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Abstract: Extriangulated categories were introduced by Nakaoka and Palu as a simultaneous gener-
alization of exact categories and triangulated categories. In this paper, we first introduce the concept
of left Frobenius pairs on an extriangulated category C, and then establish a bijective correspondence
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1. Introduction

The notion of extriangulated categories, whose extriangulated structures are given by E-triangles
with some axioms, was introduced by Nakaoka and Palu in [1] as a simultaneous generalization of
exact categories and triangulated categories. They gave a bijective correspondence between Hovey
twin cotorsion pairs and admissible model structures which unified the work of Hovey, Gillespie and
Yang (see [2–4]). Exact categories and triangulated categories are extriangulated categories, while
there exist some other examples of extriangulated categories which are neither exact nor triangulated,
see [1, 5, 6].

Motivated by the ideas of projective covers and injective envelopes, Auslander and Buchweitz an-
alyzed the framework in which the theory of maximal Cohen-Macaulay approximation can be devel-
oped. They systematically established their theory in abelian categories, which is known as Auslander-
Buchweitz approximation theory. Up to now, Auslander-Buchweitz approximation theory has many
important applications, see for example [7–10]. In particular, Becerril and coauthers [7] have re-
visited Auslander-Buchweitz approximation theory. From the notions of relative generators and co-
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generators in approximation theory, they introduced the concept of left Frobenius pairs in an abelian
category, established a bijective correspondence between left Frobenius pairs and relative cotorsion
pairs, and showed how to construct an exact model structure from a strong left Frobenius pair, as a
result of Hovey-Gillespie correspondence applied to two complete cotorsion pairs on an exact category
(see [2, 3]).

The aim of this paper is to introduce the concept of left Frobenius pairs in an extriangulated category
and give a method to construct more admissible model structures from strong left Frobenius pairs. For
this purpose, we need to establish a bijective correspondence between left Frobenius pairs and cotorsion
pairs in an extriangulated category under certain conditions.

The paper is organized as follows. In Section 2, we recall the definition of an extriangulated category
and outline some basic properties that will be used later. In Section 3, we first introduce the concept
of left Frobenius pairs (see Definition 3.4), and then study relative resolution dimension and thick
subcategories with respect to a given left Frobenius pair. As a result, we give a bijective correspondence
between left Frobenius pairs and cotorsion pairs in an extriangulated category under certain conditions
(see Theorem 3.12). In Section 4, we give a method to construct the admissible model structure from a
strong left Frobenius pair under certain conditions (see Theorem 4.4), which generalizes a main result
of Hu et al. in [5]. This is based on the bijective correspondence established in Section 3.

2. Preliminaries

Throughout this paper, C denotes an additive category. By the term “subcategory” we always mean
a full additive subcategory of an additive category closed under isomorphisms and direct summands.
We denote by CpA, Bq the set of morphisms from A to B in C.

Let X and Y be two subcategories of C, a morphism f : X Ñ C in C is said to be an X-precover
of C if X P X and CpX1, f q : CpX1, Xq Ñ CpX1,Cq is surjective for all X1 P X. If any C P Y admits
an X-precover, then X is called a precovering class in Y. By dualizing the definitions above, we get
notions of an X-preenvelope of C and a preenveloping class in Y. For more details, we refer to [23].

Let us briefly recall some definitions and basic properties of extriangulated categories from [1]. We
omit some details here, but the reader can find them in [1].

Assume that E : Cop�CÑ Ab is an additive bifunctor, where C is an additive category and Ab is the
category of abelian groups. For any objects A,C P C, an element δ P EpC, Aq is called an E-extension.

Let s be a correspondence which associates an equivalence class spδq � rA x // B
y // Cs to any

E-extension δ P EpC, Aq. This s is called a realization of E, if it makes the diagram in [1, Definition
2.9] commutative. A triplet pC,E, sq is called an extriangulated category if it satisfies the following
conditions.

1. E : Cop � CÑ Ab is an additive bifunctor.

2. s is an additive realization of E.

3. E and s satisfy certain axioms in [1, Definition 2.12].

In particular, we recall the following axioms which will be used later:
(ET4) Let δ P EpD, Aq and δ1 P EpF, Bq be E-extensions realized by

A
f // B

f 1 // D and B
g // C

g1 // F
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respectively. Then there exists an object E P C, a commutative diagram

A
f // B

f 1 //

g
��

D

d
��

A h // C h1 //

g1
��

E
e
��

F F

in C, and an E-extension δ
2

P EpE, Aq realized by A h // C h1 // E, which satisfy the following
compatibilities.

(i) D d // E e // F realizes EpF, f 1qpδ1q,

(ii) Epd, Aqpδ
2

q � δ,

(iii) EpE, f qpδ
2

q � Epe, Bqpδ1q.

(ET4)op Dual of (ET4).

Remark 2.1. Note that both exact categories and triangulated categories are extriangulated cate-
gories psee [1, Example 2.13]q and extension closed subcategories of extriangulated categories are
again extriangulated psee [1, Remark 2.18]q. Moreover, there exist extriangulated categories which
are neither exact categories nor triangulated categories psee [1, Proposition 3.30], [6, Example 4.14]
and [5, Remark 3.3]q.

Lemma 2.2. [1, Corollary 3.12] Let pC,E, sq be an extriangulated category and

A x // B
y // C δ //

an E-triangle. Then we have the following long exact sequences:

CpC,�q
Cpy,�q // CpB,�q

Cpx,�q // CpA,�q δ7 // EpC,�q
Epy,�q // EpB,�q

Epx,�q // EpA,�q;

Cp�, Aq
Cp�,xq // Cp�, Bq

Cp�,yq // Cp�,Cq
δ7 // Ep�, Aq

Ep�,xq // Ep�, Bq
Ep�,yq // Ep�,Cq,

where natural transformations δ7 and δ7 are induced by E-extension δ P EpC, Aq via Yoneda’s lemma.

Let C,E be as above, we use the following notation:

 A sequence A x // B
y // C is called a conflation if it realizes some E-extension δ P EpC, Aq. In

this case, x is called an inflation, y is called a deflation, and we write it as

A x // B
y // C δ // .

We usually do not write this “δ” if it is not used in the argument.

 Given an E-triangle A x // B
y // C δ // , we call A the CoCone of y : B Ñ C and C the Cone

of x : A Ñ B.
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 An E-triangle sequence in C [11] is displayed as a sequence

� � � // Xn�1
dn�1 // Xn

dn // Xn�1
// � � �

over C such that for any n, there are E-triangles Kn�1
gn // Xn

fn // Kn
δn
// and the differential

dn � gn�1 fn.
 An object P P C is called projective if for any E-triangle A x // B

y // C δ // and any mor-
phism c P CpP,Cq, there exists b P CpP, Bq satisfying y � b � c. Injective objects are defined dually.
We denote the subcategory consisting of projective (resp., injective) objects in C by Pro jpCq (resp.,
In jpCq).
 We say C has enough projectives (resp., enough injectives) if for any object C P C (resp., A P

C), there exists an E-triangle A x // P
y // C δ // (resp., A x // I

y // C δ // q satisfying P P
Pro jpCq presp., I P In jpCq).

Remark 2.3. (1) If pC,E, sq is an exact category, then the definitions of having enough projectives and
having enough injectives agree with the usual definitions.

(2) If pC,E, sq is a triangulated category, then Pro jpCq and In jpCq consist of zero objects.

Definition 2.4. [1, Definition 4.2] Let X, Y be two subcategories of C. Define full subcategories
ConepX,Yq and CoConepX,Yq of C as follows.

(1) C belongs to ConepX,Yq if and only if it admits a conflation X Ñ Y Ñ C satisfying X P X and
Y P Y;

(2) C belongs to CoConepX,Yq if and only if it admits a conflation C Ñ X Ñ Y satisfying X P X
and Y P Y.

Suppose that pC,E, sq is an extriangulated categories with enough projectives and injectives. For a
subcategory B � C, put Ω0B � B, and for i ¡ 0, we define ΩiB inductively by

ΩiB � ΩpΩi�1Bq � CoConepPro jpCq,Ωi�1Bq.

We call ΩiB the i-th syzygy of B (see [12, Section 5]). Dually we define the i-th cosyzygy ΣiB by
Σ0B � B and ΣiB � ConepΣi�1B, In jpCqq for i ¡ 0.

Let X be any object in C. It admits an E-triangle

X // I0 // ΣX δX
// (resp., ΩX // P0

// X
δX // ),

where I0 P In jpCq (resp., P0 P Pro jpCq). In [12] the authors defined higher extension groups in
an extriangulated category having enough projectives and injectives as Ei�1pX,Yq � EpX,ΣiYq �
EpΩiX,Yq for i ¥ 0, and they showed the following result:

Lemma 2.5. [12, Proposition 5.2] Let A x // B
y // C δ // be an E-triangle. For any object

X P B, there are long exact sequences

� � � // EipX, Aq
x� // EipX, Bq

y� // EipX,Cq // Ei�1pX, Aq
x� // Ei�1pX, Bq

y� // � � � pi ¥ 1q,

� � � // EipC, Xq
y� // EipB, Xq x� // EipA, Xq // Ei�1pC, Xq

y� // Ei�1pB, Xq x� // � � � pi ¥ 1q.

From now on to the end of the paper, we always suppose that pC,E, sq is an extriangulated categories
with enough projectives and injectives.
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3. Frobenius pairs and cotorsion pairs

In this section, we introduce the concept of Frobenius pairs and show that it has very nice homo-
logical properties, which are necessary to construct cotorsion pairs from Frobenius pairs. At first, we
need introduce the following definitions.

Definition 3.1. Let X be a subcategory of C.

1. For any non-negative integer n, we denote by |Xn (resp., xXn) the class of objects C P C such that
there exists an E-triangle sequence

C Ñ X0 Ñ � � � Ñ Xn�1 Ñ Xn (resp., Xn Ñ Xn�1 Ñ � � � Ñ X0 Ñ C)

with each Xi P X. Moreover, we set qX �
8�

n�0

|Xn, pX �
8�

n�0

xXn.

2. For any C P C, the X-resolution dimension of C is defined as

resdimXpCq := mintn P N : C P xXnu.

If C R xXn for any n P N, then resdimXpCq � 8.

For a subcategory X of C, define XK � tY P C|EipX,Yq � 0 for all i ¥ 1, and all X P Xu.
Similarly, we can define KX.

Definition 3.2. Let X andW be two subcategories of C. We say that
(1) W is a cogenerator for X, if W � X and for each object X P X, there exists an E-triangle

X // W // X1 δ // with W PW and X
1

P X. The notion of a generator is defined dually.
(2)W is X-injective ifW � XK. The notion of an X-projective subcategory is defined dually.
(3)W is an X-injective cogenerator for X ifW is a cogenerator for X andW � XK. The notion

of an X-projective generator for X is defined dually.
(4) X is a thick subcategory if it is closed under direct summand and for any E-triangle

A x // B
y // C δ //

in C and two of A, B,C are in C, then so is the third.

The following theorem unifies some results of [13] and [9]. It shows that any object in pX admits
two E-triangles: one giving rise to an X-precover and the other to a xW-preenvelope.

Theorem 3.3. Let X andW be two subcategories of C. Suppose X is closed under extensions andW
is a cogenerator for X. Consider the following conditions:

(1) C is in xXn.

(2) There exists an E-triangle YC
// XC

φC // C δ // with XC P X and YC P{Wn�1.

(3) There exists an E-triangle C
ψC
// YC // XC θ // with XC P X and YC PyWn.

Then, p1q ô p2q ñ p3q. If X is also closed under CoCone of deflations, then p3q ñ p2q, and hence
all three conditions are equivalent. If W is X-injective, then φC is an X-precover of C and ψC is a
xW-preenvelope of C.
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Proof. The proof is dual to that of [14, Proposition 3.6]. □

Definition 3.4. A pair pX,Wq is called a left Frobenius pair in C if the following holds:
p1q X is closed under extensions and CoCone of deflations,
p2qW is an X-injective cogenerator for X.
If in addition W is also an X-projective generator for X, then we say pX,Wq is a strong left

Frobenius pair.

Example 3.5. (1) Assume that C � R-Mod is the category of left R-modules for a ring R. A left
R-module N is called Gorenstein projective [23, 24] if there is an exact sequence of projective left
R-modules

P � � � � Ñ P1 Ñ P0 Ñ P0 Ñ P1 Ñ � � �

with N � KerpP0 Ñ P0q such that HomRpP,Qq is exact for any projective left R-module Q. Let
GPpRq be the full subcategory of R-Mod consisting of all Gorenstein projective modules and PpRq
the subcategory of R-Mod consisting of all projective modules. Then pGPpRq,PpRqq is a strong left
Frobenius pair.

(2) Let C be a triangulated category with a proper class ξ of triangles. Asadollahi and Salarian [15]
introduced and studied ξ-Gprojective and ξ-Ginjective objects, and developed a relative homological
algebra in C. Let GPpξq denotes the full subcategory of ξ-Gprojective objects and Ppξq denotes the
full subcategory of ξ-projective objects. Then pGPpξq,Ppξqq is a strong left Frobenius pair.

(3) Let T be a triangulated category, and letM be a silting subcategory of T withM � addM,
where addM is the smallest full subcategory of T which containsM and which is closed under taking
isomorphisms, finite direct sums, and direct summands. Then pT¥0,Mq is a left Frobenius pair by [14,
Corollary 3.7] and [16, Proposition 2.7], where T¥0 :�

�
n¥0
Mr�ns � � � �Mr�1s �M.

(4) In [17], the authors showed that if pX,Yq is a complete and hereditary cotorsion pair in an
abelian category A and Y is closed under kernels of epimorphisms, then pGpXq

�
Y,X
�
Yq is a

strong left Frobenius pair, where GpXq is the class of objects M in A satisfying that there exists an
exact sequence

X � � � � Ñ X1 Ñ X0 Ñ X0 Ñ X1 Ñ � � �

with each term in X such that M � KerpX0 Ñ X1q and HomApX,Qq is exact for any object Q in
X
�
Y.

Lemma 3.6. Let pX,Wq be a left Frobenius pair in C. Given an E-triangle K x // X
y // C δ //

with X P X, then C P pX if and only if K P pX.

Proof. The proof is dual to that of [14, Lemma 3.8]. □

Proposition 3.7. Let pX,Wq be a left Frobenius pair in C. The following statements are equivalent
for any C P pX and non-negative integer n.

(1) resdimXpCq ¤ n.
(2) If U Ñ Xn�1 Ñ � � � Ñ X0 Ñ C is an E-triangle sequence with Xi P X for 0 ¤ i ¤ n � 1, then

U P X.
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Proof. p2q ñ p1q is trivial.
p1q ñ p2q. Let C be in pX. Then by Theorem 3.3, we have an E-triangle sequence Wn Ñ � � � Ñ

W1 Ñ X Ñ C with X P X and Wi PW for 1 ¤ i ¤ n. SinceW � XK, it is easy to see that xW � XK.
Thus we have En�ipC,Yq � EipWn,Yq � 0 for all i ¥ 1 and Y P xW. If U Ñ Xn�1 Ñ � � � Ñ X0 Ñ C
is an E-triangle sequence with Xi P X for 0 ¤ i ¤ n � 1, then we have EipU,Yq � En�ipC,Yq �
0 for all i ¥ 1 and Y P xW. Note that U P pX by Lemma 3.6. Hence there exists an E-triangle
YU

// XU
// U // with XU P X and YU P xW by Theorem 3.3. It follows that the above

E-triangle splits. Hence U P X. □

If X is a subcategory of C, then we denote by ThickpXq the smallest thick subcategory that contains
X. The following result shows that for a left Frobenius pair pX,Wq in C, pX is an extriangulated
category. In particular, if C is a triangulated category, then pX is the smallest triangulated subcategory
of C containing X and is closed under direct summands and isomorphisms.

Proposition 3.8. Let pX,Wq be a left Frobenius pair in C. Then ThickpXq � pX.

Proof. For any E-triangle A x // B
y // C δ // , we need to check that if any two of A, B and C are

in pX, then the third one is in pX. Since pX is closed under extensions by the dual of [14, Corollary 3.7],
it suffices to show that if B P pX, then A P pX if and only if C P pX. We first show that if A and B are in
pX, then C P pX. Since B P pX, we have an E-triangle YB

// XB
// B // with XB P X,YB P xW.

By pET4qop, we obtain a commutative diagram

YB
// L //

��

A

��
YB

// XB
//

��

B

��
C C.

It follows that L P pX as A and YB are in pX. Therefore C P pX.
Suppose now B and C are in pX. It follows from Lemma 3.6 that L P pX. Applying the just established

result to the E-triangle YB
// L // A // , one has that A P pX.

Suppose C1 ` C2 P pX. We proceed by induction on n �resdimXpC1 ` C2q. If n � 0, then C1 and
C2 are in X.

Suppose n ¡ 0. There is an E-triangle K x // X

�
y1
y2

�
// C1 `C2

δ // with X P X and
resdimXpKq � n � 1. By pET4qop, we obtain the following commutative diagrams:

K // L2
//

x2

��

C1
�

1
0

�

��

//

K x // X

�
y1
y2

�
//

y2

��

C1 `C2
δ //

r0 1s
��

C2

δ2

��

C2

0

��

K // L1
//

x1

��

C2
�

0
1

�

��

//

K x // X

�
y1
y2

�
//

y1

��

C1 `C2
δ //

r1 0s
��

C1

δ1

��

C1

0

��
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Hence there is an E-triangle

L1 ` L2

�
x1 0
0 x2

�
// X ` X

�
y1 0
0 y2

�
// C1 `C2

δ1`δ2 // .

By Lemma 3.6, L1 ` L2 P pX, and Proposition 3.7 shows that resdimXpL1 ` L2q ¤ n � 1. By the
induction hypothesis, L1 and L2 are in pX. It follows that C1 and C2 are in pX. Hence pX is closed under
direct summands. Thus ThickpXq � pX. □

Definition 3.9. [1, Definition 4.1] LetU,V � C be a pair of full additive subcategories, closed under
isomorphisms and direct summands. The pair (U, V) is called a cotorsion pair on C if it satisfies the
following conditions:

(1) EpU,Vq � 0;
(2) For any C P C, there exists a conflation VC Ñ UC Ñ C satisfying UC P U and VC P V;
(3) For any C P C, there exists a conflation C Ñ VC Ñ UC satisfying UC P U and VC P V.

Lemma 3.10. Let X andW be two subcategories of C such thatW is X-injecive. Then the following
statements hold.

(1) IfW is a cogenerator for X, thenW � X
�
XK � X

�xW.
(2) IfW is a cogenerator for X, then xW � pX�XK.

Proof. The proof is dual to that of [14, Proposition 4.2]. □

The following result gives a method to construct cotorsion pairs on extriangulated categories.

Proposition 3.11. Let pX,Wq be a left Frobenius pair in C. Then pX,xWq is a cotorsion pair on the
extriangulated category ThickpXq.

Proof. Note that ThickpXq is an extriangulated category by [1, Remark 2.18]. It suffices to show that
xW is closed under direct summands by Theorem 3.3. Note that xW � pX�XK by Proposition 3.10.
Since ThickpXq= pX is closed under direct summands by Proposition 3.8, so is xW. This completes the
proof. □

Now we are in a position to state and prove the main result of this section.

Theorem 3.12. Let C be an extriangulated category. The assignments

pX,Wq ÞÑ pX,xWq and pU,Vq ÞÑ pU,U
�
Vq

give mutually inverse bijections between the following classes:
(1) Left Frobenius pairs pX,Wq in C.
(2) Cotorsion pairs pU,Vq on the extriangulated category ThickpUq withV � UK.

Proof. Let pX,Wq be a left Frobenius pair. Then pX,xWq is a cotorsion pair on the extriangulated
category pX by Proposition 3.11. Note that ThickpXq � pX and xW � XK. Then pX,xWq is a cotorsion
pair on the extriangulated category ThickpXq with xW � XK.

Assume pU,Vq is a cotorsion pair on the extriangulated category ThickpUq with V � UK. For

U P U, we have an E-triangle U x // V
y // U 1 δ // with V P V and U 1 P U. Thus V P

ThickpUq as ThickpUq is a thick subcategory. Since pU,Vq is a cotorsion pair on the extriangulated

Electronic Research Archive Volume 30, Issue 8, 2774–2787.



2782

category ThickpUq, it follows from [1, Remark 4.6] that U is closed under extensions in ThickpUq.
It implies that V P U. Thus V P U

�
V. Note that V � UK. It follows that U

�
V is an U-

injective cogenerator. Let Z a // U1
b // U2

// be an E-triangle with U1,U2 P U. Then we
have an exact sequence EpU1,Vq ÝÑ EpZ,Vq ÝÑ E2pU2,Vq for any V P V. Since V � UK,
EpZ,Vq � 0. Note that Z P ThickpUq as ThickpUq is a thick subcategory. Thus there exists an
E-triangle VZ // UZ // Z // with UZ P U and VZ P V as pU,Vq is a cotorsion pair on
the extriangulated category ThickpUq. Therefore the above E-triangle splits by EpZ,Vq � 0. Hence
Z P U. So U is closed under CoCone of deflations. Note that U is closed under extensions in
ThickpUq. It follows thatU is closed under extensions in C. Thus pU,U

�
Vq is a left Frobenius pair

in C.
Based on the above argument, it is enough to check that the compositions

pU,Vq ÞÑ pU,U
�
Vq ÞÑ pU, {U�Vq and pX,Wq ÞÑ pX,xWq ÞÑ X

are identities. Since U
�
V is an U-injective cogenerator for U, {U�V � pU�UK �

ThickpUq
�
UK where the first equality is due to Proposition 3.10 and the second equality is due

to Proposition 3.8. It follows from [1, Remark 4.4] that ThickpUq
�
UK � V. Thus {U�V � V.

This completes the proof. □

As a consequence of Theorem 3.12 and Remark 2.3, we have the following result.

Corollary 3.13. [7, Throrem 5.4] LetA be an abelian category with enough projectives and injectives.
The assignments

pX,Wq ÞÑ pX,xWq and pU,Vq ÞÑ pU,U
�
Vq

give mutually inverse bijections between the following classes:
(1) Left Frobenius pairs pX,Wq inA.
(2) Cotorsion pairs pU,Vq on the exact category ThickpUq withV � UK.

As an application, we have the following result in [10].

Corollary 3.14. [10, Theorem 3.11] Let C be a triangulated category. The assignments

pX,Wq ÞÑ pX,xWq and pU,Vq ÞÑ pU,U
�
Vq

give mutually inverse bijections between the following classes:
(1) Left Frobenius pairs pX,Wq in C.
(2) Co-t-structures pU,Vq on the triangulated category ThickpUq.

Proof. Note that any triangulated category can be viewed as an extriangulated category, and its projec-
tive objects and injective objects consist of zero objects by Remark 2.3.

Let pX,Wq be a left Frobenius pair. By Theorem 3.12, pX,xWq is a cotorsion pair on the triangu-
lated category ThickpXq. Since X is closed under CoCone of deflations and extensions, it is easy to see
that Xr�1s � X. Hence pX,xWq is a co-t-structure on the triangulated category ThickpXq.

Assume pU,Vq is a co-t-structure on the triangulated category ThickpUq. It is easy to see that
pU,Vq is a cotorsion pair on ThickpUq with V � UK. Hence the corollary follows from Theorem
3.12. □
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Definition 3.15. [18, Definition 2.1] Let R and S be rings. An pS -Rq-bimodule C � S CR is semidual-
izing if:

(1) S C admits a degreewise finite S -projective resolution.
(2) CR admits a degreewise finite R-projective resolution.
(3) The homothety map S S S

S γÝÑ HomRpC,Cq is an isomorphism.
(4) The homothety map RRR

γRÝÑ HomS pC,Cq is an isomorphism.
(5) Ext¥1

S pC,Cq � 0 � Ext¥1
R pC,Cq.

Definition 3.16. [18, Definition 3.1] A semidualizing bimodule C � S CR is faithfully semidualizing
if it satisfies the following conditions for all modules S N and MR.

(1) If HomS pC,Nq � 0, then N � 0.
(2) If HomRpC,Mq � 0, then M � 0.

Definition 3.17. [18, Definition 4.1] The Bass class BCpS q with respect to C consists of all S -modules
N satisfying

(1) Ext¥1
S pC,Nq � 0 � TorR

¥1pC,HomS pC,Nqq � 0.
(2) The natural evaluation homomorphism νN : C bR HomS pC,Nq Ñ N is an isomorphism.

Remark 3.18. Let C � S CR be a faithfully semidualizing module. Then Bass class BCpS q is an exact
category by [18, Theorem 6.2] and BCpS q has enough projectives and injectives by [20, Remark 3.13].

By [18], the class of C-projective left S -modules, denoted by PCpS q the collection of the left S -
modules of the form CbR P for some projective left R-module P. Recall from [20] that a left S -module
M is called C-Gorenstein projective if there is an exact sequence of left S -modules

W � � � � Ñ W1 Ñ W0 Ñ W0 Ñ W1 Ñ � � �

with each term in PCpS q such that N � KerpW0 Ñ W0q and both HomRpW,Qq and HomRpQ,Wq
are exact for any object Q in PCpS q. It should be noted that C-Gorenstein projectives defined here are
different from those defined in [19] when S � R is a commutative Noetherian ring (see [20, Proposition
3.6]).

For convenience, we write GC-Pro jpS q for the classes of C-Gorenstein projective left S -modules.
By [20, Proposition 3.5], one has that GC-Pro jpS q � BCpS q. As a consequence of Theorem 3.12, we
have the following result.

Corollary 3.19. Let C � S CR be a faithfully semidualizing module. Then
(1) pGC-Pro jpS q,PCpS qq is a strong left Frobenius pair in BCpS q.
(2) pGC-Pro jpS q,{PCpS qq is a cotorsion pair on {GC-Pro jpS q.

Proof. Since PCpS q is projectively resolving and PCpS q � PCpS qK by [18, Corollary 6.4] and [18,
Theorem 6.4], GC-Pro jpS q is closed under kernels of epimorphisms and direct summand by [21, The-
orem 4.12] and [21, Proposition 4.11]. Hence pGC-Pro jpS q,PCpS qq is a strong left Frobenius pair in
BCpS q. (2) follows from Theorem 3.12. □

4. Admissible model structures associated with Frobenius pairs

In this section, we shall use our results in Section 3 to construct more admissible model structures
in extriangulated categories. At first, we need to recall the following definition.
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Definition 4.1. [1, Definition 5.1] Let (S, T ) and (U,V) be cotorsion pairs on C. Then P � ppS, T ),
(U,V)) is called a twin cotorsion pair if it satisfies EpS,Vq � 0. Moreover, P is called a Hovey twin
cotorsion pair if it satisfies ConepV,Sq = CoConepV,Sq.

In [1] Nakaoka and Palu gave a correspondence between admissible model structures and Hovey
twin cotorsion pairs on C. Essentially, an admissible model structure on C is a Hovey twin cotorsion
pair P � ppS, T ), (U, V)) on C. For more details, we refer to [1, Section 5]. By a slight abuse of
language we often refer to a Hovey twin cotorsion pair as an admissible model structure.

Lemma 4.2. Let pX,Wq be a strong left Frobenius pair in C. Then pW, pXq is a cotorsion pair on the
extriangulated category ThickpXq.

Proof. SinceW � KX, one has EpW, pXq � 0. For any C P pX, there exists an E-triangle

YC
// XC

// C //

with XC P X and YC P xW by Theorem 3.3. Since W is a generator for X, we have an E-triangle
X // W // XC

// with W PW and X P X. By pET4qop, we obtain a commutative diagram

X // Z //

��

YC

��
X // W //

��

XC

��
C C.

It follows that Z P pX as X and YC are in pX. Note that ThickpXq � pX. The second column and
EpW, pXq � 0 show that pW, pXq is a cotorsion pair on ThickpXq. □

Proposition 4.3. Let pX,Wq be a strong left Frobenius pair in C. Then P � ppW, pXq, pX,xWqq is an
admissible model structure on the extriangulated category ThickpXq

Proof. By Theorem 3.12 and Lemma 4.2, we only need to check that ConepxW,Wq �

CoConepxW,Wq. It is obvious that ConepxW,Wq � xW � CoConepxW,Wq. Let C P

CoConepxW,Wq. Then we have an E-triangle C // Y // W // with Y P xW and W P W. By
Theorem 3.3, one has that C P pX. Since EpW, pXq � 0, it follows that C is a direct summand of Y .
Note that xW is closed under direct summand by Proposition 3.11. Thus C P xW. Hence the equality
ConepxW,Wq � CoConepxW,Wq holds. □

Theorem 4.4. Let pX,Wq be a strong left Frobenius pair in C. If n is a non-negative integer, then the
following statements are equivalent:

(1) xXn � C.
(2) P � ppW,Cq, pX,yWnqq is an admissible model structure on C.

Proof. p1q ñ p2q. If xXn � C, then pW,Cq is a cotorsion pair on C by Lemma 4.2 and pX,xWq is a
cotorsion pair on C by Theorem 3.12. To prove p2q, we only need to check thatyWn � xW. Note that
yWn � xW is obvious. Let C P xW. Then there is an E-triangle YC

// XC
// C // with XC P X
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and YC P{Wn�1 by Theorem 3.3. Since xW is closed under extensions, XC P X
�xW � W. Hence

C PyWn impliesyWn � xW.
p2q ñ p1q. Since pX,yWnq is a cotorsion pair on C, one has that C � xXn by Theorem 3.3. □

As an application, we have the following result in [3].

Corollary 4.5. [3, Theorem 8.6] Suppose R is a Gorenstein ring. Let GPpRq be the subcategory of
R-Mod consisting of Gorenstein projective modules and PpRq the subcategory of R-Mod consisting of
projective modules. Then ppPpRq,R-Modq, pGPpRq,zPpRqq is an admissible model structure on R-Mod.

Proof. It follows from Example 3.5 and Proposition 4.3. □

Let n be a non-negative integer. In the following, we denote by GC-Pro jpS q¤n (resp., PCpS q¤nq the
class of modules with C-Gorenstein projective (resp., C-projective) dimension at most n

Corollary 4.6. Let C � S CR be a faithfully semidualizing module. Then the following statements are
equivalent:

(1) GC-Pro jpS q¤n � BCpS q.
(2) P � ppPCpS q,BCpS qq, pGC-Pro jpS q,PCpS q¤nq is an admissible model structure on BCpS q.

Proof. It follows from Corollary 3.19 and Theorem 4.4. □

Let pC,E, sq be an extriangulated category and ξ a proper class of E-triangles. By [5], an object
P P C is called ξ-projective if for any E-triangle

A x // B
y // C δ //

in ξ, the induced sequence of abelian groups 0 // CpP, Aq // CpP, Bq // CpP,Cq // 0 is exact.
We denote Ppξq the class of ξ-projective objects of C. Recall from [5] that an object M P C is called
ξ-Gprojective if there exists a diagram

P : � � � // P1
d1 // P0

d0 // P�1
// � � �

in C satisfying that: (1) Pn is ξ-projective for each integer n; (2) there is a Cp�,Ppξqq-exact E-triangle

Kn�1
gn // Xn

fn // Kn
δn // in ξ and dn � gn�1 fn for each integer n such that M � Kn for some

n P Z. We denote by GPpξq the class of ξ-Gprojective objects in C. Specializing Theorem 4.4 to the
case X � GPpξq, we have the following result in [5].

Corollary 4.7. [5, Theorem 5.9] Let pC,E, sq be an extriangulated category satisfying Condition
(WIC) (see [1, Condition 5.8]). Assume that ξ is a proper class in C. Set Eξ :� E|ξ, that is,

EξpC, Aq � tδ P EpC, Aq | δ is realized as an E-triangle A x // B
y // C δ // in ξu

for any A,C P C, and sξ :� s|Eξ . If n is a non-negative integer, then the following conditions are
equivalent:

(1) suptξ-GpdA|A P Cu ¤ n.
(2) P � ppPpξq,Cq, pGPpξq,P¤npξqqq is an admissible model structure on pC,Eξ, sξq, where

P¤npξq � tA P C|ξ-pdA ¤ nu.

Proof. It is easy to check that pGPpξq,Ppξqq is a strong left Frobenius pair in pC,Eξ, sξq. Thus the
corollary follows from Theorem 4.4. □
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