Research article Special Issues

A simple and efficient numerical method for the Allen–Cahn equation on effective symmetric triangular meshes


  • Received: 01 May 2023 Revised: 06 June 2023 Accepted: 13 June 2023 Published: 20 June 2023
  • In this paper, we propose a novel, simple, efficient, and explicit numerical method for the Allen–Cahn (AC) equation on effective symmetric triangular meshes. First, we compute the net vector of all vectors starting from each node point to its one-ring neighbor vertices and virtually adjust the neighbor vertices so that the net vector is zero. Then, we define the values at the virtually adjusted nodes using linear and quadratic interpolations. Finally, we define a discrete Laplace operator on triangular meshes. We perform several computational experiments to demonstrate the performance of the proposed numerical method for the Laplace operator, the diffusion equation, and the AC equation on triangular meshes.

    Citation: Youngjin Hwang, Seokjun Ham, Chaeyoung Lee, Gyeonggyu Lee, Seungyoon Kang, Junseok Kim. A simple and efficient numerical method for the Allen–Cahn equation on effective symmetric triangular meshes[J]. Electronic Research Archive, 2023, 31(8): 4557-4578. doi: 10.3934/era.2023233

    Related Papers:

  • In this paper, we propose a novel, simple, efficient, and explicit numerical method for the Allen–Cahn (AC) equation on effective symmetric triangular meshes. First, we compute the net vector of all vectors starting from each node point to its one-ring neighbor vertices and virtually adjust the neighbor vertices so that the net vector is zero. Then, we define the values at the virtually adjusted nodes using linear and quadratic interpolations. Finally, we define a discrete Laplace operator on triangular meshes. We perform several computational experiments to demonstrate the performance of the proposed numerical method for the Laplace operator, the diffusion equation, and the AC equation on triangular meshes.



    加载中


    [1] J. W. Choi, H. G. Lee, D. Jeong, J. Kim, An unconditionally gradient stable numerical method for solving the Allen–Cahn equation, Phys. A, 388 (2009), 1791–1803. https://doi.org/10.1016/j.physa.2009.01.026 doi: 10.1016/j.physa.2009.01.026
    [2] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
    [3] D. Jeong, Y. Li, Y. Choi, C. Lee, J. Yang, J. Kim, A practical adaptive grid method for the Allen–Cahn equation, Phys. A, 573 (2021), 125975. https://doi.org/10.1016/j.physa.2021.125975 doi: 10.1016/j.physa.2021.125975
    [4] X. Xiao, R. He, X. Feng, Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations, Numer. Meth. Part Differ. Equations, 36 (2020), 418–438. https://doi.org/10.1002/num.22435 doi: 10.1002/num.22435
    [5] J. Rubinstein, P. Sternberg, Nonlocal reaction—diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249–264. https://doi.org/10.1093/imamat/48.3.249 doi: 10.1093/imamat/48.3.249
    [6] Z. Sun, S. Zhang, A radial basis function approximation method for conservative Allen–Cahn equations on surfaces, Appl. Math. Lett., 143 (2023), 108634. https://doi.org/10.1016/j.aml.2023.108634 doi: 10.1016/j.aml.2023.108634
    [7] B. Xia, Y. Li, Z. Li, Second-order unconditionally stable direct methods for Allen–Cahn and conservative Allen–Cahn equations on Surfaces, Mathematics, 8 (2020), 1486. https://doi.org/10.3390/math8091486 doi: 10.3390/math8091486
    [8] Y. Choi, Y. Li, C. Lee, H. Kim, J. Kim, Explicit hybrid numerical method for the Allen–Cahn type equations on curved surfaces, Numer. Math. Theory Methods Appl., 14 (2021), 797–810. https://doi.org/10.4208/nmtma.OA-2020-0155 doi: 10.4208/nmtma.OA-2020-0155
    [9] V. Joshi, R. K. Jaiman, An adaptive variational procedure for the conservative and positivity preserving Allen–Cahn phase-field model, J. Comput. Phys., 366 (2018), 478–504. https://doi.org/10.1016/j.jcp.2018.04.022 doi: 10.1016/j.jcp.2018.04.022
    [10] S. Kwak, J. Yang, J. Kim, A conservatice Allen–Cahn equation with a curvature-dependent Lagrange multiplier, Appl. Math. Lett., 126 (2022), 107838. https://doi.org/10.1016/j.aml.2021.107838 doi: 10.1016/j.aml.2021.107838
    [11] Q. Hong, Y. Gong, J. Zhao, Q. Wang, Arbitrarily high order structure-preserving algorithms for the Allen–Cahn model with a nonlocal constraint, Appl. Numer. Math., 170 (2021), 321–339. https://doi.org/10.1016/j.apnum.2021.08.002 doi: 10.1016/j.apnum.2021.08.002
    [12] Z. Chai, D. Sun, H. Wang, B. Shi, A comparative study of local and nonlocal Allen–Cahn equations with mass conservation, Int. J. Heat Mass Transf., 122 (2018), 631–642. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.013 doi: 10.1016/j.ijheatmasstransfer.2018.02.013
    [13] M. Inc, A. Yusuf, A. I. Aliyu, D. Baleanu, Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis, Phys. A, 493 (2018), 94–106. https://doi.org/10.1016/j.physa.2017.10.010 doi: 10.1016/j.physa.2017.10.010
    [14] J. Kim, H. Lee, Unconditionally energy stable second-order numerical scheme for the Allen–Cahn equation with a high-order polynomial free energy, Adv. Differ. Equations, 2021 (2021), 1–13. https://doi.org/10.1186/s13662-021-03571-x doi: 10.1186/s13662-021-03571-x
    [15] H. Bhatt, J. Joshi, I. Argyros, Fourier spectral high-order time-stepping method for numerical simulation of the multi-dimensional Allen–Cahn equations, Symmetry, 13 (2021), 245. https://doi.org/10.3390/sym13020245 doi: 10.3390/sym13020245
    [16] Z. Sun, Y. Gao, High order multiquadric trigonometric quasi-interpolation method for solving time-dependent partial differential equations, Numer. Algorithms, (2022), 1–21. https://doi.org/10.1007/s11075-022-01486-6 doi: 10.1007/s11075-022-01486-6
    [17] Z. Sun, L. Ling, A kernel-based meshless conservative Galerkin method for solving Hamiltonian wave equations, SIAM J. Sci. Comput., 44 (2022), A2789–A2807. https://doi.org/10.1137/21M1436981 doi: 10.1137/21M1436981
    [18] M. Wardetzky, S. Mathur, F. Kälberer, E. Grinspun, Discrete Laplace operators: No free lunch, Eurographics Symp. Geom. Process., (2007), 33–37.
    [19] G. Xu, Discrete Laplace–Beltrami operators and their convergence, Comput. Aided Geom. Des., 21 (2004), 767–784. https://doi.org/10.1016/j.cagd.2004.07.007 doi: 10.1016/j.cagd.2004.07.007
    [20] T. Caissard, D. Coeurjolly, J. O. Lachaud, T. Roussillon, Laplace-beltrami operator on digital surfaces, J. Math. Imaging Vis., 61 (2019), 359–379. https://doi.org/10.1007/s10851-018-0839-4 doi: 10.1007/s10851-018-0839-4
    [21] S. P. Thampi, S. Ansumali, R. Adhikari, S. Succi, Isotropic discrete Laplacian operators from lattice hydrodynamics, J. Comput. Phys., 234 (2013), 1–7. https://doi.org/10.1016/j.jcp.2012.07.037 doi: 10.1016/j.jcp.2012.07.037
    [22] B. J. McCartin, Eigenstructure of the discrete Laplacian on the equilateral triangle: the Dirichlet & Neumann problems, Appl. Math. Sci., 4 (2010), 2633–2646.
    [23] V. Ganzha, R. Liska, M. Shashkov, C. Zenger, Support operator method for Laplace equation on unstructured triangular grid, Selcuk J. Appl. Math., 3 (2002), 21–48.
    [24] S. Yoon, J. Park, J. Wang, C. Lee, J. Kim, Numerical simulation of dendritic pattern formation in an isotropic crystal growth model on curved surfaces, Symmetry, 12 (2020), 1155. https://doi.org/10.3390/sym12071155 doi: 10.3390/sym12071155
    [25] L. Paquet, R. Korikache, The complete discretization of the dual mixed method for the heat diffusion equation in a polygonal domain, Math. Comput. Simul., 186 (2021), 145–160. https://doi.org/10.1016/j.matcom.2020.09.023 doi: 10.1016/j.matcom.2020.09.023
    [26] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [27] W. Tian, Y. Chen, Z. Meng, H. Jia, An adaptive finite element method based on superconvergent cluster recovery for the Cahn–Hilliard equation, Electron. Res. Arch., 31 (2023), 1323–1343. https://doi.org/10.3934/era.2023068 doi: 10.3934/era.2023068
    [28] Y. Hwang, C. Lee, S. Kwak, Y. Choi, S. Ham, S. Kang, et al., Benchmark problems for the numerical schemes of the phase-field equations, Discrete Dyn. Nat. Soc., 2022 (2022), 1–10. https://doi.org/10.1155/2022/2751592 doi: 10.1155/2022/2751592
    [29] D. Jeong, J. Kim, An explicit hybrid finite difference scheme for the Allen–Cahn equation, J. Comput. Appl. Math., 340 (2018), 247–255. https://doi.org/10.1016/j.cam.2018.02.026 doi: 10.1016/j.cam.2018.02.026
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(971) PDF downloads(109) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog