The purpose of this paper is to discuss Lie color triple systems. The cohomology theory of Lie color triple systems is established, then 1-parameter formal deformations and abelian extensions of Lie color triple systems are studied using cohomology.
Citation: Qiang Li, Lili Ma. 1-parameter formal deformations and abelian extensions of Lie color triple systems[J]. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129
The purpose of this paper is to discuss Lie color triple systems. The cohomology theory of Lie color triple systems is established, then 1-parameter formal deformations and abelian extensions of Lie color triple systems are studied using cohomology.
[1] | W. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72 (1952), 217–242. https://doi.org/10.1090/S0002-9947-1952-0045702-9 doi: 10.1090/S0002-9947-1952-0045702-9 |
[2] | K. Yamaguti, On the cohomology space of Lie triple system, Kumamoto J. Sci. Ser. A, 5 (1960), 44–52. |
[3] | F. Kubo, Y. Taniguchi, A controlling cohomology of the deformation theory of Lie triple systems, J. Algebra, 278 (2004), 242–250. https://doi.org/10.1016/j.jalgebra.2004.01.005 doi: 10.1016/j.jalgebra.2004.01.005 |
[4] | L. Ma, L. Chen, On $\delta$-Jordan Lie triple systems, Linear Multilinear Algebra, 65 (2017), 731–751. https://doi.org/10.1080/03081087.2016.1202184 doi: 10.1080/03081087.2016.1202184 |
[5] | T. Zhang, Notes on cohomologies of Lie triple systems, J. Lie Theory, 24 (2014), 909–929. |
[6] | S. Okubo, Parastatistics as Lie supertriple systems, J. Math. Phys., 35 (1994), 2785–2803. https://doi.org/10.1063/1.530486 doi: 10.1063/1.530486 |
[7] | S. Okubo, N. Kamiya, Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra, 198 (1997), 388–411. https://doi.org/10.1006/jabr.1997.7144 doi: 10.1006/jabr.1997.7144 |
[8] | N. Kamiya, S. Okubo, A construction of simple Jordan superalgebra of $F$ type from a Jordan-Lie triple system, Ann. Mat. Pura. Appl., 181 (2002), 339–348. https://doi.org/10.1007/s102310100045 doi: 10.1007/s102310100045 |
[9] | S. Okubo, N. Kamiya, Quasi-classical Lie superalgebras and Lie supertriple systems, Comm. Algebra, 30 (2002), 3825–3850. https://doi.org/10.1081/AGB-120005822 doi: 10.1081/AGB-120005822 |
[10] | Y. Cao, J. Zhang, Y. Cui, On split Lie color triple systems, Open Math., 17 (2019), 267–281. https://doi.org/10.1515/math-2019-0023 doi: 10.1515/math-2019-0023 |
[11] | F. Ammar, S. Mabrouk, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836. |
[12] | L. Chen, Y. Yi, M. Chen, Y. Tang, Cohomology and 1-parameter formal deformations of Hom-$\delta$-Lie triple systems, Adv. Appl. Clifford Algebras, 29 (2019), 1–14. https://doi.org/10.1007/s00006-019-0982-z doi: 10.1007/s00006-019-0982-z |
[13] | Y. Ma, L. Chen, J. Lin, Central extensions and deformations of Hom-Lie triple systems, Comm. Algebra, 46 (2018), 1212–1230. https://doi.org/10.1080/00927872.2017.1339063 doi: 10.1080/00927872.2017.1339063 |
[14] | L. Ma, L. Chen, J. Zhao, $\delta$-Hom-Jordan Lie superalgebras, Comm. Algebra, 46 (2018), 1668–1697. https://doi.org/10.1080/00927872.2017.1354008 doi: 10.1080/00927872.2017.1354008 |
[15] | J. Feldvoss, Representations of Lie color algebras, Adv. Math., 157 (2001), 95–137. https://doi.org/10.1006/aima.2000.1942 doi: 10.1006/aima.2000.1942 |