 2-term L∞-algebra with a homotopy differential operator of weight λ. Hence, the proof is
finished.

A 2-term L∞-algebra with a homotopy differential operator of weight λ is said to be strict if the
underlying 2-term L∞-algebra is strict, i.e., θ2 = 0. Next we introduce crossed modules of differential
Lie algebras of weight λ and show that strict 2-term L∞-algebra with a homotopy differential operator
of weight λ are in one-to-one correspondence with crossed module of differential Lie algebras of weight
λ.

Definition 6.6. A crossed module of differential Lie algebras of weight λ consist of
((g, dg), (h, dh), dt,Λ) where (g, dg) and (h, dh) are differential Lie algebras of weight λ, dt : g → h is a
differential Lie algebra morphism and

Λ : h→ gl(g), a 7→ Λa,

such that for u, v ∈ g, a, b ∈ h,

(a) dt(Λa(u)) = [a, dt(u)]h,
(b) Λdt(u)(v) = [u, v]g,
(c) Λ[a,b]h = ΛaΛb − ΛbΛa,

(d) dg(Λa(u)) = Λdh(a)(u) + Λa(dg(u)) + λΛdh(a)(dg(u)).
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Theorem 6.7. There is a one-to-one correspondence between strict 2-term L∞-algebras with homotopy
differential operators of weight λ and crossed module of differential Lie algebras of weight λ.

Proof. Let (L1
d
−→ L0, l2, l3 = 0, (θ0, θ1, θ2)) be a strict 2-term L∞-algebra with a homotopy differential

operator of weight λ. Then θ0 is a differential operator of weight λ for the Lie algebra (L0, l2) and θ1

is a differential operator of weight λ for the Lie algebra (L1, l2) from Definition 6.3. Thus (L0, θ0) and
(L1, θ1) are both differential Lie algebras of weight λ. Since θ0 ◦ d = d ◦ θ1, the map dt = d : L1 → L0

is a morphism of differential Lie algebras of weight λ. Finally, the condition (b) of Definition 6.3 is
equal to the condition (d) of Definition 6.6. Hence, the results are obtained.

7. Categorification of differential Lie algebras of any weight

In this section, we study categorified differential operators of any weight (also called 2-differential
operator) on Lie 2-algebras.

Definition 7.1. A Lie 2-algebra is a 2-vector space L equipped with
• a bilinear functor [·, ·] : L ⊗ L→ L,
• a trilinear natural isomorphism, called the Jacobiator

Ja,b,c : [[a, b], c]→ [[a, c], b] + [a, [b, c]],

satisfying

[[[a, b], c],w]

[Ja,b,c ,w]

��

J[a,b],c,w
// [[[a, b],w], c] + [[a, b], [c,w]]

[Ja,b,w ,c]+1

��
[[[a, c], b] + [a, [b, c]],w]

J[a,c],b,w+Ja,[b,c],w

��

R

Θ

��
P

[Ja,c,w ,b]+1+1+[a,Jb,c,w ]
// Q,

where Θ,R, P and Q are given by

Θ = J[a,w],b,c +Ja,[b,w],c +Ja,b,[c,w]

R = [[[a,w], b], c] + [[a, [b,w]], c] + [[a, b], [c,w]],
P = [[[a, c],w], b] + [[a, c], [b,w]] + [[a,w], [b, c]] + [a, [[b, c],w]],
Q = [[[a,w], c], b] + [[a, [c,w]], b] + [[a, c], [b,w]] + [[a,w], [b, c]] + [a, [[b,w], c]] + [a, [b, [c,w]]].

Definition 7.2. Let (L, [·, ·],J) and (L′, [·, ·]′,J ′) be two Lie 2-algebras. A Lie 2-algebra morphism
consists of
• a linear functor (F0, F1) from the underlying 2-vector space L to L′;
• a bilinear natural transformation

F2(a, b) : [F0(a), F0(b)]′ → F0([a, b])
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satisfying

[[F0(a), F0(b)]′, F0(c)]′

[F2(a,b),1]′

��

JF0(a),F0(b),F0(c)
// [[F0(a), F0(c)]′,Φ′F0(b)]′ + [F0(a), [F0(b), F0(c)]′]′

[F2(a,c),1]′+[1,F2(b,c)]′

��

[F0[a, b], F0(c)]′

F2([a,b],c)
��

[F0[a, c], F0(b)]′ + [F0(a), F0[b, c]]′

F2([a,c],b)+F2(a,[b,c])
��

F0[[a, b], c]
F0(Ja,b,c)

// F0([[a, c], b] + [a, [b, c]]).

Let L, L′ and L′′ be three Lie 2-algebras and F : L→ L′,G : L′ → L′′ be Lie 2-algebra morphisms.
Their composition G ◦ F : L → L′′ is a Lie 2-algebra morphism whose components are given by
(G ◦ F)0 = G0 ◦ F0, (G ◦ F)1 = G1 ◦ F1 and (G ◦ F)2 is given by

[G0 ◦ F0(ξ),G0 ◦ F0(η)]′′
(G◦F)2(ξ,η)

//

G2(F0(ξ),F0(η))
**

(G0 ◦ F0)([ξ, η])

G0([F0(ξ), F0(η)]′).
G0(F2(ξ,η))

55

For any Lie 2-algebra L, the identity morphism IdL : L → L is given by the identity functor as its
linear functor together with the identity natural transformation as (IdL)2.

Lie 2-algebras and Lie 2-algebra morphisms form a category. We denote this category by Lie2.
In the next, we define 2-differential operators of weight λ on Lie 2-algebras. They are

categorification of differential operators on Lie algebras.

Definition 7.3. Let (L, [·, ·],J) be a Lie 2-algebra. A 2-differential operator of weight λ on it consists
of a linear map functor D : L→ L and a natural isomorphism

Da,b : D[a, b]→ [Da, b] + [a,Db] + λ[Da,Db],∀a, b ∈ L

satisfying

D[[a, b], c]

D[a,b],c

��

J
// D([[a, c], b] + [a, [b, c]])

��
[D[a, b], c] + [[a, b],D(c)] + λ[D[a, b],Dc]

[D,1]+1+1

��

P

[D,1]+1+1+1+1+[1,D]

��
[[Da, b] + [a,Db] + λ[Da,Db], c] + [[a, b],D(c)] + λ[D[a, b],Dc]

J+J+1+J+1
// Q,

where

P = [D[a, c], b] + [[a, c],D(b)] + [D(a), [b, c]] + [a,D[b, c]] + λ[D[a, c],Db] + λ[Da,D[b, c]]
Q = [[Da, c], b] + [[a,Dc], b] + λ[[Da,Dc], b] + [[a, c],D(b)] + [D(a), [b, c]]

+[a, [Db, c]] + [a, [b,Dc]] + λ[a, [Db,Dc]] + λ[D[a, c],Db] + λ[Da,D[b, c]].

Electronic Research Archive Volume 31, Issue 3, 1195–1211.



1208

Definition 7.4. Let (L, [·, ·],J ,D,D) and (L′, [·, ·]′,J ′,D′,D′) be two Lie 2-algebras with
2-differential operators of weight λ. A morphism between them consists of a Lie 2-algebras mophism
(F = (F0, F1), F2) and a natural isomorphism

Θa : D′(F0(a))→ F0(D(a)),∀a ∈ L0

satisfying

D′([F0(a), F0(b)]′)

D′

��

F2 // D′(F0[a, b])

Θ[a,b]

��

[D′(F0(a)), F0(b)]′ + [F0(a),D′(F0(b))]′

[Θa,1]′+[1,Θb]′

��

F0(D[a, b])

D

��

[F0(D(a)), F0(b)]′ + [F0(a), F0(D(b))]′
F2+F2

// F0([Da, b] + [a,Db]).

We denote the category of Lie 2-algebras with 2-differential operators of weight λ and morphisms
between them by LieD2λ.

In the following, we will give our main result of this section.

Theorem 7.5. The categories 2LieDλ∞ and LieD2λ are equivalent.

Proof. First we construct a functor T : 2LieDλ∞ → LieD2λ as follows. Given a 2-term L∞-algebra

with a homotopy differential operator of weight λ ((L1
d
−→ L0, l2, l3), (θ0, θ1, θ2)), we obtain the 2-vector

space C = (L0 ⊕ L1 ⇒ L0). Define a bilinear functor [·, ·] : C ⊗C → C by

[(a, u), (b, v)] = (l2(a, b), l2(a, v) + l2(u, b) + l2(du, v)),

for (a, u), (b, v) ∈ C1 = L0 ⊕ L1. Define

Ja,b,c = ([[a, b], c], l3(a, b, c)).

According to the identities (a)–(e), we can check that (C, [·, ·],J) is a Lie 2-algebra. Moreover, we
define a 2-differential operator of weight λ (D,D′) by

D(a, u) := (θ0(a), θ1(u)),Da,b := ([a, b], θ2(a, b)).

Given any 2-term L∞-algebra with a homotopy differential operator of weight λ morphism
( f0, f1, f2,Ψ) from L to L′, for any F0 = f0, F1 = f1 and

F2(a, b) = ([ f0(a), f0(b)]′, f2(a, b)),Θ = Ψ.

Direct verification that F is a morphism from C to C′. Furthermore, we can check that T preserve the
identity morphisms and composition of morphisms. Hence, T is a functor from 2LieDλ∞ to LieD2λ.

Conversely. Given a Lie 2-algebra C = (C1 ⊕ C0,J ,D,D) with a 2-differential operator of weight
λ, we have the 2-term chain complex

L1 = kers
d=t|kers
−→ C0 = L0.
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Define l2 : Li ⊗ L j → Li+ j by

l2(a, b) = [a, b], l2(a, u) = [a, u], l2(u, a) = [u, a].

The map l3 : L0 ⊗ L0 ⊗ L0 → L1 is defined by

l3(a, b, c) = pr(Ja,b,c), ∀a, b, c ∈ L0,

where pr denote the projection on ker(s). Moreover, we define a homotopy differential operator by

θ0(a) := D(i(u)), θ1(u) := D|ker(s)(u), θ2(a, b) := pr(Da,b).

For any Lie 2-algebra morphism (F0, F1, F2,Θ) : C → C′, then f0 = F0, f1 = F1|L1 = kers with a
2-differential operator of weight λ and define f2 by

f2(a, b) = prF2(a, b),Ψ = Θ.

Moreover, S preserve the identity morphisms and composition of morphisms. Therefore, S is a
functor from LieD2λ to 2LieDλ∞.

Finally, it is easy to prove that T ◦ S � 1LieD2λ , and the composite S ◦ T � 12LieDλ∞
and we omit

them.
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