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1. Introduction

Let (t, x) ∈ R×Rn. Define DR and BR to be the open disk and open polydisk of radius R, respectively.
Let T and R1 be positive real numbers and Ω be an open subset of Rn. Consider the equation

t∂tu = F (t, x, u, ∂xu) , (1.1)

where F(t, x, u, v) is a continuous function on [0,T )×Ω ×DR1 × BR1 and holomorphic in DR1 × BR1 for
each fixed (t, x) ∈ [0,T ) ×Ω.

Equation (1.1) is a generalization to partial differential equations (PDEs) of the singular nonlinear
ordinary differential equation (ODE) studied by Briot and Bouquet [4] in 1856. Gérard and Tahara [6]
thoroughly studied this singular equation under the assumption that the right-hand side is holomorphic
with respect to all its variables, and formulated existence and uniqueness theorems for both first order
and higher order equations [6–8].

In 1973, Baouendi and Goulaouic [2] introduced singular linear PDEs that they consider to be
natural generalizations to PDEs of Fuchsian ODEs. Their unique solvability result was extended by
Lope [11, 12] by introducing the concept of weight functions. Although Baouendi and Goulaouic also
considered nonlinear equations in [3], their formulation can be improved by using weight functions.
This was done by Roque, Lope, and Tahara [13] on first order singular equations. In particular, they
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showed that under some growth conditions on the coefficients on the partial Taylor expansion of F, the
unique solution of (1.1) also satisfies a growth order condition. This was extended by Bacani, Lope
and Tahara [1] to the higher order case. A technique used in [1, 13] is by the method of Nishida and
Nirenberg [15, 16] together with estimates of Nagumo type [14].

In 2016, Tolentino, Bacani and Tahara [19] considered the Cauchy problem for nonsingular,
nonlinear PDEs and proved the unique existence of a C∞-solution that is uniformly analytic. They
used the method of majorants, formal norms, and the Fixed Point Theorem. Lope and Ona [17] also
used formal norms in proving the unique solvability of a first order singular PDE of totally
characteristic type.

In this paper, we consider the singular equation (1.1) using almost the same framework and
machinery as in [19], thus obtaining a C∞-solution of the equation considered in [13].

The remaining parts of the paper are outlined as follows. In the next section we will state our
assumptions and the main result. In Section 3, we will discuss the preliminary concepts which will be
essential throughout the paper together with some important estimates. In Section 4, we will prove a
unique solvability result for a semilinear equation. The final sections of the paper include the proof of
our main result and the references cited.

2. Statement of the main theorem

Denote ∂x = (∂xi)
n
i=1 and for α ∈ Nn, |α| = α1 + α2 + . . . + αn and ∂αx = ∂α1

x1∂
α2
x2 . . . ∂

αn
xn .

Let µ(t) : [0,T ]→ R be a weight function; that is, a function which is continuous, nonnegative and
increasing on [0,T ], with

∫ T

0
µ(s)/s dt < ∞. Some common examples of weight functions are ta and

(− log t)−1−a for some a > 0. Moreover, define θ : [0,T ]→ R as

θ(t) :=
∫ t

0

µ(s)
s

ds.

It follows that limt→0 µ(t) = 0 and θ′(t) = µ(t)/t. Functions that are similarly defined are mentioned
in [9, 18], where they have been referred to as Dini functions.

Definition 2.1. Let Ω be an open subset of Rn.

(1) A C∞ function f (x) is said to be uniformly analytic on Ω if there exist C > 0 and h > 0 such that

sup
x∈Ω
|∂αx f (x)| ≤ Ch|α||α|! (2.1)

for any α ∈ Nn. We denote the totality of uniformly analytic functions on Ω byA(Ω).
(2) A function u(t, x) said to belong to C0([0,T ),A(Ω)) if for all α ∈ Nn,

(i) ∂αx u(t, x) ∈ C0([0,T ) ×Ω),
(ii) for any 0 < T1 < T , there exist C1 > 0 and h1 > 0 such that

sup
[0,T1)×Ω

|∂αx u(t, x)| ≤ C1h|α|1 |α|!. (2.2)

Moreover, if ψ is a continuous increasing function on [0,T ] satisfying ψ(0) = 0, we say that
u(t, x) ∈ C0([0,T ), A(Ω)) is of growth order O(ψ(t)) if there exist C, h > 0 such that for all α ∈ Nn

and for all t ∈ [0,T ),
sup
x∈Ω
|∂αx u(t, x)| ≤ Cψ(t)h|α||α|!. (2.3)
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(3) A function g(t, x, z) is said to belong to C0([0,T ),A(Ω),O(BR)) if for all (α, β) ∈ Nn × Nm,

(i) ∂αx∂
β
xg(t, x, 0) ∈ C0([0,T ) ×Ω),

(ii) g(t, x, z) is holomorphic in BR for each fixed (t, x) ∈ [0,T ) ×Ω,
(ii) for any 0 < T1 < T , there exist C1 and h1 > 0 such that

sup
[0,T1)×Ω

|∂αx∂
β
z g(t, x, 0)| ≤

C1

R|β|
h|α1 |α|!|β|!. (2.4)

As F(t, x, u, v) is holomorphic in DR1 × BR1 , we can expand it as

F(t, x, u, v) = a(t, x) + λ(t, x)u +

n∑
i=1

bi(t, x)v + f (t, x, u) + G(t, x, u, v), (2.5)

where a(t, x) = F(t, x, 0, 0), λ(t, x) = ∂uF(t, x, 0, 0), bi(t, x) = ∂vi F(t, x, 0, 0) (i = 1, 2, . . . , n), f (t, x, u)
consists of the nonlinear terms of F which do not depend on v while G(t, x, u, v) consists of the
remaining nonlinear terms which depend on v.

Let q ∈ [0, 1] and µ(t) be a weight function. We shall study (1.1) under the following assumptions.
First, a(t, x), λ(t, x) and bi(t, x) are in C0([0,T ),A(Ω)) for i = 1, 2, . . . , n of growth orders O(µ(t)q)
and O(µ(t)), respectively for each i = 1, 2, . . . , n. In particular, there exist A, B, h > 0 such that for all
α ∈ Nn and i = 1, 2, . . . , n,

(A1) sup
x∈Ω
|∂αx a(t, x)| ≤ Aµ(t)qh|α||α|!

(A2) sup
x∈Ω
|∂αx bi(t, x)| ≤ Bµ(t)h|α||α|!.

We also have assumptions on λ(t, x) and f (t, x, u). Particularly, there exist A1 and c ∈ (0, 1] such
that for all α ∈ Nn and m ≥ 1,

(A3) sup
x∈Ω
|∂αx∂

m
u F(t, x, 0, 0)| ≤

A1

Rm
1

h|α||α|!m!,

(A4) for all x ∈ Ω, Re λ(t, x) ≤ −2c.

As we are interested in obtaining a local solution, we can assume throughout the paper that R1 < 1
and R1 < A1.

Finally, assume the following growth condition:

(A5) There exists M > 0 such that for each 1 ≤ i, j ≤ n and t ∈ [0,T ),

sup
Ω×DR1×BR1

|∂αx∂
2
uvi

F(t, x, u, v)| ≤ Mµ(t)1−qh|α||α|!,

sup
Ω×DR1×BR1

|∂αx∂
2
viv j

F(t, x, u, v)| ≤ Mµ(t)1−qh|α||α|!.

The main result is as follows.

Theorem 2.1. Suppose that (A1)–(A5) hold. If q ∈ (0, 1] and T is taken small enough, or if q = 0 and
T and A are taken small enough, then (1.1) has a solution in C0([0,T ),A(Ω)) of growth order O(µ(t)q).
Moreover, there exists a positive constant C∗ such that following estimate holds for all t ∈ [0,T ):{

sup
x∈Ω
|u(t, x)|, sup

x∈Ω
|∂xu(t, x)|

}
≤ AC∗µ(t)q. (2.6)
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In addition, if there is another solution v(t, x) satisfying the same properties, then there exists T ∗ ∈
(0,T ) such that u ≡ v in [0,T ∗] ×Ω.

The above result says that under some assumptions on the coefficients of F, our unique solution
also satisfies some growth conditions. One important observation in this result is that our estimate for
the solution depends on the estimate of the constant term in the Taylor expansion of F.

3. Preliminaries

In this section we introduce the majorants and formal norms that we will use throughout the paper.
One can also refer to [17, 19] for these concepts.

3.1. Lax’s majorant function

Let f (ρ) =
∑

k fkρ
k and g(ρ) =

∑
k gkρ

k be two formal power series with gk ≥ 0. We say that g
majorizes f , denoted by f � g, provided | fk| ≤ gk for all k.

Throughout the paper, we will use a modification of Lax’s majorant function in [10], which we will
denote by φ(X) defined as the power series

φ(X) =
1

4S

∑
k∈N

Xk

(k + 1)2

where S = π2/6. Some properties of φ(X) are stated below.
Lemma 3.1. The function φ(X) satisfies the following properties:

(1) φ(X) converges on |X| < 1;
(2) φ(X)2 � φ(X);
(3) For any 0 < ε < 1, there exists Kε > 0 such that

1
1 − εX

� Kεφ(X). (3.1)

Note that if 0 < ε0 < 1, the constant Kε0 will satisfy (3.1) for any 0 < ε ≤ ε0. In particular, ε0 = 1/2
will be used in the later discussions.

3.2. Formal norms

For an open set Ω ⊆ C, and a C∞ function f (x) on Ω, define the formal norm of f , denoted by ||| f |||ρ,
as the formal power series given by

||| f |||ρ =
∑
α∈Nn

supx∈Ω |∂
α
x f (x)|

|α|!
ρ|α|. (3.2)

In addition, for a function u(t, x) ∈ C0([0,T ) ×Ω) which is of class C∞ in x, define its formal norm as

|||u(t)|||ρ =
∑
α∈Nn

supx∈Ω |∂
α
x u(t, x)|
|α|!

ρ|α|, (3.3)

which is again a power series in ρ. The formal norm satisfies some majorant properties which are
almost similar to usual norms.
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Lemma 3.2 ( [17, 19]). Suppose p(x), f (t, x), and g(t, x) are continuous in all the variables and of class
C∞ in x and z1, z2 ∈ C. Then the following hold:

(1) p(x) ∈ A(Ω) if and only if |||p|||ρ � C/(1 − nhρ) for some C > 0, where C and h are defined in
(1) of Definition 2.1;

(2) |||z1 f (t) + z2g(t)|||ρ � |z1| · ||| f (t)|||ρ + |z2| · |||g(t)|||ρ;
(3) ||| f (t)g(t)|||ρ � ||| f (t)|||ρ|||g(t)|||ρ;
(4) For any α ∈ Nn,

∣∣∣∣∣∣∣∣∣∂αx f (t)
∣∣∣∣∣∣∣∣∣
ρ
� ∂|α|ρ ||| f (t)|||ρ.

Lastly, under certain conditions, we can compare formal norms of integrals.

Lemma 3.3. Let H(t, x, θ) be a function satisfying the following conditions for any α ∈ Nn:

(a) ∂αx H(t, θ, x) ∈ C0([0,T ) × [0, 1] ×Ω);
(b) For any 0 < T1 < T , there are C1, h1 > 0 such that

sup
[0,T1)×[0,1]×Ω

|∂αx H(t, θ, x)| ≤ C1h|α|1 |α|!.

Then for each t ∈ [0,T ), ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∫ 1

0
H(t, x, θ)dθ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
ρ

�

∫ 1

0
|||H(t, θ)|||ρdθ.

3.3. The space X (T,R)

Definition 3.1. Let T > 0 and R > 0.

(1) A function u(t, x) is said to belong in the space X (T,R) if

(a) ∂αx u(t, x) ∈ C0([0,T ) ×Ω) for any α ∈ Nn, and
(b) there exists a positive constant A such that

|||u(t)|||ρ � Aφ
(
θ(t)
θ(T )

+
ρ

R

)
for any t ∈ [0,T ). (3.4)

Here, θ(t) =
∫ t

0
µ(s)/s ds.

(2) Let ψ(t) : [0,∞) → R be a continuous, increasing function satisfying ψ(0) = 0. A function
u(t, x) ∈X (T,R) is said to be of growth order O(ψ(t)) if the constant in (3.4) is of the form Aψ(t).

The following lemma gives us a relationship between the spaces X (T,R) and C0([0,T ),A(Ω)).

Lemma 3.4. X (T,R) is a subspace of C0([0,T ),A(Ω)). Moreover, suppose that u ∈ C0([0,T ),A(Ω))
is of growth order O(µ(t)q), i.e., for some C, h > 0 and q ∈ [0, 1],

sup
x∈Ω
|∂αx u(t, x)| ≤ Cµ(t)qh|α||α|! for any t ∈ [0,T ). (3.5)

If 0 < nhR < 1/2, then u ∈X (T,R) and is of growth order O(µ(t)q). Furthermore,

|||u(t)|||ρ � CKµ(t)qφ

(
θ(t)
θ(T )

+
ρ

R

)
for any t ∈ [0,T ), (3.6)

for some K > 1.
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Proof. The proof of the first claim may be found in [19] but will be reproduced here for completeness.
It can be easily shown that X (T,R) is a vector space over R. Now, let u(t, x) ∈ X (T,R) and take

0 < T1 < T . Then ϕ
(
θ(T1)
θ(T )

+
z
R

)
is a holomorphic function on {z ∈ C : |z| < R(1 − θ(T1)/θ(T ))}. By

Cauchy’s estimate, for any k ∈ N,

|ϕ(k)(θ(T1)/θ(T ))| ≤ C0hkk!,

for some C0 and h, both positive. From the assumptions on u(t, x), there exists M > 0 such that

|||u(t)|||ρ � Mϕ

(
θ(T1)
θ(T )

+
ρ

R

)
for any t ∈ [0,T1). Taking the Taylor series of the right-hand side about ρ = 0 implies that the majorant
relation is equivalent to ∑

α∈Nn

supx∈Ω |∂
α
x u(t, x)|
|α|!

ρ|α| � MC0

∞∑
k=0

(
h
R

)k

ρk. (3.7)

As ∑
α∈Nn

supx∈Ω |∂
α
x u(t, x)|
|α|!

ρ|α| =

∞∑
k=0

[∑
|α|=k

supx∈Ω |∂
α
x u(t, x)|
|α|!

]
ρk, (3.8)

then the majorant relation implies that for all α ∈ Nn,

sup
x∈Ω
|∂αx u(t, x)| ≤ MC0(h/R)|α||α|!.

The above inequality holds for all t ∈ [0,T1). Hence, it follows that

sup
[0,T1)×Ω

|∂αx u(t, x)| ≤ MC0(h/R)|α||α|!.

For the second claim, using (1) of Lemma 3.2 we have

|||u(t)|||ρ �
Cµ(t)q

1 − nhρ
� CKµ(t)qφ

(
ρ

R

)
� CKµ(t)qφ

(
θ(t)
θ(T )

+
ρ

R

)
.

Here, K = K(R) is the constant obtained when (3) of Lemma 3.1 is applied. �

As was stated in a previous remark, if we limit 0 < nhR < 1/2, we can find K > 0, independent of
R, such that (3.6) holds. Henceforth, for brevity, the arguments for φ and µ will be omitted and will be
written only if necessary.

4. Some estimates

In this section, we will discuss the solvability of the equation Lu = g(t, x) in X (T,R), where the
operator L, dependent on λ0, is defined as

L = t∂t − λ0(t, x).

Here, λ0(t, x) is a function such that for some Λ0 > 1 and c0 ∈ (0, 1],
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(B1) for all α ∈ Nn, sup
[0,T )×Ω

|∂αxλ0(t, x)| ≤ Λ0h|α||α|!

(B2) for all (t, x) ∈ [0,T ) ×Ω, Re λ0(t, x) ≤ −2c0 < 0.

The next lemma will give estimates which will be helpful in our later computations.
Lemma 4.1. Set H(λ0; t, τ, x) = exp

( ∫ t

τ
λ0(s, x)s−1ds

)
. Then for all α ∈ Nn, we have

sup
x∈Ω

∣∣∣∂αx H(λ0; t, τ, x)
∣∣∣ ≤ (

τ

t

)c0
(
4Λ0hn

c0

)|α|
|α|!. (4.1)

Proof. Take f (x) = ex and g(t, τ, x) =
∫ t

τ
λ0(s, x)s−1ds. By the multivariate Faá di Bruno formula [5],

we have

∂αx H(λ0; t, τ, x) =
∑

1≤r≤m

f (r)[g(t, τ, x)]
∑
p(α,r)

α!
m∏

j=1

[∂` j
x g]k j

(k j!)(` j!)k j
,

where m = |α|, α! = α1! · α2! . . . αm! and p(α, r) =
{
(k1, . . . , km), (`1, . . . , `m): For some 1 ≤ s ≤ m, ki =

0, `i = 0 for 1 ≤ i ≤ m − s, ki > 0 for m − s + 1 ≤ i ≤ m and 0 ≺ `m−s+1 ≺ . . . ≺ `m with
∑m

i=1 ki =

r,
∑m

i=1 ki`i = α
}
.

Here, we write α ≺ β if for α = (α1, . . . , αm) and β = (β1, . . . , βm), one of the following holds:

(1) |α| < |β|,
(2) |α| = |β| and α1 < β1, or
(3) |α| = |β|, α1 = β1, . . . , αk = βk and αk+1 < βk+1 for 1 ≤ k < m.

One important note to also take into consideration is that
m∑

i=1

ki`i = α implies
m∑

i=1

ki|`i| = m.

Under our assumptions on λ0(t, x) we have that for any x ∈ Ω,

i. |∂αx g(t, τ, x)| ≤ Λ0h|α||α|!(− ln(τ/t)), for any α ∈ Nn,
ii.

∣∣∣ f (k)(g(t, τ, x)
)∣∣∣ ≤ (τ/t)2c0 , for any k ∈ N.

Using these estimates, we have

|∂αx H(λ0; t, τ, x)| ≤
∑

1≤r≤m

(
τ

t

)2c0 ∑
p(α,r)

α!
m∏

j=1

(Λ0h|` j ||` j|!(− ln(τ/t)))k j

(k j!)(` j!)k j

≤

(
τ

t

)c0

hm|α|!
∑

1≤r≤m

Λr
0

∑
p(α,r)

m∏
j=1

(|` j|!)k j
(
(τ/t)c0(− ln(τ/t))k j

)
(k j!)(` j!)k j

≤

(
τ

t

)c0

hm|α|!
∑

1≤r≤m

(
Λ0

c0

)r ∑
p(α,r)

m∏
j=1

(
|` j|!
(` j!)

)k j

.

Here, we used the fact that |yc0(− ln y)| ≤ (k/ec0)k ≤ 1/ck
0 · k!, for any y ∈ (0, 1) and k ∈ N. By a

consequence of the multinomial theorem, for each j,

|` j|!
(` j!)

=
|` j|!

`1, j!`2, j! . . . `n, j!
=

(
|` j|!

`1, j, `2, j . . . , `n, j

)
≤ n|` j |.
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Therefore, for any x ∈ Ω with the assumption that Λ0 > 1,

|∂αx H(λ0; t, τ, x)| ≤
(
τ

t

)c0
(
Λ0hn

c0

)m

|α|!
∑

1≤r≤m

(
m + r − 1

r

)
=

(
τ

t

)c0
(
Λ0hn

c0

)m

|α|! ·
(
2m
m

)
≤

(
τ

t

)c0
(
4Λ0hn

c0

)m

|α|!.

�

Lemma 4.2. If g(t, x) ∈ C0((0,T ],A(Ω)) is of growth order O(µ(t)q), then the equation Lw = g(t, x)
has the unique solution

w(t, x) =

∫ t

0
exp

(∫ t

τ

λ(s, x)
ds
s

)
g(τ, x)

dτ
τ
. (4.2)

Moreover, if there exists A > 0 for which sup
x∈Ω
|∂αx g(t, x)| ≤ Aµ(t)qh|α||α|! for all α ∈ Nn, and if R > 0 is

chosen small enough such that

nhR
(
1 +

4Λ0n
c0

)
<

1
2
, (4.3)

then for any t ∈ [0,T ),

|||w(t)|||ρ �
K
c0

Aµ(t)qφ

(
θ(t)
θ(T )

+
ρ

R

)
, (4.4)

where K = K1/2 is the constant obtained in the application of (3) of Lemma 3.1.

Proof. Set F(t, τ, x) = H(t, τ, x)g(τ, x), where H(t, τ, x) = H(λ0; t, τ, x) is the function defined in
Lemma 4.1. By (1) of Lemma 3.2 and Lemma 4.1, we have for all τ ∈ [0, t],

|||H(t, τ)|||ρ �
(
τ

t

)c0 1
1 − n(4Λ0hn/c0)ρ

,

|||g(τ)|||ρ �
Aµ(τ)q

1 − nhρ
.

As (1 − x)−1(1 − y)−1 � (1 − x − y)−1, for all τ ∈ [0, t],

|||F(t, τ)|||ρ �
(
τ

t

)c0 Aµ(τ)q

1 − (nhR)
(
1 +

4Λ0n
c0

)
(ρ/R)

�

(
τ

t

)c0

· AKµ(τ)qφ. (4.5)

Moreover, if we expand φ around ρ = 0, then the above majorant relation implies that for all α ∈ Nn∑
|α|=k

sup
x∈Ω
|∂αx F(t, τ, x)| ≤

AK
Rk

(
τ

t

)c0

µ(τ)qφ(|α|)(θ(t)/θ(T )).

Therefore, by the increasing property of µ, θ and φ(k), we obtain

|||w(t)|||ρ =
∑
α∈Nn

supx∈Ω

∣∣∣∣∣∣∂k
x

(∫ t

0
F(t, τ, x)

dτ
τ

)∣∣∣∣∣∣
k!

ρ|α|
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�
∑
k∈N

∑
|α|=k

sup
x∈Ω

∫ t

0

∣∣∣∣∣∂αx F(t, τ, x)
dτ
τ

∣∣∣∣∣
 ρk

k!

�
∑
k∈N

(∫ t

0

AK
Rk µ(τ)q

(
τ

t

)c0

φ(k)
(
θ(τ)
θ(T )

)
dτ
τ

)
ρk

k!

�
K
c0

Aµ(t)qφ

(
θ(t)
θ(T )

+
ρ

R

)
.

�

Remark 4.1. If instead of a Cauchy type estimate, g(t, x) satisfies the majorant relation |||g(t)|||ρ �
Aµqφ, then |||F(t, τ)|||ρ can be estimated instead as follows:

|||F(t, τ)|||ρ �
(
τ

t

)c0

Aµqφ ·
1

1 − n(4Λ0hn)ρ
�

(
τ

t

)c0

AKµqφ,

which can use the same constant K = K1/2. Thus, applying the same arguments, we have the similar
result |||w(t)|||ρ � KAc−1

0 µ
qφ on [0,T ).

The next lemma will aid in finding majorants for the derivative of the solution of Lw = g(t, x),
where the right-hand is of growth order O(µ(t)1+q) .

Lemma 4.3. Let g(t, x) ∈ X (T,R) be of growth order O(µ1+q) and let A > 0 for which |||g(t)|||ρ �
Aµ1+qφ. If Lw = g(t, x) and R > 0 is chosen small enough such that (4.3) holds, then for all t ∈ [0,T )
and i = 1, . . . , n,

|||w(t)|||ρ �
K
c0

Aµ1+qφ and
∣∣∣∣∣∣∣∣∣∂xiw(t)

∣∣∣∣∣∣∣∣∣
ρ
�

AKθ(T )
R

µqφ.

Proof. The proof for the estimate |||w(t)|||ρ is the same as in Remark 4.1 and so we only prove the
second majorant relation. Let H(t, τ, x) = H(λ0; t, τ, x). By the same arguments in Remark 4.1 to
estimate |||H(t, τ)g(τ)|||ρ, we can differentiate under the integral sign, and together with (4.2), we obtain

∣∣∣∣∣∣∣∣∣∂xiw(t)
∣∣∣∣∣∣∣∣∣
ρ
�

∑
k∈N

∫ t

0

∑
|α|=k

sup
x∈Ω

∣∣∣∣∣∣∂αx∂xi

(
H(t, τ, x) ·

g(τ, x)
τ

)∣∣∣∣∣∣ dτ
 ρk

k!
.

Note that the integrand is exactly the coefficient of ρk/k! in
∣∣∣∣∣∣∣∣∣∂xi (H(t, τ) · g(τ)/τ)

∣∣∣∣∣∣∣∣∣
ρ
.

Again, by Lemma 3.2 (1), we have for all τ ∈ [0, t],

|||H(t, τ)|||ρ �
(
τ

t

)c0 1
1 − n(4Λ0hn/c0)ρ

.

Thus, under assumption (4.3),∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣H(t, τ) ·
g(τ)
τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ρ

�

(
τ

t

)c0

K ·
Aµ(τ)1+q

τ
φ

(
θ(τ)
θ(T )

+
ρ

R

)
.

Since (τ/t)c0 < 1 and θ′(τ) = µ(τ)/τ, by (4) of Lemma 3.2,∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣∂xi

(
H(t, τ) ·

g(τ)
τ

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
ρ

�
AK
R
µ(τ)qθ′(τ)φ′

(
θ(τ)
θ(T )

+
ρ

R

)
. (4.6)
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Expanding φ′ at ρ = 0, we see that

φ′
(
θ(t)
θ(T )

+
ρ

R

)
=

∑
k∈N

(
φ(k+1)(θ(τ)/θ(T ))

k!

) (
ρ

R

)k
.

Hence, (4.6) implies that∑
|α|=k

sup
x∈Ω

∣∣∣∣∣∣∂αx∂xi

(
H(t, τ, x) ·

g(τ, x)
τ

)∣∣∣∣∣∣ ≤ AK
Rk+1 · µ(τ)qθ′(τ)φ(k+1)(θ(τ)/θ(T )).

Therefore, we obtain∣∣∣∣∣∣∣∣∣∂xiw(t)
∣∣∣∣∣∣∣∣∣
ρ
�

AK
R
µ(t)q

∑
k∈N

∫ t

0

θ′(τ)φ(k+1)(θ(τ)/θ(T ))
k!

dτ
(
ρ

R

)k

�
AKθ(T )

R
µqφ.

�

5. Semilinear estimates

In this section we first solve a semilinear equation which is simpler as in (1.1). This will aid us in
the proof of Theorem 2.1.

Consider the semilinear equation

(t∂t − λ(t, x))u(t, x) = a(t, x) + f (t, x, u), (5.1)

where a(t, x) can be in either C0([0,T ),A(Ω)) or X (T,R), both of growth order O(µq). Moreover,
λ(t, x) and f (t, x, u) are the same as in Eq (2.5). As f (t, x, u) is holomorphic in u for each fixed t and x,
we can expand it as follows:

f (t, x, u) =
∑
m≥2

∂m
u F(t, x, 0, 0)

m!
um.

We have the following result.

Proposition 5.1. Let q ∈ (0, 1] and suppose λ(t, x) and f (t, x, u) satisfy (A3) and (A4). If A, h > 0 for
which a(t, x) satisfies either

(C1) supx∈Ω |∂
α
x a(t, x)| ≤ Aµqh|α||α|! for all α ∈ Nn, or

(C2) |||a(t)|||ρ � Aµqφ on t ∈ [0,T ),

then T,R > 0 can be chosen small enough such that (5.1) has a unique solution in X (T,R) of growth
order O(µ(t)q) which satisfies the following estimate:

|||u(t)|||ρ �
2AK

c
µqφ for all t ∈ [0,T ). (5.2)

To prove this result, we first have the following lemma that will deal with the collection of nonlinear
terms f (t, x, u).
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Lemma 5.2. If |||u(t)|||ρ � Jµφ for all t ∈ [0,T ), and R and T satisfy 0 < R < R1, 0 < 2nhR < 1/2 and
Jµ(T )q < R1/2, then there exists C1 > 1, independent of T and c such that for all i = 1, 2, . . . , n and
t ∈ [0,T ),

(1) ||| f (t, u)|||ρ � C1J2µ2qφ,
(2) |||∂u f (t, u)|||ρ � C1Jµqφ.
(3)

∣∣∣∣∣∣∣∣∣∂xi f (t, u)
∣∣∣∣∣∣∣∣∣
ρ
� C1J2µ2qφ.

Proof. We will only estimate (2) and (3) as the proof for (1) is similar.
Since R is chosen such that 0 < 2nhR < 1/2, by assumption (A3) and Lemma 3.4 we see that∣∣∣∣∣∣∣∣∣∂m
u F(t, 0, 0)

∣∣∣∣∣∣∣∣∣
ρ
�

A1Km!
Rm

1
φ. Thus, using the Taylor series expansion of f at u = 0, we get

|||∂u f (t, u)|||ρ �
∑
m≥2

∣∣∣∣∣∣∣∣∣∂m
u F(t, 0, 0)

∣∣∣∣∣∣∣∣∣
ρ

|||u|||m−1
ρ

(m − 1)!

�
A1K
R2

1

Jµqφ
∑
m≥0

(m + 2)
(

Jµq

R1

)m

�
6A1K

R2
1

Jµqφ.

To prove (3), note that by (A3),

sup
[0,T )×Ω

|∂αx∂xi∂
m
u F(t, x, 0, 0)| ≤

A1h|α|+1(|α| + 1)!m!
Rm

1
,

and so ∣∣∣∣∣∣∣∣∣∂xi∂
m
u F(t, 0, 0)

∣∣∣∣∣∣∣∣∣
ρ
�

∑
α∈Nn

A1h|α|+1(|α| + 1)m!
Rm

1
ρ|α|

=
A1hm!

Rm
1

∑
α∈Nn

(hρ)|α|(|α| + 1).

Using the fact that 2n ≥ n + 1 and (1 − x)−n � (1 − nx)−1 we get∣∣∣∣∣∣∣∣∣∂xi∂
m
u F(t, 0, 0)

∣∣∣∣∣∣∣∣∣
ρ
�

A1hm!
Rm

1
·

1
1 − 2nhρ

�
A1Khm!

Rm
1

φ.

Thus, ∣∣∣∣∣∣∣∣∣∂xi f (t, u)
∣∣∣∣∣∣∣∣∣
ρ
�

∑
m≥2

∣∣∣∣∣∣∣∣∣∂xi∂
m
u F(t, 0, 0)

∣∣∣∣∣∣∣∣∣
ρ

|||u|||mρ
m!

�
A1hK

R2
1

(Jµq)2φ
∑
m≥0

(1/2)m−2

=
2A1hK

R2
1

Jqµ2qφ.

The claim is proved by taking C1 > 1 to be the maximum of all the obtained constants. �
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Remark 5.1. Throughout the proof and the proceeding section we will make use of the following
observation. If a function f (t, x) satisfies |||w(t)|||ρ � Mφ for all [0,T ) × Ω, then |w(t, x)| ≤ M. This is
because the majorant relation implies that∑

k∈N

[∑
|α|=k

supx∈Ω |∂
α
x w(t, x)|

k!

]
ρk � M

∑
k∈N

φ(k)(θ(t)/θ(T ))
k!

(
ρ

R

)k

from which the result is obtained by comparing coefficients at k = 0 and the fact that φ(1) < 1.

We now finally present the proof of Proposition 5.1.

Proof of Proposition 5.1. We will solve (5.1) by successive approximations. Define the approximate
solutions as follows:

Lu0(t, x) = a(t, x),
Lu1(t, x) = a(t, x) + f (t, x, u0),

...

Lun(t, x) = a(t, x) + f (t, x, un−1).

Also define dn(t, x) = un(t, x) − un−1(t, x) where u−1(t, x) ≡ 0. We will prove that if we choose R and T
small enough such that

nhR
(
1 +

4A1n
R1c

)
<

1
2

(5.3)

4AK2

c
µ(T )q < min

{
c

C1
,

R1

2

}
, (5.4)

where C1 is the constant obtained in the application of Lemma 5.2, then un and dn satisfy

|||dn(t)|||ρ �
AK
c

(
1
2

)n

µqφ and |||un(t)|||ρ �
2AK

c
µqφ, (5.5)

for all n ∈ N and t ∈ [0,T ). We take note that it is enough to prove the claim by proving only the
estimates for dn since for any n ≥ 0, un(t, x) =

∑n
j=0 d j(t, x).

Suppose a(t, x) satisfies (C1). Since λ(t, x) satisfies (B1) and (B2) with Λ0 = A1/R1 and c0 = c.
Thus, under assumption (5.3) and Lemma 4.2 we have

|||d0(t)|||ρ = |||u0(t)|||ρ �
AK
c
µqφ

on t ∈ [0,T ). If a(t, x) satisfies (C2), then we instead use Remark 4.1. This proves the case when k = 0.
For the case k = 1, observe that by Lemma 5.2,

||| f (t, x, u0)|||ρ � C1

(AK
c

)2

µ2qφ.

Since d1(t, x) satisfies Ld1(t, x) = f (t, x, u0), by Remark 4.1,

|||d1(t)|||ρ �
AK
c

(
AC1K2

c2 µ(T )q

)
µqφ.
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Thus, if (5.4) holds, then d1(t, x) satisfies |||d1(t)|||ρ �
AK
2c µ

qφ which is what we wanted. For k ≥ 2, we
proceed by induction. Observe that for k ≥ 1, dk+1 satisfies Ldk+1 = f (t, x, uk) − f (t, x, uk−1). Now,

f (t, x, un) − f (t, x, un−1) = dn(t, x) ×
∫ 1

0
∂u f (t, x, ζdn + un−1)dζ.

For any ζ ∈ [0, 1], |||ζdn + un−1|||ρ �
3AK

c µqφ. Hence, by the choice of T and Lemmas 3.3 and 5.2, we
have

||| f (t, x, uk) − f (t, x, uk−1)|||ρ �
AK
c
·

(
1
2

)n

µqφ ·

(
3AC1K

c

)
µqφ

� A
(
1
2

)n (
3AC1K2

c2 µ(T )q

)
µqφ

� A
(
1
2

)n+1

µqφ.

By an application of Lemma 4.2, we finally conclude that

|||dn+1(t)|||ρ �
AK
c

(
1
2

)n+1

µqφ on t ∈ [0,T ).

The estimate for |||uk+1(t)|||ρ follows from (2) of Lemma 3.2. This proves the existence of a solution
u(t, x) ∈ C0([0,T ),A(Ω)).

To prove uniqueness, suppose that u and v are two distinct solutions of (5.1) and set w(t, x) =

u(t, x)− v(t, x). Then, w(t, x) satisfies the equation Lw = f (t, x, u)− f (t, x, v) and consequently satisfies(
t∂t − λ(t, x) −

∫ 1

0
∂u f (t, x, ζv + (1 − ζ)u)dζ

)
w(t, x) = 0. (5.6)

Since for any ζ ∈ [0, 1], |||ζv + (1 − ζ)u|||ρ �
4AK

c µqφ, by Lemma 5.2 and Remark 5.1,

|∂u f (t, x, ζv + (1 − ζ)u)| ≤
4AC1K

c
µ(T )q <

c
2
< c.

This means that Re
(
λ +

∫ 1

0
∂u f (t, x, ζv + (1 − ζ)u)dζ

)
< −c < 0 and the operator on the left-hand side

of (5.6) is invertible. This will imply that w = 0. �

6. Proof of main result

To begin this section, we first prove an estimate involving the function G(t, x, u, ∂xu). Recall that G
is the collection of nonlinear terms in the expansion of F which contain ∂xu.

Lemma 6.1. Suppose that for any t ∈ [0,T ),{
|||u(t)|||ρ, |||v(t)|||ρ

}
� Jµqφ.

Then there exists C3 > 0 such that for 1 ≤ i ≤ n and for all (t, u, v) ∈ [0,T ) × DR1 × BR1 ,{
|||∂uG(t, u, v)|||ρ,

∣∣∣∣∣∣∣∣∣∂viG(t, u, v)
∣∣∣∣∣∣∣∣∣
ρ

}
� C3Jµφ.
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Proof. Recall that G(t, x, u, v) has the expansion

G(t, x, u, v) =
∑

i+| j|≥2,| j|≥1

∂i
u∂

j
vF(t, x, 0, 0)uiv j.

Note that for all 1 ≤ i ≤ n, ∂2
uvi

F = ∂2
uvi

G and ∂2
viv j

F = ∂2
viv j

G. Thus, by assumption (A5) and
Lemma 3.4, {∣∣∣∣∣∣∣∣∣∂2

uvi
G(t, u, v)

∣∣∣∣∣∣∣∣∣
ρ
,
∣∣∣∣∣∣∣∣∣∣∣∣∂2

viv j
G(t, u, v)

∣∣∣∣∣∣∣∣∣∣∣∣
ρ

}
� MKµ1−qφ.

for any (t, u, v) ∈ [0,T ) × DR1 × BR1 and for 1 ≤ i, j ≤ n.
Since the lowest power of v in the expansion of ∂uG is 1, then ∂uG(t, x, u, 0) = 0. Therefore,

∂uG(t, x, u, v) = ∂uG(t, x, u, v) − ∂uG(t, x, u, 0)

=

n∑
i=1

vi(t, x)
∫ 1

0
∂uviG(t, x, u, sv)ds

and so

|||∂uG(t, u, v)|||ρ �
n∑

i=1

|||vi(t)|||ρ

∫ 1

0

∣∣∣∣∣∣∣∣∣∂uviG(t, u, sv)
∣∣∣∣∣∣∣∣∣
ρ
ds

� nJµqφ · MKµ1−qφ

� nJMKµφ.

An estimate for
∣∣∣∣∣∣∣∣∣∂viG(t, u, v)

∣∣∣∣∣∣∣∣∣
ρ

can similarly be obtained. Taking C3 to be the maximum of the
obtained constants, the claim is proved. �

Lastly, we present the following lemma which will be used to deal with operators involving
derivatives.

Lemma 6.2. Let λ̃(v; t, x) = λ(t, x) + ∂u f (t, x, v). Suppose that λ and f satisfy (A3) and (A4). If
|||v(t)|||ρ � J1φ such that

J1 < min{c/C1,R1/2},

then (B1) and (B2) are satisfied with Λ0 = 5A1/R1 and c0 = c/2.

Proof. By (2) of Lemma 5.2, we have |||∂u f (t, v)|||ρ � C1J1φ. Consequently, by Remark 5.1,
|∂u f (t, v)| < C1J1 < c which implies that Re λ̃(v; t, x) ≤ −c for any (t, x) ∈ [0,T ) × Ω. Moreover, for
any (t, x) ∈ [0,T ) ×Ω and α ∈ Nn,

|∂αx∂u f (t, x, v)| ≤
∑
m≥2

|∂αx∂
m
u F(t, x, 0, 0)|
(m − 1)!

|v|m−1

≤
∑
m≥2

A1h|α||α|!m!
Rm

1 (m − 1)!

(R1

2

)m−1

=
A1

2R1
h|α||α|!

∑
m≥0

(m + 2)(1/2)m

AIMS Mathematics Volume 7, Issue 6, 10400–10421.
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=
3A1

R1
h|α||α|!.

Thus, sup
[0,T )×Ω

|∂αx λ̃(t, x)| ≤ 4A1R−1
1 h|α||α|!. �

Remark 6.1. If we replace ∂u f (t, x, v) in the definition of λ̃ with
∫ 1

0
∂u f (t, x, v)dζ, where v = v(ζ, t, x),

then the result will still hold if |||v(ζ, t)|||ρ � J1φ for any ζ ∈ [0, 1]. This result follows from Lemma 3.3.

We require the following to hold:

nhR
(
1 +

8A1n
R1c

)
< 1/2, (6.1)

4AKQ
c

µ(T )q < min
{

c
C1
,

R1

2

}
, (6.2)

Pη(T,R) < 1/2, (6.3)

where η(T,R) = max {µ(T ), θ(T )/R} and P,Q are constants such that

Q = C2 +
2KC2

c
+ K and P = nBK ·

4K
c

+ 16C3(n + 1)
AK2Q

c2 . (6.4)

Here, C2 is chosen sufficiently large such that for all t ∈ [0,T ) and i = 1, 2, . . . , n,∣∣∣∣∣∣∣∣∣∂xia(t)
∣∣∣∣∣∣∣∣∣
ρ
� AC2µ

qφ and
∣∣∣∣∣∣∣∣∣∂xiλ(t)

∣∣∣∣∣∣∣∣∣
ρ
� C2φ.

We note that condition (6.1) will enable us to use Proposition 5.1 and Lemma 4.2. Condition (6.2)
ensures that the approximate solutions are within the domain of definition of both f and G and would
allow us to apply Lemma 6.2. On the other hand, (6.3) guarantees the convergence of both {uk(t, x)}
and

{
∂xiuk(t, x)

}
. Note that we must choose R small enough so that (6.1) will be satisfied.

If q ∈ (0, 1], we have to choose a small T > 0 so that (6.2) and (6.3) hold. If q = 0, we must
also have to choose A > 0 to be small as to satisfy (6.2). Finally, observe also that as K < Q, (6.2)
implies (5.4) so that we can impose this condition in the proof of Proposition 5.1.

6.1. Proof of existence

We again use the method of successive approximations. Define the approximate solutions as
follows:

Lu0 = a(t, x) + f (t, x, u0), (6.5)

Lu1 = a(t, x) +

n∑
i=1

bi(t, x)∂xiu0 + f (t, x, u1) + G (t, x, u0, ∂xu0) , (6.6)

...

Lun = a(t, x) +

n∑
i=1

bi(t, x)∂xiun−1 + f (t, x, un) + G (t, x, un−1, ∂xun−1) . (6.7)
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Furthermore, set dn := un − un−1, with u−1(t, x) ≡ 0. Again, it suffices to prove the convergence of the
partial sums of di.

By Proposition 5.1, (6.5) has a unique solution u0(t, x) ∈ C0([0,T ),A(Ω)) that satisfies the estimate

|||d0(t)|||ρ = |||u0(t)|||ρ �
2AK

c
µqφ on t ∈ [0,T ).

To find an estimate for
∣∣∣∣∣∣∣∣∣∂xid0(t)

∣∣∣∣∣∣∣∣∣
ρ
, we differentiate (6.5) with respect to xi which is given by

(t∂t − λ(t, x) − ∂u f (t, x, u0)) ∂xiu0 = ∂xia(t, x) + u0∂xiλ(t, x) + ∂xi f (t, x, u0).

We first estimate the right-hand side. By (3) of Lemma 5.2 and (6.2), we get

∣∣∣∣∣∣∣∣∣∂xi f (t, u0)
∣∣∣∣∣∣∣∣∣
ρ
� C1

(
2AK

c
µq

)2

φ � AKµqφ.

This means that the formal norm of the right-hand side is majorized by(
AC2 +

2AKC2

c
+ AK

)
µqφ � AQµqφ,

where Q is the constant described in (6.4).
Under condition (6.1) and Lemma 6.2, we can apply Lemma 4.2 with c0 = c/2 to have∣∣∣∣∣∣∣∣∣∂xiu0

∣∣∣∣∣∣∣∣∣
ρ
�

2
c

AKQµqφ.

Thus, for the case k = 0, we have the following estimates:{
|||u0(t)|||ρ,

∣∣∣∣∣∣∣∣∣∂xiu0(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

2AKQ
c

µqφ. (6.8)

For the case k ≥ 1, recall that uk satisfies

Luk = a(t, x) + f (t, x, uk) + Φ(uk−1), (6.9)

where

Φ(w) =

n∑
i=1

bi(t, x)∂xiw + G(t, x,w, ∂xw).

With that, we have the following result for all k ≥ 1.

Proposition 6.3. The following hold for k ≥ 1 and for all 1 ≤ i ≤ n and for all t ∈ [0,T ):

{
|||dk|||ρ(t),

∣∣∣∣∣∣∣∣∣∂xidk(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

2AKQ
c

(
1
2

)k

µqφ,{
|||uk|||ρ(t),

∣∣∣∣∣∣∣∣∣∂xiuk(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

4AKQ
c

µqφ,

on [0,T ) ×Ω.
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Proof. We start with the case k = 1. Recall that by assumption (A2), we have

sup
x∈Ω

∣∣∣∂αx bi(t, x)
∣∣∣ ≤ Bµ(t)h|α||α|!.

Thus, by Lemma 3.4, |||bi(t)|||ρ � BKµφ for each i = 1, 2, . . . , n and for t ∈ [0,T ),∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

n∑
i=1

bi(t)∂xiu0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ρ

� nBK ·
2AKQ

c
µ1+qφ.

Also, as G(t, x, u0, ∂xu0) = G(t, x, u0, ∂xu0) −G(t, x, 0, 0), by Lemma 6.1,

|||G(t, u0, ∂xu0)|||ρ � |||u0|||ρ

∫ 1

0
|||∂uG(t, ζu, ζ∂xu0)|||ρdζ

+

n∑
i=1

∣∣∣∣∣∣∣∣∣∂xiu0

∣∣∣∣∣∣∣∣∣
ρ

∫ 1

0

∣∣∣∣∣∣∣∣∣∂viG(t, x, ζu, ζ∂xu0)
∣∣∣∣∣∣∣∣∣
ρ
dζ

� C3(n + 1)
(
2AKQ

c

)2

µ1+qφ.

Therefore, |||Φ(u0)|||ρ � APQµ1+qφ, where P is the constant defined in (6.4). Since K < Q, by (6.3),

|||a(t) + Φ(u0)|||ρ � (AK + AQ)µqφ � 2AQµqφ.

Applying Proposition 5.1, we have

|||u1(t)|||ρ �
4AKQ

c
µqφ on t ∈ [0,T ).

Note that d1 = u1 − u0 satisfies the equation

(t∂t − λ(t, x))d1 = f (t, x, u1) − f (t, x, u0) + Φ(u0).

Expressing the difference f (t, x, u1) − f (t, x, u0) as an integral and transferring this expression to the
left-hand side, the above equation becomes(

t∂t − λ(t, x) −
∫ 1

0
∂u f (t, x, ζu1 + (1 − ζ)u0)dζ

)
d1 = Φ(u0).

Since |||ζu1 + (1 − ζ)u0|||ρ �
8AKQ

c µqφ for any ζ ∈ [0, 1], then under condition (6.1) and Lemma 6.2,
we can apply Lemma 4.2 with c0 = c/2 to have

|||d1(t)|||ρ = |||u1 − u0|||ρ �
2AKPQ

c
µ1+qφ.

Moreover, since Φ(u0) is of growth order O(µ1+q), we can apply Lemma 4.3 to obtain∣∣∣∣∣∣∣∣∣∂xid1(t)
∣∣∣∣∣∣∣∣∣
ρ
�

2AKPQ
R

θ(T )µqφ.
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Thus under condition (6.3), it is shown that

{
|||d1(t)|||ρ,

∣∣∣∣∣∣∣∣∣∂xid1(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

2AKQ
c

(
1
2

)
µqφ on t ∈ [0,T ), (6.10){

|||u1(t)|||ρ,
∣∣∣∣∣∣∣∣∣∂xiu1(t)

∣∣∣∣∣∣∣∣∣
ρ

}
�

4AKQ
c

µqφ on t ∈ [0,T ) (6.11)

which concludes the case k = 1.
Now, assume the claim holds for k = 1, 2, . . . ,m. We will show that the claim still holds for

k = m + 1. Recall that um+1 satisfies

(t∂t − λ(t, x))um+1 = a(t, x) + f (t, x, um+1) + Φ(um).

Using similar arguments, we can show that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

n∑
i=1

bi(t)∂xium(t)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ρ

� nBK ·
4AKQ

c
µ1+qφ,

|||G(t, um, ∂xum)|||ρ � C3(n + 1)
(
4AKQ

c

)2

µ1+qφ.

By (6.3), we have |||a(t) + Φ(um)|||ρ � (AK+APQµ)µqφ � 2AQµqφ. Consequently, by Proposition 5.1,
um+1(t, x) satisfies

|||um+1(t)|||ρ �
4AKQ

c
µqφ on t ∈ [0,T ).

In addition, dm+1 = um+1 − um satisfies(
t∂t − λ(t, x) −

∫ 1

0
∂u f (t, x, ζum+1 + (1 − ζ)um)dζ

)
dm+1 = Φ(um) − Φ(um−1). (6.12)

Let
Hm = G(t, x, um, ∂xum) −G(t, x, um−1, ∂xum−1).

Since for any ζ ∈ [0, 1], and i = 1, . . . , n,{
|||ζum + (1 − ζ)um−1|||ρ,

∣∣∣∣∣∣∣∣∣ζ∂xium + (1 − ζ)∂xium−1

∣∣∣∣∣∣∣∣∣
ρ

}
�

4AKQ
c

µqφ,

then

|||Hm|||ρ � |||dm(t)|||ρ

∫ 1

0

∣∣∣∣∣∣∣∣∣∂uG(t, ζum + (1 − ζ)um−1, ζ∂xium + (1 − ζ)∂xium−1)
∣∣∣∣∣∣∣∣∣
ρ
dζ

+

n∑
i=1

∣∣∣∣∣∣∣∣∣∂xidm

∣∣∣∣∣∣∣∣∣
ρ

∫ 1

0

∣∣∣∣∣∣∣∣∣∂viG(t, ζum + (1 − ζ)um−1, ζ∂xium + (1 − ζ)∂xium−1)
∣∣∣∣∣∣∣∣∣
ρ
dζ

� 8C3(n + 1)
(AKQ

c

)2 (
1
2

)m

µ1+qφ on t ∈ [0,T ).
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Hence, we conclude that

|||Φ(um) − Φ(um−1)|||ρ �
APQ

c

(
1
2

)m

µ1+qφ on t ∈ [0,T ). (6.13)

Since |||ζum+1 + (1 − ζ)um|||ρ �
8AKQ

c µqφ for any ζ ∈ [0, 1], then under condition (6.1) and
Lemma 6.2, we can apply Lemmas 4.2 and 4.3 with c0 = c/2 to prove our claim. �

Furthermore, by Remark 5.1, this proves the existence of a solution u(t, x) in C0([0,T ),A(Ω)) of
growth order O(µ(t)q).

6.2. Proof of uniqueness

Suppose u and v are two distinct solutions to (1.1). By our recently proved result, we can assume
they satisfy the following estimate:{

|||u(t)|||ρ,
∣∣∣∣∣∣∣∣∣∂xiu(t)

∣∣∣∣∣∣∣∣∣
ρ
, |||v(t)|||ρ,

∣∣∣∣∣∣∣∣∣∂xiv(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

4AKQ
c

µqφ on [0,T ). (6.14)

Set w = u − v. Under assumption (6.14), we have{
|||w(t)|||ρ,

∣∣∣∣∣∣∣∣∣∂xiw(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

8AKQ
c

µqφ. (6.15)

Choose T ∗ ∈ (0,T ] such that the following holds on [0,T ∗):

8AC1KQ
c

µ(T ∗) ≤
{

c
C1
,

R1

2

}
. (6.16)

Moreover, by our choice of T and T ∗ ∈ [0,T ), it follows that Pη(T ∗,R) < 1/2. Again, (6.16) implies
that w(t, x) is in our domain of definition of f and G and will allow us to use Lemma 6.2. We have(

t∂t − λ(t, x) −
∫ 1

0
∂u f (t, x, ζu + (1 − ζ)v)dζ

)
w(t, x) = Φ(u) − Φ(v). (6.17)

Since
∣∣∣∣∣∣∣∣∣∂xiw(t)

∣∣∣∣∣∣∣∣∣
ρ
�

∣∣∣∣∣∣∣∣∣∂xiu(t)
∣∣∣∣∣∣∣∣∣
ρ

+
∣∣∣∣∣∣∣∣∣∂xiv(t)

∣∣∣∣∣∣∣∣∣
ρ
, we have∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

n∑
i=1

bi(t)∂xiw(t)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ρ

� nBK ·
8AKQ

c
µ1+qφ on t ∈ [0,T ∗).

Moreover, since for all ζ ∈ [0, 1],{
|||ζu(t) + (1 − ζ)v(t)|||ρ,

∣∣∣∣∣∣∣∣∣ζ∂xiu(t) + (1 − ζ)∂xiv(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

4AKQ
c

µqφ, (6.18)

by (6.14), together with (6.1), we have

|||G(t, u, ∂xu) −G(t, x, v, ∂xv)|||ρ �
64A2C3K2Q2

c2 (n + 1)µ1+qφ.
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Consequently, we have

|||Φ(u) − Φ(v)|||ρ �
n∑

i=1

|||bi(t)|||ρ
∣∣∣∣∣∣∣∣∣∂xiw(t)

∣∣∣∣∣∣∣∣∣
ρ

+ |||G(t, u, ∂xu) −G(t, v, ∂xv)|||ρ

� 4AQ
(
nBK ·

2K
c

+ 16C3(n + 1)
AK2Q

c2

)
µ1+qφ

� 4APQµ1+qφ.

Since (6.18) holds for any ζ ∈ [0, 1] together with (6.16), the operator on the left-hand side of
Eq (6.17) satisfies Lemma 6.2. Hence, we conclude that{

|||w(t)|||ρ,
∣∣∣∣∣∣∣∣∣∂xiw(t)

∣∣∣∣∣∣∣∣∣
ρ

}
�

8AKQ
c

(
1
2

)
µqφ on t ∈ [0,T ∗). (6.19)

Repeating our arguments, but replacing (6.14) with (6.19), it can be shown that

|||Φ(u) − Φ(v)|||ρ � 4APQ · (1/2)µ1+qφ

and
{
|||w(t)|||ρ,

∣∣∣∣∣∣∣∣∣∂xiw(t)
∣∣∣∣∣∣∣∣∣
ρ

}
� 4AKQ/c · (1/2)2µqφ. Proceeding inductively, we can show that |||w(t)|||ρ

and
∣∣∣∣∣∣∣∣∣∂xiw(t)

∣∣∣∣∣∣∣∣∣
ρ

satisfy the following estimate for any k ≥ 0:

{
|||w(t)|||ρ,

∣∣∣∣∣∣∣∣∣∂xiw(t)
∣∣∣∣∣∣∣∣∣
ρ

}
�

8AKQ
c

(
1
2

)k

µqφ on t ∈ [0,T ∗). (6.20)

As the above estimate holds for all k ∈ N, if we let k → ∞, we conclude that |||w(t)|||ρ = 0 and so
u = v on [0,T ∗)×Ω. This proves that the solution is unique, which completes the proof of Theorem 2.1.

7. Conclusions

In this paper, we proved an existence and uniqueness theorem for a class of first order nonlinear
singular partial differential equations. The obtained solution is continuous in the ‘time’ variable and
uniformly analytic in the ‘space’ variable, and satisfies the same growth order as the inhomogeneous
term. The proof made use of formal norms and Lax’s majorant function.
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