We study the singular nonlinear partial differential equation $ t\partial_tu = F(t, x, u, \partial_xu) $, where $ (t, x)\in\mathbb{R}\times\mathbb{R}^n $. Under some growth conditions on the coefficients of the partial Taylor expansion of $ F $, we construct the unique solution that is continuous in $ t $ and $ C^\infty $ in $ x $.
Citation: John Paolo O. Soto, Jose Ernie C. Lope, Mark Philip F. Ona. Uniformly analytic solutions to a class of singular partial differential equations[J]. AIMS Mathematics, 2022, 7(6): 10400-10421. doi: 10.3934/math.2022580
We study the singular nonlinear partial differential equation $ t\partial_tu = F(t, x, u, \partial_xu) $, where $ (t, x)\in\mathbb{R}\times\mathbb{R}^n $. Under some growth conditions on the coefficients of the partial Taylor expansion of $ F $, we construct the unique solution that is continuous in $ t $ and $ C^\infty $ in $ x $.
[1] | D. B. Bacani, J. E. C. Lope, H. Tahara, On the unique solvability of nonlinear Fuchsian partial differential equations, Tokyo J. Math., 41 (2018), 225–239. https://doi.org/10.3836/tjm/1502179268 doi: 10.3836/tjm/1502179268 |
[2] | M. S. Baouendi, C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Commun. Pure Appl. Math., 26 (1973), 455–475. https://doi.org/10.1002/cpa.3160260403 doi: 10.1002/cpa.3160260403 |
[3] | M. S. Baouendi, C. Goulaouic, Singular nonlinear Cauchy problems, J. Differ. Equations, 22 (1976), 268–291. https://doi.org/10.1016/0022-0396(76)90028-0 doi: 10.1016/0022-0396(76)90028-0 |
[4] | C. A. Briot, Recherches sur les propriétés des fonctions définies par des équations différentielles, J. Ecole Polytech., 21 (1856), 133–197. |
[5] | G. M. Constantine, T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Am. Math. Soc., 348 (1996), 503–520. https://doi.org/10.1090/S0002-9947-96-01501-2 doi: 10.1090/S0002-9947-96-01501-2 |
[6] | R. Gérard, H. Tahara, Holomorphic and singular solutions of nonlinear singular first order partial differential equations, Publ. Res. Inst. Math. Sci., 26 (1990), 979–1000. https://doi.org/10.2977/prims/1195170572 doi: 10.2977/prims/1195170572 |
[7] | R. Gérard, H. Tahara, Théorème du type Maillet pour une classe d'équations aux dérivées partielles analytiques singulières, C. R. Acad. Sci., Paris, Sér. I, 312 (1991), 499–502. |
[8] | R. Gérard, H. Tahara, Solutions holomorphes et singulières d'équations aux dérivées partielles singulières non linéaires, Publ. Res. Inst. Math. Sci., 29 (1993), 121–151. https://doi.org/10.2977/prims/1195167545 doi: 10.2977/prims/1195167545 |
[9] | Y. Hirasawa, On an estimate for semi-linear elliptic differential equations of the second order with Dini-continuous coefficients, Kōdai Math. Semin. Rep., 17 (1965), 10–26. https://doi.org/10.2996/kmj/1138845014 doi: 10.2996/kmj/1138845014 |
[10] | P. D. Lax, Nonlinear hyperbolic equations, Commun. Pure Appl. Math., 6 (1953), 231–258. |
[11] | J. E. C. Lope, Existence and uniqueness theorems for a class of linear Fuchsian partial differential equations, J. Math. Sci., Tokyo, 6 (1999), 527–538. |
[12] | J. E. C. Lope, A sharp existence and uniqueness theorem for linear Fuchsian partial differential equations, Tokyo J. Math., 24 (2001), 477–486. https://doi.org/10.3836/tjm/1255958188 doi: 10.3836/tjm/1255958188 |
[13] | J. E. C. Lope, M. P. Roque, H. Tahara, On the unique solvability of certain nonlinear singular partial differential equations, Z. Anal. Anwend., 31 (2012), 291–305. https://doi.org/10.4171/ZAA/1461 doi: 10.4171/ZAA/1461 |
[14] | M. Nagumo, Über das anfangswertproblem partieller differentialgleichungen, Jpn. J. Math., 18 (1942), 41–47. https://doi.org/10.4099/jjm1924.18.0_41 doi: 10.4099/jjm1924.18.0_41 |
[15] | L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differ. Geom., 6 (1972), 561–576. |
[16] | T. Nishida, A note on a theorem of Nirenberg, J. Differ. Geom., 12 (1977), 629–633. |
[17] | M. P. F. Ona, J. E. C. Lope, A Nagumo-type theorem for a class of singular nonlinear equations, In: Complex differential and difference equations, Proceedings of the school and conference held at Będlewo, Poland, Berlin: De Gruyter, 2020,409–418. https://doi.org/10.1515/9783110611427 |
[18] | P. V. Paramonov, $C^1$-extension and $C.1$-reflection of subharmonic functions from Lyapunov-Dini domains into $\mathbb R^N$, Sb. Math., 199 (2008), 1809–1846. |
[19] | M. A. C. Tolentino, D. B. Bacani, H. Tahara, On the lifespan of solutions to nonlinear Cauchy problems with small analytic data, J. Differ. Equations, 260 (2016), 897–922. https://doi.org/10.1016/j.jde.2015.09.013 doi: 10.1016/j.jde.2015.09.013 |