Loading [MathJax]/jax/output/SVG/jax.js
Research article

1-parameter formal deformations and abelian extensions of Lie color triple systems

  • Received: 02 October 2021 Revised: 19 January 2022 Accepted: 20 January 2022 Published: 11 May 2022
  • The purpose of this paper is to discuss Lie color triple systems. The cohomology theory of Lie color triple systems is established, then 1-parameter formal deformations and abelian extensions of Lie color triple systems are studied using cohomology.

    Citation: Qiang Li, Lili Ma. 1-parameter formal deformations and abelian extensions of Lie color triple systems[J]. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129

    Related Papers:

    [1] Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
    [2] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [3] Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058
    [4] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [5] Xiuhai Fei, Cuixian Lu, Haifang Zhang . Nonlinear Jordan triple derivable mapping on $ * $-type trivial extension algebras. Electronic Research Archive, 2024, 32(3): 1425-1438. doi: 10.3934/era.2024066
    [6] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [7] Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157
    [8] Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and $ \mathcal{O} $-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264
    [9] Jingjing Hai, Xian Ling . Normalizer property of finite groups with almost simple subgroups. Electronic Research Archive, 2022, 30(11): 4232-4237. doi: 10.3934/era.2022215
    [10] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
  • The purpose of this paper is to discuss Lie color triple systems. The cohomology theory of Lie color triple systems is established, then 1-parameter formal deformations and abelian extensions of Lie color triple systems are studied using cohomology.



    The notion of Lie triple systems was introduced by Lister to obtain all simple Lie triple systems over an algebraically closed field [1]. The cohomology theory of Lie triple systems was investigated by Yamaguti [2]. In 2004, Kubo and Taniguchi gave that Yamaguti cohomology plays a crucial role in the theory of deformations of Lie triple systems [3]. Because of important applications in elementary particle theory and the theory of quantum mechanics, Lie triple systems have been discussed [4,5]. Okubo reformulated the para-statistics as Lie supertriple systems and explained the relationship between Lie supertriple systems and ortho-symplectic supertriple systems [6]. Okubo and Kamiya introduced δ-Jordan Lie supertriple systems in[7]. Some examples and results of Lie supertriple systems were given in [6,8,9]. As a generalization of Lie triple systems and Lie supertriple systems, Cao studied split Lie color triple systems, and obtained the structure of split Lie color triple systems by the techniques of connections of roots in 2019 [10].

    The purpose of this paper is to consider the cohomology theory and deformations of Lie color triple systems basing on some work in [2,3,4,11,12,13,14]. The paper is organized as follows. Section 2 is devoted to some basic definitions and the cohomology theory of Lie color triple systems. Section 3 is dedicated to the 1-parameter formal deformation theory of Lie color triple systems. We show that the cohomology group defined in Section 2 is suitable for this 1-parameter formal deformation theory. In Section 4, we study abelian extensions of Lie color triple systems, and get that associated to any abelian extension, there is a representation and a 3-cocycle.

    Throughout this paper, we assume that F denotes an arbitrary field.

    Definition 2.1. [15] Let G be an abelian group. A bi-character on G is a map ε:G×GK{0} satisfying

    ε(|x|,|y|)ε(|y|,|x|)=1,
    ε(|x|,|y|+|z|)=ε(|x|,|y|)ε(|x|,|z|),
    ε(|x|+|z|,|y|)=ε(|x|,|y|)ε(|z|,|y|),

    where x,y,zG. It is clear that

    ε(|x|,|0|)=ε(|0|,|x|)=1,ε(|x|,|x|)=±1,xG.

    Definition 2.2. [1] A Lie triple system (T,[,,]) consists of an F-vector space T, a trilinear map [,,]:T×T×TT, such that for all x,y,z,u,vT,

    [x,x,z]=0,
    [x,y,z]+[y,z,x]+[z,x,y]=0,
    [u,v,[x,y,z]]=[[u,v,x],y,z]+[x,[u,v,y],z]+[x,y,[u,v,z]].

    Definition 2.3. [10] A Lie color triple system (T,[,,]) consists of an F-vector space T, a trilinear map [,,]:T×T×TT, such that for all x,y,z,u,vT,

    [x,y,z]=ε(|x|,|y|)[y,x,z], (2.1)
    ε(|x|,|z|)[x,y,z]+ε(|y|,|x|)[y,z,x]+ε(|z|,|y|)[z,x,y]=0, (2.2)
    [u,v,[x,y,z]]=[[u,v,x],y,z]+ε(|x|,|u|+|v|)[x,[u,v,y],z]+ε(|u|+|v|,|x|+|y|)[x,y,[u,v,z]]. (2.3)

    We generalize the notion of the representation of Lie triple systems to Lie color triple systems in the following.

    Definition 2.4. Let (T,[,,]) be a Lie color triple system, V an F-vector space and AEnd(V). V is called a (T,[,,])-module with respect to A if there exists a bilinear map θ:T×TEnd(V), (a,b)θ(a,b) such that for all a,b,c,dT,

    θ(a,b)A=Aθ(a,b), (2.4)
    ε(|a|+|b|,|c|+|d|)θ(c,d)θ(a,b)ε(|a|,|b|)ε(|d|,|a|+|c|)θ(b,d)θ(a,c)θ(a,[b,c,d])A+ε(|a|,|b|+|c|)D(b,c)θ(a,d)=0, (2.5)
    ε(|a|+|b|,|c|+|d|)θ(c,d)D(a,b)D(a,b)θ(c,d)+θ([a,b,c],d)A+ε(|c|,|a|+|b|)θ(c,[a,b,d])A=0, (2.6)
    ε(|a|+|b|,|c|+|d|)D(c,d)D(a,b)D(a,b)D(c,d)+D([a,b,c],d)A+ε(|c|,|a|+|b|)D(c,[a,b,d])A=0, (2.7)

    where D(a,b)=ε(|a|,|b|)θ(b,a)θ(a,b).

    Then θ is called the representation of (T,[,,]) on V with respect to A. In the case θ=0, V is called the trivial (T,[,,])-module with respect to A.

    In particular, let V=T, and θ(x,y)(z)=ε(|z|,|x|+|y|)[z,x,y]. Then D(x,y)(z)=[x,y,z] and (2.4), (2.5), (2.6), (2.7) hold. In this case T is showed to be the adjoint (T,[,,])-module and θ is called the adjoint representation of (T,[,,]).

    As follows, we give the semidirect product of a Lie color triple system.

    Proposition 2.5. Let θ be a representation of a Lie color triple system (T,[,,]) on V with respect to A.Assume the operation [,,]V:(TV)×(TV)×(TV)TV by

    [(x,a),(y,b),(z,c)]V=([x,y,z],ε(|x|,|y|+|z|)θ(y,z)(a)ε(|y|,|z|)θ(x,z)(b)+D(x,y)(c)),

    then TV is a Lie color triple system.

    Proof. By D(x,y)=ε(|x|,|y|)θ(y,x)θ(x,y), we get

    [(x,a),(y,b),(z,c)]V=([x,y,z],ε(|x|,|y|+|z|)θ(y,z)(a)ε(|y|,|z|)θ(x,z)(b)+D(x,y)(c))=ε(|x|,|y|)([y,x,z],ε(|y|,|x|+|z|)θ(x,z)(b)ε(|x|,|z|)θ(y,z)(a)ε(|x|,|y|)D(x,y)(c))=ε(|x|,|y|)([y,x,z],ε(|y|,|x|+|z|)θ(x,z)(b)ε(|x|,|z|)θ(y,z)(a)+D(y,x)(c))=ε(|x|,|y|)[(y,b),(x,a),(z,c)]V,

    and

    ε(|x|,|z|)[(x,a),(y,b),(z,c)]V+ε(|y|,|x|)[(y,b),(z,c),(x,a)]V+ε(|z|,|y|)[(z,c),(x,a),(y,b)]V=(ε(|x|,|z|)[x,y,z],ε(|x|,|y|)θ(y,z)(a)ε(|z|,|x|+|y|)θ(x,z)(b)+ε(|x|,|z|)D(x,y)(c))+(ε(|y|,|x|)[y,z,x],ε(|y|,|z|)θ(z,x)(b)ε(|x|,|y|+|z|)θ(y,x)(c)+ε(|y|,|x|)D(y,z)(a))+(ε(|z|,|y|)[z,x,y],ε(|z|,|x|)θ(x,y)(c)ε(|y|,|x|+|z|)θ(z,y)(a)+ε(|z|,|y|)D(z,x)(b))=(0,ε(|x|,|y|)θ(y,z)(a)ε(|y|,|x|+|z|)θ(z,y)(a)+ε(|y|,|x|)D(y,z)(a)+ε(|y|,|z|)θ(z,x)(b)ε(|z|,|x|+|y|)θ(x,z)(b)+ε(|z|,|y|)D(z,x)(b)+ε(|z|,|x|)θ(x,y)(c)ε(|x|,|y|+|z|)θ(y,x)(c)+ε(|x|,|z|)D(x,y)(c))=(0,0).

    By (2.5), (2.6) and (2.7), it follows that

    [[(x,a),(y,b),(u,c)]V,(v,d),(w,e)]V=[([x,y,u],ε(|x|,|y|+|u|)θ(y,u)(a)ε(|y|,|u|)θ(x,u)(b)+D(x,y)(c)),(v,d),(w,e)]V=([[x,y,u],v,w],ε(|x|+|y|+|u|,|v|+|w|)θ(v,w)(ε(|x|,|y|+|u|)θ(y,u)(a)ε(|y|,|u|)θ(x,u)(b)+D(x,y)(c))ε(|v|,|w|)θ([x,y,u],w)(d)+D([x,y,u],v)(e)),
    ε(|u|,|x|+|y|)[(u,c),[(x,a),(y,b),(v,d)]V,(w,e)]V=ε(|u|,|x|+|y|)[(u,c),([x,y,v],ε(|x|,|y|+|v|)θ(y,v)(a)ε(|y|,|v|)θ(x,v)(b)+D(x,y)(d)),(w,e)]V=ε(|u|,|x|+|y|)([u,[x,y,v],w],ε(|u|,|x|+|y|+|v|+|w|)θ([x,y,v],w)(c)ε(|x|+|y|+|v|,|w|)θ(u,w)(ε(|x|,|y|+|v|)θ(y,v)(a)ε(|y|,|v|)θ(x,v)(b)+D(x,y)(d))+D(u,[x,y,v])(e)),
    ε(|x|+|y|,|u|+|v|)[(u,c),(v,d),[(x,a),(y,b),(w,e)]V]V=ε(|x|+|y|,|u|+|v|)[(u,c),(v,d),([x,y,w],ε(|x|,|y|+|w|)θ(y,w)(a)ε(|y|,|w|)θ(x,w)(b)+D(x,y)(e))]V=ε(|x|+|y|,|u|+|v|)([u,v,[x,y,w]],ε(|u|,|v|+|x|+|y|+|w|)θ(v,[x,y,w])(c)ε(|v|,|x|+|y|+|w|)θ(u,[x,y,w])(d)+D(u,v)(ε(|x|,|y|+|w|)θ(y,w)(a)ε(|y|,|w|)θ(x,w)(b)+D(x,y)(e))),
    [(x,a),(y,b),[(u,c),(v,d),(w,e)]V]V=[(x,a),(y,b),([u,v,w],ε(|u|,|v|+|w|)θ(v,w)(c)ε(|v|,|w|)θ(u,w)(d)+D(u,v)(e))]V=([x,y,[u,v,w]],ε(|x|,|y|+|u|+|v|+|w|)θ(y,[u,v,w])(a)ε(|y|,|u|+|v|+|w|)θ(x,[u,v,w])(b)+D(x,y)(ε(|u|,|v|+|w|)θ(v,w)(c)ε(|v|,|w|)θ(u,w)(d)+D(u,v)(e))).

    The calculation above shows that (2.1), (2.2) and (2.3) hold.

    Thus, (TV,[,,]V) is a Lie color triple system.

    Let θ be a representation of (T,[,,]) on V with respect to A. If an n-linear map f:T××TntimesV satisfies

    f(x1,,x,y,xn)=ε(|x|,|y|)f(x1,,y,x,xn),
    ε(|x|,|z|)f(x1,,xn3,x,y,z)+ε(|y|,|x|)f(x1,,xn3,y,z,x)+ε(|z|,|y|)f(x1,,xn3,z,x,y)=0,

    then f is called an n-cochain on T. Denote by CnA(T,V) the set of all n-cochains, n1.

    Definition 2.6. For n=1,2,3,4, the coboundary operator dn:CnA(T,V)Cn+2A(T,V) is defined as follows.

    If fC1(T,V), then

    d1f(x1,x2,x3)=ε(|f|+|x1|,|x2|+|x3|)θ(x2,x3)f(x1)ε(|x2|,|x3|)ε(|f|,|x1|+|x3|)θ(x1,x3)f(x2)+ε(|f|,|x1|+|x2|)D(x1,x2)f(x3)f([x1,x2,x3]).

    If fC2(T,V), then

    d2f(y,x1,x2,x3)=ε(|f|+|y|+|x1|,|x2|+|x3|)θ(x2,x3)f(y,x1)ε(|x2|,|x3|)ε(|f|+|y1|,|x1|+|x3|)θ(x1,x3)f(y,x2)+ε(|f|+|y|,|x1|+|x2|)D(x1,x2)f(y,x3)f(y,[x1,x2,x3]).

    If fC3(T,V), then

    d3f(x1,x2,x3,x4,x5)=ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)θ(x4,x5)f(x1,x2,x3)ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)θ(x3,x5)f(x1,x2,x4)ε(|f|,|x1|+|x2|)D(x1,x2)f(x3,x4,x5)+ε(|f|+|x1|+|x2|,|x3|+|x4|)D(x3,x4)f(x1,x2,x5)+f([x1,x2,x3],x4,x5)+ε(|x3|,|x1|+|x2|)f(x3,[x1,x2,x4],x5)+ε(|x1|+|x2|,|x3|+|x4|)f(x3,x4,[x1,x2,x5])f(x1,x2,[x3,x4,x5]).

    If fC4(T,V), then

    d4f(y,x1,x2,x3,x4,x5)=ε(|f|+|y|+|x1|+|x2|+|x3|,|x4|+|x5|)θ(x4,x5)f(y,x1,x2,x3)ε(|f|+|y|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)θ(x3,x5)f(y,x1,x2,x4)ε(|f|+|y|,|x1|+|x2|)D(x1,x2)f(y,x3,x4,x5)+ε(|f|+|y|+|x1|+|x2|,|x3|+|x4|)D(x3,x4)f(y,x1,x2,x5)+f(y,[x1,x2,x3],x4,x5)+ε(|x3|,|x1|+|x2|)f(y,x3,[x1,x2,x4],x5)+ε(|x1|+|x2|,|x3|+|x4|)f(y,x3,x4,[x1,x2,x5])f(y,x1,x2,[x3,x4,x5]).

    Theorem 2.7. The coboundary operator dn defined above satisfies dn+2dn=0, n=1,2.

    Proof. From the definition of the coboundary operator, it follows immediately that d3d1=0 implies d4d2=0. Then we only need to prove d3d1=0. In fact, by (2.4)-(2.7), we get

    d3(d1f)(x1,x2,x3,x4,x5)=ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)θ(x4,x5)(d1f)(x1,x2,x3)ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)θ(x3,x5)(d1f)(x1,x2,x4)ε(|f|,|x1|+|x2|)D(x1,x2)(d1f)(x3,x4,x5)+ε(|f|+|x1|+|x2|,|x3|+|x4|)D(x3,x4)(d1f)(x1,x2,x5)+(d1f)([x1,x2,x3],x4,x5)+ε(|x3|,|x1|+|x2|)(d1f)(x3,[x1,x2,x4],x5)+ε(|x1|+|x2|,|x3|+|x4|)(d1f)(x3,x4,[x1,x2,x5])(d1f)(x1,x2,[x3,x4,x5])=ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)θ(x4,x5)(ε(|f|+|x1|,|x2|+|x3|)θ(x2,x3)f(x1)ε(|x2|,|x3|)ε(|f|,|x1|+|x3|)θ(x1,x3)f(x2)+ε(|f|,|x1|+|x2|)D(x1,x2)f(x3)f([x1,x2,x3]))ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)θ(x3,x5)(ε(|f|+|x1|,|x2|+|x4|)θ(x2,x4)f(x1)ε(|x2|,|x4|)ε(|f|,|x1|+|x4|)θ(x1,x4)f(x2)+ε(|f|,|x1|+|x2|)D(x1,x2)f(x4)f([x1,x2,x4]))ε(|f|,|x1|+|x2|)D(x1,x2)(ε(|f|+|x3|,|x4|+|x5|)θ(x4,x5)f(x3)ε(|x4|,|x5|)ε(|f|,|x3|+|x5|)θ(x3,x5)f(x4)+ε(|f|,|x3|+|x4|)D(x3,x4)f(x5)f([x3,x4,x5]))+ε(|f|+|x1|+|x2|,|x3|+|x4|)D(x3,x4)(ε(|f|+|x1|,|x2|+|x5|)θ(x2,x5)f(x1)ε(|x2|,|x5|)ε(|f|,|x1|+|x5|)θ(x1,x5)f(x2)+ε(|f|,|x1|+|x2|)D(x1,x2)f(x5)f([x1,x2,x5]))+ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)(θ(x4,x5)f([x1,x2,x3])ε(|x4|,|x5|)ε(|f|,|x1|+|x2|+|x3|+|x5|)θ([x1,x2,x3],x5)f(x4)+ε(|f|,|x1|+|x2|+|x3|+|x4|)D([x1,x2,x3],x4)f(x5)f([[x1,x2,x3],x4,x5]))+ε(|x3|,|x1|+|x2|)ε(|f|+|x3|,|x1|+|x2|+|x4|+|x5|)(θ([x1,x2,x4],x5)f(x3)ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(x4|,|x5|)θ(x3,x5)f([x1,x2,x4])+ε(|x3|,|x1|+|x2|)ε(|f|,|x1|+|x2|+|x3|+|x4|)D(x3,[x1,x2,x4])f(x5)ε(|x3|,|x1|+|x2|)f([x3,[x1,x2,x4],x5]))+ε(|x1|+|x2|,|x3|+|x4|)(ε(|f|+|x3|,|x1|+|x2|+|x4|+|x5|)θ(x4,[x1,x2,x5])f(x3)ε(|x4|,|x1|+|x2|+|x5|)ε(|f|,|x1|+|x2|+|x3|+|x5|)θ(x3,[x1,x2,x5])f(x4)+ε(|f|,|x3|+|x4|)D(x3,x4)f([x1,x2,x5])f([x3,x4,[x1,x2,x5]]))(ε(|f|+|x1|,|x2|+|x3|+|x4|+|x5|)θ(x2,[x3,x4,x5])f(x1)ε(|f|,|x1|+|x3|+|x4|+|x5|)ε(|x2|,|x3|+|x4|+|x5|)θ(x1,[x3,x4,x5])f(x2)+ε(|f|,|x1|+|x2|)D(x1,x2)f([x3,x4,x5])f([x1,x2,[x3,x4,x5]]))=f([[x1,x2,x3],x4,x5])ε(|x3|,|x1|+|x2|)f([x3,[x1,x2,x4],x5])ε(|x1|+|x2|,|x3|+|x4|)f([x3,x4,[x1,x2,x5]])+f([x1,x2,[x3,x4,x5]])+ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)ε(|f|+|x1|,|x2|+|x3|)θ(x4,x5)θ(x2,x3)f(x1)ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)ε(|f|+|x1|,|x2|+|x4|)θ(x3,x5)θ(x2,x4)f(x1)+ε(|f|+|x1|+|x2|,|x3|+|x4|)ε(|f|+|x1|,|x2|+|x5|)D(x3,x4)θ(x2,x5)f(x1)ε(|f|+|x1|,|x2|+|x3|+|x4|+|x5|)θ(x2,[x3,x4,x5])f(x1)ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)ε(|x2|,|x3|)ε(|f|,|x1|+|x3|)θ(x4,x5)θ(x1,x3)f(x2)+ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x2|+|x5|)ε(|f|,|x1|+|x4|)θ(x3,x5)θ(x1,x4)f(x2)ε(|f|+|x1|+|x2|,|x3|+|x4|)ε(|x2|,|x5|)ε(|f|,|x1|+|x5|)D(x3,x4)θ(x1,x5)f(x2)+ε(|f|,|x1|+|x3|+|x4|+|x5|)ε(|x2|,|x3|+|x4|+|x5|)θ(x1,[x3,x4,x5])f(x2)+ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)ε(|f|,|x1|+|x2|)θ(x4,x5)D(x1,x2)f(x3)ε(|f|,|x1|+|x2|)ε(|f|+|x3|,|x4|+|x5|)D(x1,x2)θ(x4,x5)f(x3)+ε(|x3|,|x1|+|x2|)ε(|f|+|x3|,|x1|+|x2|+|x4|+|x5|)θ([x1,x2,x4],x5)f(x3)+ε(|x1|+|x2|,|x3|+|x4|)ε(|f|+|x3|,|x1|+|x2|+|x4|+|x5|)θ(x4,[x1,x2,x5])f(x3)ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)ε(|f|,|x1|+|x2|)θ(x3,x5)D(x1,x2)f(x4)+ε(|f|,|x1|+|x2|)ε(|x4|,|x5|)ε(|f|,|x3|+|x5|)D(x1,x2)θ(x3,x5)f(x4)ε(|x4|,|x5|)ε(|f|,|x1|+|x2|+|x3|+|x5|)θ([x1,x2,x3],x5)f(x4)ε(|x1|+|x2|,|x3|+|x4|)ε(|x4|,|x1|+|x2|+|x5|)ε(|f|,|x1|+|x2|+|x3|+|x5|)θ(x3,[x1,x2,x5])f(x4)ε(|f|,|x1|+|x2|+|x3|+|x4|)D(x1,x2)D(x3,x4)f(x5)+ε(|f|+|x1|+|x2|,|x3|+|x4|)ε(|f|,|x1|+|x2|)D(x3,x4)D(x1,x2)f(x5)+ε(|f|,|x1|+|x2|+|x3|+|x4|)D([x1,x2,x3],x4)f(x5)+ε(|x3|,|x1|+|x2|)ε(|f|,|x1|+|x2|+|x3|+|x4|)D(x3,[x1,x2,x4])f(x5)ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)θ(x4,x5)f([x1,x2,x3])+ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)θ(x3,x5)f([x1,x2,x4])+ε(|f|,|x1|+|x2|)D(x1,x2)f([x3,x4,x5])ε(|f|,|x3|+|x4|)ε(|x1|+|x2|,|x3|+|x4|)D(x3,x4)f([x1,x2,x5])+ε(|f|+|x1|+|x2|+|x3|,|x4|+|x5|)θ(x4,x5)f([x1,x2,x3])ε(|f|+|x1|+|x2|,|x3|+|x5|)ε(|x4|,|x5|)θ(x3,x5)f([x1,x2,x4])+ε(|f|,|x3|+|x4|)ε(|x1|+|x2|,|x3|+|x4|)D(x3,x4)f([x1,x2,x5])ε(|f|,|x1|+|x2|)D(x1,x2)f([x3,x4,x5])=0.

    Therefore, the proof is complete.

    For n=1,2,3,4, the map fCnA(T,V) is called an n-cocycle if dnf=0. We denote by ZnA(T,V) the subspace spanned by n-cocycles and BnA(T,V)=dn2Cn2A(T,V).

    Since dn+2dn=0, BnA(T,V) is a subspace of ZnA(T,V). Hence we can define a cohomology space HnA(T,V) of (T,[,,]) as the factor space ZnA(T,V)/BnA(T,V).

    Let (T,[,,]) be a Lie color triple system and F[[t]] be the ring of formal power series over F. Assume that T[[t]] is the set of formal power series over T. We extend an F-trilinear map f:T×T×TT to be an F[[t]]-trilinear map f:T[[t]]×T[[t]]×T[[t]]T[[t]] by

    f(i0xiti,j0yjtj,k0zktk)=i,j,k0f(xi,yj,zk)ti+j+k.

    Definition 3.1. Let (T,[,,]) be a Lie color triple system over F. A 1-parameter formal deformation of (T,[,,]) is a formal power series mt:T[[t]]×T[[t]]×T[[t]]T[[t]] of the form

    mt(x,y,z)=i0mi(x,y,z)ti=m0(x,y,z)+m1(x,y,z)t+m2(x,y,z)t2+,

    where each mi is an F-trilinear map mi:T×T×TT (extended to be F[[t]]-trilinear) and m0(x,y,z)=[x,y,z], such that the following equations hold

    mt(x,y,z)=ε(|x|,|y|)mt(y,x,z), (3.1)
    ε(|x|,|z|)mt(x,y,z)+ε(|y|,|x|)mt(y,z,x)+ε(|z|,|y|)mt(z,x,y)=0, (3.2)
    mt(u,v,mt(x,y,z))=mt(mt(u,v,x),y,z)+ε(|x|,|u|+|v|)mt(x,mt(u,v,y),z)+ε(|u|+|v|,|x|+|y|)mt(x,y,mt(u,v,z)). (3.3)

    Conditions (3.1)-(3.3) are called the deformation equations of a Lie color triple system.

    Note that T[[t]] is a module over F[[t]] and mt defines the trilinear on T[[t]] such that Tt=(T[[t]],mt) is a Lie color triple system. Now we discuss the deformation equations (3.1)-(3.3).

    Conditions (3.1)-(3.2) are equivalent to the following equations

    mi(x,y,z)=ε(|x|,|y|)mi(y,x,z), (3.4)
    ε(|x|,|z|)mi(x,y,z)+ε(|y|,|x|)mi(y,z,x)+ε(|z|,|y|)mi(z,x,y)=0, (3.5)

    respectively, for i=0,1,2,. The condition (3.3) can be showed as

    i,j0mi(u,v,mj(x,y,z))=i,j0mi(mj(u,v,x),y,z)+i,j0ε(|x|,|u|+|v|)mi(x,mj(u,v,y),z)+i,j0ε(|u|+|v|,|x|+|y|)mi(x,y,mj(u,v,z)).

    Then

    i+j=n(mi(mj(u,v,x),y,z)+ε(|x|,|u|+|v|)mi(x,mj(u,v,y),z)+ε(|u|+|v|,|x|+|y|)mi(x,y,mj(u,v,z))mi(u,v,mj(x,y,z)))=0,n=0,1,2.

    Using two F-trilinear maps f,g:T×T×TT (extended to be F[[t]]-trilinear), we assume a map fg:T[[t]]×T[[t]]×T[[t]]×T[[t]]×T[[t]]T[[t]] by

    fg(u,v,x,y,z)=f(g(u,v,x),y,z)+ε(|x|,|u|+|v|)f(x,g(u,v,y),z)+ε(|u|+|v|,|x|+|y|)f(x,y,g(u,v,z))f(u,v,g(x,y,z)).

    Then the deformation equation (3.3) can be given as

    i+j=nmimj=0.

    For n=1, m0m1+m1m0=0.

    For n2, (m0mn+mnαm0)=m1mn1+m2mn2++mn1αm1.

    Section 2 gets that T is the adjoint (T,[,,])-module by setting θ(x,y)(z)=ε(|z|,|x|+|y|)[z,x,y]. In this case, by (3.4)-(3.5), we have miC3(T,T), and mimjC5(T,T). In general, if f,gC3(T,T), then fgC5(T,T). Noticing that the definition of coboundary operator dn, we obtain d3mn=m0mn+mnαm0, for n=0,1,2. Hence the deformation equation (3.3) can be rewritten as

    d3m1=0,d3mn=m1mn1+m2mn2++mn1m1.

    Then m1 is a 3-cocycle and called the infinitesimal of mt.

    Definition 3.2. Let (T,[,,]) be a Lie color triple system. Assume that mt(x,y,z)=i0mi(x,y,z)ti and mt(x,y,z)=i0mi(x,y,z)ti are two 1-parameter formal deformations of (T,[,,]). They are called equivalent, denoted by mtmt, if there is a formal isomorphism of F[[t]]-modules

    ϕt(x)=i0ϕi(x)ti:(T[[t]],mt)(T[[t]],mt),

    where each ϕi:TT is an F-linear map (extended to be F[[t]]-linear) and ϕ0=idT, satisfying

    ϕtmt(x,y,z)=mt(ϕt(x),ϕt(y),ϕt(z)).

    When m1=m2==0, mt=m0 is said to be the null deformation. A 1-parameter formal deformation mt is called trivial if mtm0. A Lie color triple system (T,[,,]) is called analytically rigid, if every 1-parameter formal deformation mt is trivial.

    Theorem 3.3. Let mt(x,y,z)=i0mi(x,y,z)ti and mt(x,y,z)=i0mi(x,y,z)ti be equivalent 1-parameter formal deformations of (T,[,,]). Then m1 and m1 belong to the same cohomology class in H3(T,T).

    Proof. Assume that ϕt(x)=i0ϕi(x)ti is the formal F[[t]]-module isomorphism and

    i0ϕi(j0mj(x,y,z)tj)ti=i0mi(k0ϕk(x)tk,l0ϕl(y)tl,m0ϕm(z)tm)ti.

    We get that

    i+j=nϕi(mj(x,y,z))ti+j=i+k+l+m=nmi(ϕk(x),ϕl(y),ϕm(z))ti+k+l+m.

    In particular,

    i+j=1ϕi(mj(x,y,z))=i+k+l+m=1mi(ϕk(x),ϕl(y),ϕm(z)),

    that is,

    m1(x,y,z)+ϕ1([x,y,z])=[ϕ1(x),y,z]+[x,ϕ1(y),z]+[x,y,ϕ1(z)]+m1(x,y,z)=ε(|x|,|y|+|z|)θ(y,z)ϕ1(x)ε(|y|,|z|)θ(x,z)ϕ1(y)+D(x,y)ϕ1(z)+m1(x,y,z).

    Thus m1m1=d1ϕ1B3(T,T).

    Theorem 3.4. Let (T,[,,]) be a Lie color triple system such that H3(T,T)=0. Thus (T,[,,]) is analytically rigid.

    Proof. Let mt be a 1-parameter formal deformation of (T,[,,]). Assume that mt=m0+inmiti. Then

    d3mn=m1mn1+m2mn2++mn1m1=0,

    that is, mnZ3(T,T)=B3(T,T). We obtain that there exists fnC1(T,T) such that mn=d1fn.

    Let ϕt be even, and ϕt=idTfntn:(T[[t]],mt)(T[[t]],mt). Note that

    ϕti0fintin=i0fintinϕt=idT[[t]].

    Thus ϕt is a linear isomorphism.

    Now we consider mt(x,y,z)=ϕ1tmt(ϕt(x),ϕt(y),ϕt(z)). It is easy to give that mt is a 1-parameter formal deformation of (T,[,,]). In fact,

    mt(x,y,z)=ϕ1tmt(ϕt(x),ϕt(y),ϕt(z))=ε(|x|,|y|)ϕ1tmt(ϕt(y),ϕt(x),ϕt(z))=ε(|x|,|y|)mt(y,x,z).
    ε(|x|,|z|)mt(x,y,z)+ε(|y|,|x|)mt(y,z,x)+ε(|z|,|y|)mt(z,x,y)=ε(|x|,|z|)ϕ1tmt(ϕt(x),ϕt(y),ϕt(z))+ε(|y|,|x|)ϕ1tmt(ϕt(y),ϕt(z),ϕt(x))+ε(|z|,|y|)ϕ1tmt(ϕt(z),ϕt(x),ϕt(y))=ϕ1t(ε(|x|,|z|)mt(ϕt(x),ϕt(y),ϕt(z))+ε(|y|,|x|)mt(ϕt(y),ϕt(z),ϕt(x))+ε(|z|,|y|)mt(ϕt(z),ϕt(x),ϕt(y)))=0.
    mt(u,v,mt(x,y,z))=mt(u,v,ϕ1tmt(ϕt(x),ϕt(y),ϕt(z)))=ϕ1tmt(ϕt(u),ϕt(v),mt(ϕt(x),ϕt(y),ϕt(z))).
    mt(mt(u,v,x),y,z)=mt(ϕ1tmt(ϕt(u),ϕt(v),ϕt(x)),y,z)=ϕ1tmt(mt(ϕt(u),ϕt(v),ϕt(x)),ϕt(y),ϕt(z)).
    ε(|x|,|u|+|v|)mt(x,mt(u,v,y),z)=ε(|x|,|u|+|v|)mt(x,ϕ1tmt(ϕt(u),ϕt(v),ϕt(y)),z)=ε(|x|,|u|+|v|)ϕ1tmt(ϕt(x),mt(ϕt(u),ϕt(v),ϕt(y)),ϕt(z)).
    ε(|u|+|v|,|x|+|y|)mt(x,y,mt(u,v,z))=ε(|u|+|v|,|x|+|y|)mt(x,y,ϕ1tmt(ϕt(u),ϕt(v),ϕt(z)))=ε(|u|+|v|,|x|+|y|)ϕ1tmt(ϕt(x),ϕt(y),mt(ϕt(u),ϕt(v),ϕt(z))).

    The computations above show that equations (3.1)-(3.3) hold. Using the definition 7, we get mtmt. Assume that mt=i0miti. Thus

    (idTfntn)(i0mi(x,y,z)ti)=(m0+inmiti)(xfn(x)tn,yfn(y)tn,zfn(z)tn),

    i.e.,

    i0mi(x,y,z)tii0fnmi(x,y,z)ti+n=[x,y,z]([fn(x),y,z]+[x,fn(y),z]+[x,y,fn(z)])tn+([fn(x),fn(y),z]+[x,fn(y),fn(z)]+[fn(x),y,fn(z)])t2n[fn(x),fn(y),fn(z)]t3n+inmi(x,y,z)tiin(mi(fn(x),y,z)+mi(x,fn(y),z)+mi(x,y,fn(z)))ti+n+in(mi(fn(x),fn(y),z)+mi(x,fn(y),fn(z))+mi(fn(x),y,fn(z)))ti+2ninmi(fn(x),fn(y),fn(z))ti+3n.

    Then we get m1==mn1=0 and

    mn(x,y,z)fn([x,y,z])=([fn(x),y,z]+[x,fn(y),z]+[x,y,fn(z)])+mn(x,y,z)=ε(|x|,|y|+|z|)θ(y,z)fn(x)+ε(|y|,|z|)θ(x,z)fn(y)D(x,y)fn(z)+mn(x,y,z)

    Hence mn=mnd1fn=0 and mt=m0+in+1miti. Using induction, this procedure ends with mtm0, that is, (T,[,,]) is analytically rigid.

    In this section, we show that associated to any abelian extension, there is a representation and a 3-cocycle.

    An ideal of a Lie color triple system T is a subspace I such that [I,T,T]I. An ideal I of a Lie color triple system is called an abelian ideal if moreover [T,I,I]=0. Notice that [T,I,I]=0 implies that [I,T,I]=0 and [I,I,T]=0.

    Definition 4.1. Let (T,[,,]T), (V,[,,]V), and (ˆT,[,,]ˆT) be Lie color triple systems and i:VˆT, p:ˆTT be homomorphisms. The following sequence of Lie color triple systems is a short exact sequence if Im(i)=Ker(p), Ker(i)=0 and Im(p)=T,

    0ViˆTpT0. (4.1)

    In this case, we show ˆT an extension of T by V, and denote it by EˆT. It is called an abelian extension if V is an abelian ideal of ˆT, i.e., [u,v,]ˆT=[u,,v]ˆT=[,u,v]ˆT=0, for all u,vV.

    A section σ:TˆT of p:ˆTT consists of the linear map σ:TˆT such that pσ=idT.

    Definition 4.2. Two extensions of Lie color triple systems EˆT:0ViˆTpT0 and E˜T:0Vj˜TqT0 are equivalent. If there exists a Lie color triple system homomorphism F:ˆT˜T such that the following diagram commutes

    Let ˆT be an abelian extension of T by V, and a linear mapping σ:TˆT be a section. Define maps TTEnd(V) by

    D(x1,x2)(u)=[σ(x1),σ(x2),u]ˆT, (4.2)
    θ(x1,x2)(u)=[u,σ(x1),σ(x2)]ˆT (4.3)

    Clearly, the following fact holds, i.e.,

    D(x1,x2)(u)=θ(x2,x1)(u)θ(x1,x2)(u),

    for all (x1,x2)TT,uV.

    Theorem 4.3. Using the above notations, (V,θ) is a representation of Tand does not depend on the choice of the section σ. Moreover, equivalent abelian extensions give the same representation.

    Proof. First, if we choose another section σ:TˆT, then

    p(σ(xi)σ(xi))=xixi=0σ(xi)σ(xi)Vσ(xi)=σ(xi)+ui,

    for some uiV.

    Note that [u,v,]ˆT=0=[u,,v]ˆT for all u,vV, this yields that

    [v,σ(x1),σ(x2)]ˆT=[v,σ(x1),σ(x2)]ˆT.

    This shows that θ is independent on the choice of σ.

    Second, we get that (V,θ) is a representation of T.

    By the equality

    [u,σ(x1),[σ(y1),σ(y2),σ(y3)]ˆT]ˆT=[[u,σ(x1),σ(y1)]ˆT,σ(y2),σ(y3)]ˆT+ε(|y1|,|u|+|x1|)[σ(y1),[u,σ(x1),σ(y2)]ˆT,σ(y3)]ˆT+ε(|u|+|x1|,|y1|+|y2|)[σ(y1),σ(y2),[u,σ(x1),σ(y3)]ˆT]ˆT,

    it follows that

    ε(|x1|+|y1|,|y2|+|y3|)θ(y2,y3)θ(x1,y1)(u)ε(|x1|,|y1|)ε(|y3|,|y2|+|x1|)θ(y1,y3)θ(x1,y2)(u)θ(x1,[y1,y2,y3])(u)+ε(|x1|,|y1|+|y2|)D(y1,y2)θ(x1,y3)(u)=0.

    Thus, we obtain (2.5) holds.

    Similarly, by the equality

    [σ(x1),σ(x2),[u,σ(y1),σ(y2)]ˆT]ˆT=[[σ(x1),σ(x2),u]ˆT,σ(y1),σ(y2)]ˆT+ε(|u|,|x1|+|x2|)[u,[σ(x1),σ(x2),σ(y1)]ˆT,σ(y2)]ˆT+ε(|x1|+|x2|,|u|+|y1|)[u,σ(y1),[σ(x1),σ(x2),σ(y2)]ˆT]ˆT,

    we have

    ε(|x1|+|x2|,|y1|+|y2|)θ(y1,y2)D(x1,x2)(u)D(x1,x2)θ(y1,y2)(u)+θ([x1,x2,y1],y2)(u)+ε(|y1|,|x1|+|x2|)θ(y1,[x1,x2,y2])(u)=0,

    by the equality

    [σ(x1),σ(x2),[σ(y1),σ(y2),u]ˆT]ˆT=[[σ(x1),σ(x2),σ(y1)]ˆT,σ(y2),u]ˆT+ε(|y1|,|x1|+|x2|)[σ(y1),[σ(x1),σ(x2),σ(y2)]ˆT,u]ˆT+ε(|x1|+|x2|,|y1|+|y2|)[σ(y1),σ(y2),[σ(x1),σ(x2),u]ˆT]ˆT,

    we get

    ε(|x1|+|x2|,|y1|+|y2|)D(y1,y2)D(x1,x2)(u)D(x1,x2)D(y1,y2)(u)+D([x1,x2,y1],y2)(u)+ε(|y1|,|x1|+|x2|)D(y1,[x1,x2,y2])(u)=0.

    Thus, we know that (2.6) and (2.7) hold. Therefore, it is proved that (V,θ) is a representation of T.

    Third, we will show equivalent abelian extensions give the same θ.

    Assume that EˆT and E˜T are equivalent abelian extensions, and F:ˆT˜T is the Lie color triple system homomorphism satisfying Fi=j, qF=p. Choosing linear sections σ and σ of p and q, we have qFσ(xi)=pσ(xi)=xi=qσ(xi), then Fσ(xi)σ(xi)Ker(q)V. Moreover,

    [u,σ(x1),σ(x2)]ˆT=[u,Fσ(x1),Fσ(x2)]ˆT=[u,σ(x1),σ(x2)]ˆT.

    The proof is complete.

    Let σ:TˆT be a section of the abelian extension. Assume the following map:

    ω(x1,x2,x3)=[σ(x1),σ(x2),σ(x3)]ˆTσ([x1,x2,x3]T), (4.4)

    for all x1,x2,x3T.

    Theorem 4.4. Let 0VˆTT0 be an abelian extension of T by V. Then ω defined by (4.4) is a 3-cocycle of T with coefficients in V, where the representation θ is given by (4.3).

    Proof. By the equality

    [σ(x1),σ(x2),[σ(y1),σ(y2),σ(y3)]ˆT]ˆT=[[σ(x1),σ(x2),σ(y1)]ˆT,σ(y2),σ(y3)]ˆT+ε(|y1|,|x1|+|x2|)[σ(y1),[σ(x1),σ(x2),σ(y2)]ˆT,σ(y3)]ˆT+ε(|x1|+|x2|,|y1|+|y2|)[σ(y1),σ(y2),[σ(x1),σ(x2),σ(y3)]ˆT]ˆT.

    The left hand side shows that

    [σ(x1),σ(x2),[σ(y1),σ(y2),σ(y3)]ˆT]ˆT=[σ(x1),σ(x2),ω(y1,y2,y3)+σ([y1,y2,y3]T)]ˆT=D(x1,x2)ω(y1,y2,y3)+[σ(x1),σ(x2),σ([y1,y2,y3]T)]ˆT=D(x1,x2)ω(y1,y2,y3)+ω(x1,x2,[y1,y2,y3]T)+σ([x1,x2,[y1,y2,y3]T]T).

    Similarly, the right side is equal to

    [[σ(x1),σ(x2),σ(y1)]ˆT,σ(y2),σ(y3)]ˆT+ε(|y1|,|x1|+|x2|)[σ(y1),[σ(x1),σ(x2),σ(y2)]ˆT,σ(y3)]ˆT+ε(|x1|+|x2|,|y1|+|y2|)[σ(y1),σ(y2),[σ(x1),σ(x2),σ(y3)]ˆT]ˆT=[ω(x1,x2,y1)+σ([x1,x2,y1]T),σ(y2),σ(y3)]ˆT+ε(|y1|,|x1|+|x2|)[σ(y1),ω(x1,x2,y2)+σ([x1,x2,y2]T),σ(y3)]ˆT+ε(|x1|+|x2|,|y1|+|y2|)[σ(y1),σ(y2),ω(x1,x2,y3)+σ([x1,x2,y3]T)]ˆT=[ω(x1,x2,y1),σ(y2),σ(y3)]ˆT+[σ([x1,x2,y1]T),σ(y2),σ(y3)]ˆT+ε(|y1|,|x1|+|x2|)[σ(y1),ω(x1,x2,y2),σ(y3)]ˆT+ε(|y1|,|x1|+|x2|)[σ(y1),σ([x1,x2,y2]T),σ(y3)]ˆT+ε(|x1|+|x2|,|y1|+|y2|)[σ(y1),σ(y2),ω(x1,x2,y3)]ˆT+ε(|x1|+|x2|,|y1|+|y2|)[σ(y1),σ(y2),σ([x1,x2,y3]T)]ˆT=ε(|x1|+|x2|+|y1|,|y2|+|y3|)θ(y2,y3)ω(x1,x2,y1)+σ([[x1,x2,y1]T,y2,y3]T)+ω([[x1,x2,y1]T,y2,y3]T)ε(|y1|,|x1|+|x2|)ε(|y3|,|x1|+|x2|+|y2|)θ(y1,y3)ω(x1,x2,y2)+ε(|y1|,|x1|+|x2|)ω(y1,[x1,x2,y2]T,y3)+ε(|y1|,|x1|+|x2|)σ([y1,[x1,x2,y2]T,y3]T)+ε(|x1|+|x2|,|y1|+|y2|)D(y1,y2)ω(x1,x2,y3)+ε(|x1|+|x2|,|y1|+|y2|)ω(y1,y2,[x1,x2,y3]T)+ε(|x1|+|x2|,|y1|+|y2|)σ([y1,y2,[x1,x2,y3]T]T).

    Thus, it follows that

    ω([x1,x2,y1]T,y2,y3)+ε(|y1|,|x1|+|x2|)ω(y1,[x1,x2,y2]T,y3)+ε(|x1|+|x2|,|y1|+|y2|)ω(y1,y2,[x1,x2,y3]T)+ε(|x1|+|x2|+|y1|,|y2|+|y3|)θ(y2,y3)ω(x1,x2,y1)ε(|x1|+|x2|,|y1|+|y3|)ε(y2,y3)θ(y1,y3)ω(x1,x2,y2)+ε(|x1|+|x2|,|y1|+|y2|)D(y1,y2)ω(x1,x2,y3)ω(x1,x2,[y1,y2,y3]T)D(x1,x2)ω(y1,y2,y3)=0.

    Therefore, ω is a 3-cocycle.

    Supported by NNSF of China (No.11801211), Science Foundation of Heilongjiang Province(No.QC2016008), the Fundamental Research Funds in Heilongjiang Provincial Universities (No.145109128).

    The authors declare there is no conflicts of interest.



    [1] W. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72 (1952), 217–242. https://doi.org/10.1090/S0002-9947-1952-0045702-9 doi: 10.1090/S0002-9947-1952-0045702-9
    [2] K. Yamaguti, On the cohomology space of Lie triple system, Kumamoto J. Sci. Ser. A, 5 (1960), 44–52.
    [3] F. Kubo, Y. Taniguchi, A controlling cohomology of the deformation theory of Lie triple systems, J. Algebra, 278 (2004), 242–250. https://doi.org/10.1016/j.jalgebra.2004.01.005 doi: 10.1016/j.jalgebra.2004.01.005
    [4] L. Ma, L. Chen, On δ-Jordan Lie triple systems, Linear Multilinear Algebra, 65 (2017), 731–751. https://doi.org/10.1080/03081087.2016.1202184 doi: 10.1080/03081087.2016.1202184
    [5] T. Zhang, Notes on cohomologies of Lie triple systems, J. Lie Theory, 24 (2014), 909–929.
    [6] S. Okubo, Parastatistics as Lie supertriple systems, J. Math. Phys., 35 (1994), 2785–2803. https://doi.org/10.1063/1.530486 doi: 10.1063/1.530486
    [7] S. Okubo, N. Kamiya, Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra, 198 (1997), 388–411. https://doi.org/10.1006/jabr.1997.7144 doi: 10.1006/jabr.1997.7144
    [8] N. Kamiya, S. Okubo, A construction of simple Jordan superalgebra of F type from a Jordan-Lie triple system, Ann. Mat. Pura. Appl., 181 (2002), 339–348. https://doi.org/10.1007/s102310100045 doi: 10.1007/s102310100045
    [9] S. Okubo, N. Kamiya, Quasi-classical Lie superalgebras and Lie supertriple systems, Comm. Algebra, 30 (2002), 3825–3850. https://doi.org/10.1081/AGB-120005822 doi: 10.1081/AGB-120005822
    [10] Y. Cao, J. Zhang, Y. Cui, On split Lie color triple systems, Open Math., 17 (2019), 267–281. https://doi.org/10.1515/math-2019-0023 doi: 10.1515/math-2019-0023
    [11] F. Ammar, S. Mabrouk, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836.
    [12] L. Chen, Y. Yi, M. Chen, Y. Tang, Cohomology and 1-parameter formal deformations of Hom-δ-Lie triple systems, Adv. Appl. Clifford Algebras, 29 (2019), 1–14. https://doi.org/10.1007/s00006-019-0982-z doi: 10.1007/s00006-019-0982-z
    [13] Y. Ma, L. Chen, J. Lin, Central extensions and deformations of Hom-Lie triple systems, Comm. Algebra, 46 (2018), 1212–1230. https://doi.org/10.1080/00927872.2017.1339063 doi: 10.1080/00927872.2017.1339063
    [14] L. Ma, L. Chen, J. Zhao, δ-Hom-Jordan Lie superalgebras, Comm. Algebra, 46 (2018), 1668–1697. https://doi.org/10.1080/00927872.2017.1354008 doi: 10.1080/00927872.2017.1354008
    [15] J. Feldvoss, Representations of Lie color algebras, Adv. Math., 157 (2001), 95–137. https://doi.org/10.1006/aima.2000.1942 doi: 10.1006/aima.2000.1942
  • This article has been cited by:

    1. Qiang Li, Lili Ma, Nijenhuis Operators and Abelian Extensions of Hom-δ-Jordan Lie Supertriple Systems, 2023, 11, 2227-7390, 871, 10.3390/math11040871
    2. Qiang Li, Lili Ma, 1-parameter formal deformations, Nijenhuis operators and abelian extensions of δ-Lie color triple systems, 2023, 328, 01668641, 108458, 10.1016/j.topol.2023.108458
    3. Lili Ma, Qiang Li, Cohomology and its applications on multiplicative Hom-$ \delta $-Jordan Lie color triple systems, 2024, 9, 2473-6988, 25936, 10.3934/math.20241267
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1801) PDF downloads(84) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog