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1. Introduction

In recent years, the studies of discrete fractional calculus operators have received much attentions,
as the investigation of these operators allow us to get better understanding the interactions between
fractional differences and fractional sums (see e.g. [1-4]). Furthermore, in many applications discrete
fractional difference operators present more accurate models of phenomena than in the continues
operator cases. Therefore, they have obtained quality and importance due to their applications in
recent science and engineering problems such as mechanics, fluid dynamic, physics, chemistry, etc.
(see e.g. [5-8]). In the meantime, there have appeared many research articles dealing with the
existence and uniqueness of solutions for different types of boundary value problems in the discrete
fractional framework (see e.g. [9-13]).

Monotonicity and positivity analyses represent a special class of mathematical analysis which arise
in the study of discrete fractional calculus. Moreover, these analyses on the discrete fractional
operators over a time scale set Ny := {0,1,...} have been well developed ever since Dahal and
Goodrich [14], and Atici and Uyanik [15] proved the several theorems for analysing the monotonicity
of the discrete fractional operators of Riemann-Liouville type in 2014 and 2015, respectively. A key
point of their study is to first introduce the w—monotonicity concept for the functions defined on
N, =1{b,b + 1,...} induced by the positivity of the discrete Riemann-Liouville fractional operators,
then prove w-—monotonicity increasing for the corresponding discrete fractional differences of
Riemann-Liouville type. For more monotonicity analysis on discrete Riemann-Liouville fractional
operators we refer to (see e.g. [16—18] and references within). Recently, there have been extensive
studies by many researchers for different discrete operators such as Riemann, Caputo,
Caputo-Fabrizio and Attangana-Baleanu on N,, (see e.g. [19-22]). Besides, plenty of researchers have
extended these results to generalized discrete fractional operators defined on
N,ﬁ’ ={b,b+ h,b+2h,...} (see e.g. [23-26]). For further results in this direction (see e.g. [27-32]).

Motivated by all these works together with the results in [33] which are established for the
composition of two discrete Caputo-Fabrizio-Caputo fractional operators, in this paper we focus on
the analysis of the discrete Caputo-Fabrizio-Caputo fractional operator of order w of another discrete
Caputo-Fabrizio-Riemann fractional operator of order 5. Also, we the analysis of the operators for the
same order. In both cases, we use a set of conditions in their lower bounds.

A brief outline of the study is designed as follows. In Section 2, we recall the main notations and
basic definitions about discrete Caputo-Fabrizio fractional operators, as well as we present the basic
lemmas and give their proofs. Section 3 includes a detailed description of the model under our study
and the main results are also established here. Finally, some concluding remarks and future extensions
related to the main result are stated in Section 4.

2. Preliminaries and basic lemmas

For the basics of discrete fractional calculus we refer e.g. to Refs. [1,2]. Below we provide
necessary definitions and lemmas which we use in the study: Let (Vh)(7) = h(r) — h(r — 1) be the
forward difference operator for T € N, with b € R. Then, for any function h defined on N,, the
discrete delta Caputo-Fabrizio-Caputo and Caputo-Fabrizio-Riemann fractional differences are
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defined by
(“"5V“h) (1) = M(w) l Z (V) (®)(1 = w)f"‘] [ 7 € N, @D
x=b+1
and
(C"EV“h) (1) = M(w) V. Z h(x)(1 - w)”‘] [V 7€ Nyl (2.2)
x=b+1
respectively, where A = —& for w € [0, 1), and M(w) is a normalizing positive constant. Moreover,

for the higher order when ¢ — 1 < w < ¢, we have
(“5vh) (1) = ("EVUIVOR) (1) [V T € Npui]. (2.3)
Lemma 2.1. Let # = {(w,B) e RXR; 0 <w,B<1land 1 <w+p <2 forp + w} Then, we have
1
P() = =B =B — (1 -0y | 20, (2.4)
w=p
for each j € Ny and (w,B) € #. Moreover, we have
1
o)) = —[(1 -B)Y -(1- w)’] > 0, (2.5)
w=p

for each j € N and (w,B) € A .

Proof. We use induction to proof this lemma. For the basic step j = 1, we have
1
P(1) = —[ﬁ(l —B) - w(l —w)] = l+w+B>0,
w=p
since w + 8 > 1. Now, we suppose that

1
P(m) = w——ﬁ['g(l -B)" —w(l - w)m] >0, (2.6)

for some m € Ni. Then, we shall show that P(m + 1) > 0. To prove this step, we have two cases: The
first case if w > B, we have

1
Pim+1)= w—_ﬁ[ﬁ(l B —w(l - w)’"“],
0

and we only need to show that [ﬁ(l - By —w(l - w)’"“] > 0. But, we have
by
B =™ > w( - w)"(1-p) 2wl —w™,
(2.6)
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where we have used that 1 — 8 > 1 — w > 0. Therefore, P(m + 1) > 0 for w > B. Similarly, we can
show that P(m + 1) > 0 for w < B. Thus, P(j) > 0 for each (w,B) € .# and j € N;. This completes the
first part of the lemma. For the second part (2.5), we have for each j > 1:

1

—a-pr-a-w|>

%_Oﬁ[u _ﬁ)to(l -p|=o.

forw>p(=1->1-w>0),and

1 1 1
w—_ﬁ[u B - (- wy| = ,8——0)[(1 - -(1-py| > o | -py-a-py| =0,
——
>0 =0
for 8 > w (and hence 1 —w > 1 — B > 0). Thus, the proof is completed. i
Lemma 2.2. Let w € [%, 1). Then, we have
J()=0-w)wj-(1-w]20, 2.7

for each j € N.

Proof. Again, we proceed by induction. If j = 1, then we have J(1) = 2w — 1 and this is nonnegative
since w € [%, 1). We assume that J(m) > 0, that is,

(1 -w" wm-(1-w)]>0, (2.8)

for some m € Nj. Then, we have to show that J(m + 1) > 0. But, we see that

A-w)"wm+D)-(1-w]=0-w) 1-)"om-(1-w]+wd-w™>0,

>0 >0 by claim (2.8) >0

which implies that J(m + 1) > 0. Consequently, we find that (2.7) is true for each j € N;. Hence, the
proof is completed. O

Lemma 2.3. For any functionh : N, = R, we have

-1
vV (“"Fveh) (1) = M(a))[(Vh)(T) —wh(O)(1 - )" —w Y (Vh))(I - w)f-x—l],

x=b+1

for w € (0,1) and T in Nj».
Proof. The use of (2.2) give us

[ T -1
(C"Evh) (1) = M(w) Z h(x)(1 — W)™ — Z h(x — 1)(1 - w)f-x-ll

L x=b+1 x=b+1

[ -1
= M(w) |h(7) - w Z h(x)(1 — w)f-x-ll.

x=b+1
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It follows from this,
v (“"Fveh) (1)

=l -2
= M(M)[(Vh)(?’) - W Z h(X)(l — w)T—X—l +w Z h(X)(l _ w)-r—x—Z]

x=b+1 x=b+1

71
= M(w)[(Vh)(T) —wh®)(1 -0 -w Z h(x)(1 — w)™ !

x=b+1

71
+w Z h(x — 1)(1 —w)’-x—l]

x=b+1
71
= M(w)|(Vh)(T) - wh®)(1 - )" - w Z (Vh)x)(1 - w)"’”] , (2.9)
x=b+1
for each 7 € N,,,, and this completes the proof. O

3. Positivity results

The aim of this section is to prove the positivity analysis results for the CFR operator (2.2) with
negative lower bound conditions. Our first result is defined on the set .# as we have defined in the
previous section. Also, we have shown graphically this set in Figure 1. Note that the dashed dot
diagonal line represents the set & that we will define later, which is excluded from the set .Z .

w
1 ®emcmrmsmimrmimeme s e s ®»
~ P
~ S
~ . 1
s P i
N
P 1
A . 1
N * 4
N . 1
. 1
A . 1
N . 1
N s 1
TN e i
0.5 ¢ -, ;
\' s
S 1
- !
b ]
- 1
N 1
N 1
i
\‘ .
AN 1
N 1
1B
| .
t -

Figure 1. Plot illustration for the set .Z .

Theorem 3.1. Let € > 0 and NbT ={b,b+1,...,T}. If a functionh : N, — R satisfies
(i) h(b+1) > h(b) > 0;
(i) (45V° “EVvPh) (1) > —e M(w)M(B)h(b) [v T€ N,Z+2];

(1 ——/3)T_l_b __(1 __CU)T—I—b
w=p

(iii) B ( ) > € [v 7€ Nbiz],
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for each (w,B) € # and for some T € Ny, then, (Vh)(1) > 0 for every T € NbTH.

Proof. We know that (Vh)(b + 1) > 0 from the assumption (i). Now, we need to show that (Vh)(7) > 0
fort e NbT ,,- In view of (2.9) and definition (2.2), we have

(G5v “FivPh) (1)

= M(w) [ Z (V “"5vPh) ()1 - w)T_X]

x=b+2

= M(w)lvl(ﬁ)[ DL (VR -0 =hB)B > (1 =Bl - w) ™

x=b+2 x=b+2

T x—1
=B ), 2., (VR -pa —w)H]

x=b+2 k=b+1
= MWM(B)[A - A]. (3.1)

Calculating A; and A, successively, we have

A= ) ()@ - )

x=b+2

—h(B)B Y (1 -p (1 - )

x=b+2

-1
= (Vh)(®) + ) (Vh)@)(1 - @)™

x=b+2

T 1 X
“h)BU-H 1w Y (—ﬁ)

X=b+2 l-w

-1
= (V)@ + ) (V)@ - )™

x=b+2

T-2-b 1- (:—;ﬁ)T_l_b

1-1£

l-w

7-1
= (Vb)) + ) (Vh)®)(1 - @)™

x=b+2
(1 _ﬁ)‘r—l—b _ (1 _ w)r—l—b
w-p ’

—h(®) (1 - w)

—h®)p ( (3.2)

and

T x—1

A=p Y 3 (V) =B - )
x=b+2 k=b+1

-1

. (1-w)" < (1-8)
=B Z i:(Vh)(K)(l — Byl Z (1 —w) ]

k=b+1 x=k+1
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-1 1 _ 1; X
=B Y (V)1 — )™ —=
k=b+1 1 T 1w
-1
a—ﬁr*—a—wr*)
= Vh
ﬁggf xo( =
_ \T-1-b _ _ T—1-b
.y ((1 P (-w) )(Vh)(b+ 1)
w-p
71 1 _ T—K _ 1 _ T—K
+8 ) (Vh)®K) (( Gl w_fg ©) ) (3.3)
k=b+2

Here, it is worth mentioning that (3.3) is well defined since (w,8) ¢ Z. By using (3.2) and (3.3) and
(i1) in (3.1), we get

(1 _ﬁ)‘r—l—b _ (1 _ a))T—l—b
T
>eh(b) by (iii)

(1 —ﬁ)T_l_b _ (1 _ w)‘r—l—b
| o= P )
((1 -p - - w)”“)

w=p
(1 _IB)T—I—b _ (1 _ w)r—l—b
w=p
7-1 T—X _ _ T—X
+ S (,8(1 M (LD w)f_x)
w —

x=b+2 ﬁ

(Vh)(1) > —€h(b) + h(b) B (

-1
(VR)(b+ 1) = > (VR)®(1 - w) ™

x=b+2

-1
+B ) (Vh)wW)

k=b+2

> B ( )(Vh)(b +1)

_ (1 _IB)T—I—b _ (1 _ w)-r—l—b
_ﬁ( w-p
>0 by (2.5)

-1 1
+ ) (V)X

X=b+2 w-

)(Vh)(b +1)

ﬁ[ﬁ(l -p - e - W) (3.4)

>0 by (2.4)
By substituting 7 = b + 2 into (3.4), we get

b+1

(Vh)b+ 1)+ > () =B(Vh)(b+1)>0.

x=b+2
——
=0

(Vh)(b +2) > B ((1 —p-d _w))
w-f

Thus, by using (Vh)(b + 1) > 0, (Vh)(b +2) > 0, (2.5) and (2.4), we get (Vh)(t) > O for each 7 € N/,
as desired. O
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Having defining the set .# in the previous section and Figure 1, we here define another set ¥ =
{(w,f) e RXR; 0 <w,B<1and 1 < w+p <2 for f = w}, which our next theorem is defined on
this set. As we have shown in Figure 1, the set & (the dashed dot diagonal) is excluded from the set
A . Furthermore, the following Figure 2 illustrates the set & more clearly.

1 &

0.5

Figure 2. Plot illustration for the set Z.

Theorem 3.2. Let € > 0 and % <w < 1. If a functionh : N, = R satisfies

(i) h(b+ 1) > h(b) > 0;
(i) (G5Ve FRveh) (1) > —e MA(w) h(b) [v TE N,,T+2];

(i) wr-1-b)1-w)y??’>¢€ [v TE€ N,,T+2],

for some T € Ny, then, (Vh)(1) > 0 for every T € N, .

Proof. From the assumption (i), we know that (Vh)(b + 1) > 0. Now, we nwill try to prove that
(Vh)(1) > 0 for 7 € N/,,. Due to (2.9) and definition (2.2), we have

(559 Lvh) (1) = M(w) [ > (¥ FEvn) o - w)f-’*]

x=b+2

= M(w)lvl(w)[ DL (W) - @)

x=b+2

—wh(®) Y (1 -2 -w)™

x=b+2

T x-1
—w ) L (VW — ) (1 - w)”‘]

x=b+2 k=b+1

= M*(w)[C, - C3]. (3.5)
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Calculating C; and C; successively, we have

Cii= > (T - - ol - he) Y (1)

x=b+2 X=b+2
7—1
= (Vh)(7) + Z (Vh)®)(1 - w)™* —w (1 —w) > hb)(r - 1 - b), (3.6)
x=b+2

and

T

x—1
Cri=w » > (V)@ - w1 -w)™

x=b+2 k=b+1

-1 T
=w > |(®A - ) (1)

k=b+1 X=k+1

71
=0 ) (M)W ) T -k

k=b+1

=w(T—1-b)(1-w) ™ *?(Vh)b + 1)

-1
+ w Z (Vh)(x)(1 - W) (1t = k). 3.7
k=b+2
Due to (3.6) and (3.7) and (i1) in (3.5), we have
(Vh)(1) > —eh(b) + w (1 — w)" " (r = 1 — b)h(b)

>eh(b) by (i)

-1
+wT-1-b1-w)™ > (Vh)(b+1) - Z (Vh)(x)(1 — w)™™*

x=b+2
-1
+o D (V)1 - o) (= k)
k=b+2
>w(T—1-b)(1-w) "(Vh)(b + 1)
>0 by (iii)
71
+ Z (Vh)(x) (1 — ) *  (w T - %) — (1 —w)). (3.8)
x=b+2 >0 by (2.7)
If we take 7 = b + 2 into (3.8), we get
b+1
(Vh)(b+2) 2 w(Vh)(b + 1)+ Y ()2 w(Vh)(b+1) 2 0.
x=b+2
=0

We can continue by the same process by using (Vh)(b + 1) > 0, (Vh)(b + 2) > 0 and (2.7), to reach
(Vh)(1) > 0 for each 7 € N/, as desired. o

+

AIMS Mathematics Volume 7, Issue 6, 10387-10399.
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The following example can verify the applicability of the above theorem.
Example 3.3. Considering the identity (3.5) with T = b + 2, we get

b+2 b+2

(G5Ve CTRVeR) (b +2) = Mz(w)[ D (VR - )2 = whib) > (1 - w21 - w)
x=b+2 x=b+2
b+2  x-1
—w ) L (T~ ey (1 - w)b”-"]
x=b+2 k=b+1

= M*(w)|h(b +2) = (w + Dh(a + 1)|.
If we choose b = 0, h(0) = 1,h(1) = 1.5,h(2) = 2, € = 0.5 and w = 0.6 in the above identity, we get
("G TEvh) (2) = M(0.6)[2 - (1.6)(1.5)| = —0.4M?(0.6) > —0.5M*(0.6).
Moreover, 1.5 = h(1) > 1 = h(0) and
wr-1-b(l-w) " =w>e=05
Thus, Theorem 3.2 confirms that (V£)(1) and (V£)(2) are positive.

4. Conclusions and future extensions

In this study, we have considered the positivity analysis of (CbiC]V“’ cr ﬁVﬁh) () on the set
M ={(w,B)eRXR; 0<w,B<land | <w+B<?2forp + w},

and (%ﬁ?V‘“ CF IZV“’h) (1) for % < w < 1. In which, we have obtained that (Vh)(7) is positive on a finite
set N/,, for some T' € N, by using some negative lower bound conditions and an initial condition
h(b + 1) > h(b) > 0. For this reason, the induction process as stated in Lemmas 2.1 and 2.2 has been
used in obtaining our main results as examined in Theorems 3.1 and 3.2.

The results obtained in this study can be extended to the discrete fractional operators and the discrete
generalized fractional operators defined using Mitta-Lefller kernels (see for more on these operators [2,
41). Moreover, our results can be applied for the delta operators as established in [34].
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