Research article

Forecasting stock market volatility: the role of gold and exchange rate

  • Received: 20 April 2020 Accepted: 10 June 2020 Published: 12 June 2020
  • MSC : 91B25, 91B80

  • The objective of our paper is to show that gold and exchange rate volatility is predictive of stock volatility from both in-sample and out-of-sample perspectives. There exists very significant predictability from gold and exchange rate volatility to Hang Seng Index (HSI) return volatility among in-sample results. The out-of-sample results demonstrate the gold and exchange rate volatility extracts significantly useful information for Hang Seng Index (HSI) return volatility. Furthermore, the performance of the predictive ability of gold and exchange rate volatility is robust during business cycles and incremental framework.

    Citation: Zhifeng Dai, Huiting Zhou, Xiaodi Dong. Forecasting stock market volatility: the role of gold and exchange rate[J]. AIMS Mathematics, 2020, 5(5): 5094-5105. doi: 10.3934/math.2020327

    Related Papers:

    [1] Patarawadee Prasertsang, Thongchai Botmart . Improvement of finite-time stability for delayed neural networks via a new Lyapunov-Krasovskii functional. AIMS Mathematics, 2021, 6(1): 998-1023. doi: 10.3934/math.2021060
    [2] Jenjira Thipcha, Presarin Tangsiridamrong, Thongchai Botmart, Boonyachat Meesuptong, M. Syed Ali, Pantiwa Srisilp, Kanit Mukdasai . Robust stability and passivity analysis for discrete-time neural networks with mixed time-varying delays via a new summation inequality. AIMS Mathematics, 2023, 8(2): 4973-5006. doi: 10.3934/math.2023249
    [3] Boonyachat Meesuptong, Peerapongpat Singkibud, Pantiwa Srisilp, Kanit Mukdasai . New delay-range-dependent exponential stability criterion and H performance for neutral-type nonlinear system with mixed time-varying delays. AIMS Mathematics, 2023, 8(1): 691-712. doi: 10.3934/math.2023033
    [4] Yonggwon Lee, Yeongjae Kim, Seunghoon Lee, Junmin Park, Ohmin Kwon . An improved reachable set estimation for time-delay linear systems with peak-bounded inputs and polytopic uncertainties via augmented zero equality approach. AIMS Mathematics, 2023, 8(3): 5816-5837. doi: 10.3934/math.2023293
    [5] Rupak Datta, Ramasamy Saravanakumar, Rajeeb Dey, Baby Bhattacharya . Further results on stability analysis of Takagi–Sugeno fuzzy time-delay systems via improved Lyapunov–Krasovskii functional. AIMS Mathematics, 2022, 7(9): 16464-16481. doi: 10.3934/math.2022901
    [6] Yude Ji, Xitong Ma, Luyao Wang, Yanqing Xing . Novel stability criterion for linear system with two additive time-varying delays using general integral inequalities. AIMS Mathematics, 2021, 6(8): 8667-8680. doi: 10.3934/math.2021504
    [7] Xingyue Liu, Kaibo Shi . Further results on stability analysis of time-varying delay systems via novel integral inequalities and improved Lyapunov-Krasovskii functionals. AIMS Mathematics, 2022, 7(2): 1873-1895. doi: 10.3934/math.2022108
    [8] Xiao Ge, Xinzuo Ma, Yuanyuan Zhang, Han Xue, Seakweng Vong . Stability analysis of systems with additive time-varying delays via new bivariate quadratic reciprocally convex inequality. AIMS Mathematics, 2024, 9(12): 36273-36292. doi: 10.3934/math.20241721
    [9] Huahai Qiu, Li Wan, Zhigang Zhou, Qunjiao Zhang, Qinghua Zhou . Global exponential periodicity of nonlinear neural networks with multiple time-varying delays. AIMS Mathematics, 2023, 8(5): 12472-12485. doi: 10.3934/math.2023626
    [10] Wentao Le, Yucai Ding, Wenqing Wu, Hui Liu . New stability criteria for semi-Markov jump linear systems with time-varying delays. AIMS Mathematics, 2021, 6(5): 4447-4462. doi: 10.3934/math.2021263
  • The objective of our paper is to show that gold and exchange rate volatility is predictive of stock volatility from both in-sample and out-of-sample perspectives. There exists very significant predictability from gold and exchange rate volatility to Hang Seng Index (HSI) return volatility among in-sample results. The out-of-sample results demonstrate the gold and exchange rate volatility extracts significantly useful information for Hang Seng Index (HSI) return volatility. Furthermore, the performance of the predictive ability of gold and exchange rate volatility is robust during business cycles and incremental framework.


    Over the last two decades, many researches used LKF method to get stability results for time-delay systems [1,2]. The LKF method has two important technical steps to reduce the conservatism of the stability conditions. The one is how to construct an appropriate LKF, and the other is how to estimate the derivative of the given LKF. For the first one, several types of LKF are introduced, such as integral delay partitioning method based on LKF [3], the simple LKF [4,5], delay partitioning based LKF [6], polynomial-type LKF [7], the augmented LKF [8,9,10]. The augmented LKF provides more freedom than the simple LKF in the stability criteria because of introducing several extra matrices. The delay partitioning based LKF method can obtain less conservative results due to introduce several extra matrices and state vectors. For the second step, several integral inequalities have been widely used, such as Jensen inequality [11,12,13,14], Wirtinger inequality [15,16], free-matrix-based integral inequality [17], Bessel-Legendre inequalities [18] and the further improvement of Jensen inequality [19,20,21,22,23,24,25]. The further improvement of Jensen inequality [22] is less conservative than other inequalities. However, The interaction between the delay partitioning method and the further improvement of Jensen inequality [23] was not considered fully, which may increase conservatism. Thus, there exists room for further improvement.

    This paper further researches the stability of distributed time-delay systems and aims to obtain upper bounds of time-delay. A new LKF is introduced via the delay partitioning method. Then, a less conservative stability criterion is obtained by using the further improvement of Jensen inequality [22]. Finally, an example is provided to show the advantage of our stability criterion. The contributions of our paper are as follows:

    The integral inequality in [23] is more general than previous integral inequality. For r=0,1,2,3, the integral inequality in [23] includes those in [12,15,21,22] as special cases, respectively.

    An augmented LKF which contains general multiple integral terms is introduced to reduce the conservatism via a generalized delay partitioning approach. For example, the tt1mhx(s)ds, tt1mhtu1x(s)dsdu1, , tt1mhtu1tuN1x(s)dsduN1du1 are added as state vectors in the LKF, which may reduce the conservatism.

    In this paper, a new LKF is introduced based on the delay interval [0,h] is divided into m segments equally. From the LKF, we can conclude that the relationship among x(s), x(s1mh) and x(sm1mh) is considered fully, which may yield less conservative results.

    Notation: Throughout this paper, Rm denotes m-dimensional Euclidean space, A denotes the transpose of the A matrix, 0 denotes a zero matrix with appropriate dimensions.

    Consider the following time-delay system:

    ˙x(t)=Ax(t)+B1x(th)+B2tthx(s)ds, (2.1)
    x(t)=Φ(t),t[h,0], (2.2)

    where x(t)Rn is the state vector, A,B1,B2Rn×n are constant matrices. h>0 is a constant time-delay and Φ(t) is initial condition.

    Lemma2.1. [23] For any matrix R>0 and a differentiable function x(s),s[a,b], the following inequality holds:

    ba˙xT(s)R˙x(s)dsrn=0ρnbaΦn(a,b)TRΦn(a,b), (2.3)

    where

    ρn=(nk=0cn,kn+k+1)1,
    cn,k={1,k=n,n0,n1t=kf(n,t)ct,k,k=0,1,n1,n1,
    Φl(a,b)={x(b)x(a),l=0,lk=0cl,kx(b)cl,0x(a)lk=1cl,kk!(ba)kφk(a,b)x(t),l1,
    f(l,t)=tj=0ct,jl+j+1/tj=0ct,jt+j+1,
    φk(a,b)x(t)={bax(s)ds,k=1,babs1bsk1x(sk)dskds2dss1,k>1.

    Remark2.1. The integral inequality in Lemma 2.1 is more general than previous integral inequality. For r=0,1,2,3, the integral inequality (2.3) includes those in [12,15,21,22] as special cases, respectively.

    Theorem3.1. For given integers m>0,N>0, scalar h>0, system (2.1) is asymptotically stable, if there exist matrices P>0, Q>0, Ri>0,i=1,2,,m, such that

    Ψ=ξT1Pξ2+ξT2Pξ1+ξT3Qξ3ξT4Qξ4+mi=1(hm)2ATdRiAdmi=1rn=0ρnωn(timh,ti1mh)Ri×ωn(timh,ti1mh)<0, (3.1)

    where

    ξ1=[eT1ˉET0ˉET1ˉET2ˉETN]T,
    ξ2=[ATdET0ET1ET2ETN]T,
    ξ3=[eT1eT2eTm]T,
    ξ4=[eT2eT3eTm+1]T,
    ˉE0=hm[eT2eT3eTm+1]T,
    ˉEi=hm[eTim+2eTim+3eTim+m+1]T,i=1,2,,N,
    Ei=hm[eT1eTim+2eT2eTim+3eTmeTm(i+1)+1]T,i=0,1,2,,N,
    Ad=Ae1+B1em+1+B2mi=0em+1+i,
    ωn(timh,ti1mh)={eiei+i,n=0,nk=0cn,keicn,0ei+1nk=1cn,kk!e(k1)m+k+1,n1,
    ei=[0n×(i1)nIn×n0n×(Nm+1i)]T,i=1,2,,Nm+1.

    Proof. Let an integer m>0, [0,h] can be decomposed into m segments equally, i.e., [0,h]=mi=1[i1mh,imh]. The system (2.1) is transformed into

    ˙x(t)=Ax(t)+B1x(th)+B2mi=1ti1mhtimhx(s)ds. (3.2)

    Then, a new LKF is introduced as follows:

    V(xt)=ηT(t)Pη(t)+tthmγT(s)Qγ(s)ds+mi=1hmi1mhimhtt+v˙xT(s)Ri˙x(s)dsdv, (3.3)

    where

    η(t)=[xT(t)γT1(t)γT2(t)γTN(t)]T,
    γ1(t)=[tt1mhx(s)dst1mht2mhx(s)dstm1mhthx(s)ds],γ2(t)=mh[tt1mhtu1x(s)dsdu1t1mht2mht1mhu1x(s)dsdu1tm1mhthtm1mhu1x(s)dsdu1],,
    γN(t)=(mh)N1×[tt1mhtu1tuN1x(s)dsduN1du1t1mht2mht1mhu1t1mhuN1x(s)dsduN1du1tm1mhthtm1mhu1tm1mhuN1x(s)dsduN1du1],
    γ(s)=[x(s)x(s1mh)x(sm1mh)].

    The derivative of V(xt) is given by

    ˙V(xt)=2ηT(t)P˙η(t)+γT(t)Qγ(t)γT(thm)Qx(thm)+mi=1(hm)2˙xT(t)Ri˙x(t)mi=1hmti1mhtimh˙xT(s)Ri˙x(s)ds.

    Then, one can obtain

    ˙V(xt)=ϕT(t){ξT1Pξ2+ξT2Pξ1+ξT3Qξ3ξT4Qξ4+mi=1(hm)2ATdRiAd}ϕ(t)mi=1hmti1mhtimh˙xT(s)Ri˙x(s)ds, (3.4)
    ϕ(t)=[xT(t)γT0(t)γT1(t)γTN(t)]T,
    γ0(t)=[xT(t1mh)xT(t2mh)xT(th)]T.

    By Lemma 2.1, one can obtain

    hmti1mhtimh˙xT(s)Ri˙x(s)dsrl=0ρlωl(timh,ti1mh)Ri×ωl(timh,ti1mh). (3.5)

    Thus, we have ˙V(xt)ϕT(t)Ψϕ(t) by (3.4) and (3.5). We complete the proof.

    Remark3.1. An augmented LKF which contains general multiple integral terms is introduced to reduce the conservatism via a generalized delay partitioning approach. For example, the tt1mhx(s)ds, tt1mhtu1x(s)dsdu1, , tt1mhtu1tuN1x(s)dsduN1du1 are added as state vectors in the LKF, which may reduce the conservatism.

    Remark3.2. For r=0,1,2,3, the integral inequality (3.5) includes those in [12,15,21,22] as special cases, respectively. This may yield less conservative results. It is worth noting that the number of variables in our result is less than that in [23].

    Remark3.3. Let B2=0, the system (2.1) can reduces to system (1) with N=1 in [23]. For m=1, the LKF in this paper can reduces to LKF in [23]. So the LKF in our paper is more general than that in [23].

    This section gives a numerical example to test merits of our criterion.

    Example 4.1. Consider system (2.1) with m=2,N=3 and

    A=[011001],B1=[0.00.10.10.2],B2=[0000].

    Table 1 lists upper bounds of h by our methods and other methods in [15,20,21,22,23]. Table 1 shows that our method is more effective than those in [15,20,21,22,23]. It is worth noting that the number of variables in our result is less than that in [23]. Furthermore, let h=1.141 and x(0)=[0.2,0.2]T, the state responses of system (1) are given in Figure 1. Figure 1 shows the system (2.1) is stable.

    Table 1.  hmax for different methods.
    Methods hmax NoDv
    [15] 0.126 16
    [20] 0.577 75
    [21] 0.675 45
    [22] 0.728 45
    [23] 0.752 84
    Theorem 3.1 1.141 71
    Theoretical maximal value 1.463

     | Show Table
    DownLoad: CSV
    Figure 1.  The state trajectories of the system (2.1) of Example 4.1.

    In this paper, a new LKF is introduced via the delay partitioning method. Then, a less conservative stability criterion is obtained by using the further improvement of Jensen inequality. Finally, an example is provided to show the advantage of our stability criterion.

    This work was supported by Basic Research Program of Guizhou Province (Qian Ke He JiChu[2021]YiBan 005); New Academic Talents and Innovation Program of Guizhou Province (Qian Ke He Pingtai Rencai[2017]5727-19); Project of Youth Science and Technology Talents of Guizhou Province (Qian Jiao He KY Zi[2020]095).

    The authors declare that there are no conflicts of interest.



    [1] G. Schwert, Why does stock market volatility change over time? J. Finance, 44 (1989), 1115-1153.
    [2] F. X. Diebold, K. Yilmaz, Macroeconomic Volatility and Stock Market Volatility, Worldwide. (No. w14269). National Bureau of Economic Research, 2008.
    [3] C. Christiansen, M. Schmeling, A. Schrimpf, A comprehensive look at financial volatility prediction by economic variables, J. Appl. Econom., 27 (2012), 956-977. doi: 10.1002/jae.2298
    [4] B. S. Paye, Déjavol: predictive regressions for aggregate stock market volatility using macroeconomic variables, J. Financ. Econ., 106 (2012), 527-546. doi: 10.1016/j.jfineco.2012.06.005
    [5] R. F. Engle, E. Ghysels, B. Sohn, Stock market volatility and macroeconomic fundamentals, Rev. Econ. Stat., 95 (2013), 776-797. doi: 10.1162/REST_a_00300
    [6] C. Conrad, K. Loch, D. Rittler, On the macroeconomic determinants of long-term volatilities and correlations in US stock and crude oil markets, J. Empir. Financ., 29 (2014), 26-40. doi: 10.1016/j.jempfin.2014.03.009
    [7] N. Nonejad, Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why? J. Empir. Financ., 42 (2017), 131-154.
    [8] Y. Wang, F. Ma, Y. Wei, et al. Forecasting realized volatility in a changing world: A dynamic model averaging approach, J. Bank. Financ., 64 (2016), 136-149. doi: 10.1016/j.jbankfin.2015.12.010
    [9] Y. Wang, Z. Pan, C. Wu, Time-Varying Parameter Realized Volatility Models, J. Forecasting, 36 (2017), 566-580. doi: 10.1002/for.2454
    [10] Y. Zhang, Y. Wei, F. Ma, et al. Economic constraints and stock return predictability: A new approach, Int. Rev. Financ. Anal., 63 (2019), 1-9.
    [11] J. Feng, Y. Wang, L. Yin, Oil volatility risk and stock market volatility predictability: Evidence from G7 countries, Energ. Econ., 68 (2017), 240-254. doi: 10.1016/j.eneco.2017.09.023
    [12] Y. Wang, Y. Wei, C. Wu, et al. Oil and the short-term predictability of stock return volatility, J. Empir. Financ., 47 (2018), 90-104. doi: 10.1016/j.jempfin.2018.03.002
    [13] Z. Dai, H. Zhou, F. Wen, et al. Efficient predictability of stock return volatility: the role of stock market implied volatility, N. Am. J. Econ. Finance, 52 (2020), 101174.
    [14] D. G. Baur, B. M. Lucey, Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold, Financ. Rev., 45 (2010) 217-229,
    [15] D. G. Baur, T. K. McDermott, Is gold a safe haven? International evidence, J. Bank. Financ., 34 (2010), 1886-1898. doi: 10.1016/j.jbankfin.2009.12.008
    [16] M. Hood, F. Malik, Is gold the best hedge and a safe haven under changing stock market volatility? Rev. Financ. Econ., 22 (2013), 47-52.
    [17] J. D. Hamilton, Oil and the macroeconomy since World War II, J. Pol. Econ., 91 (1983), 228-248. doi: 10.1086/261140
    [18] D. Roubaud. M. Arouri, Oil prices, exchange rates and stock markets under uncertainty and regime-switching, Financ. Res. Lett., 27 (2018), 28-33. doi: 10.1016/j.frl.2018.02.032
    [19] A. Salisu, H. Mobolaji, Modeling returns and volatility transmission between oil price and US-Nigeria exchange rate, Energy Economics, 39 (2013), 169-176. doi: 10.1016/j.eneco.2013.05.003
    [20] R. Aloui, M. S. Ben Aïssa, D. K. Nguyen, Conditional dependence structure between oil prices and exchange rates: a copula-GARCH approach, J. Int. Money Fin., 32 (2013), 719-738. doi: 10.1016/j.jimonfin.2012.06.006
    [21] M. Pal, P. M. Rao, P. Manimaran, Multifractal detrended cross correlation analysis on gold, crude oil and foreign exchangerate time series, Physica A, 416 (2014), 452-460. doi: 10.1016/j.physa.2014.09.004
    [22] A. Jain, P. C. Biswal, Dynamic linkages among oil price, gold price, exchange rate, and stock market in India, Resources Policy, 49 (2016), 179-185.
    [23] J. F. Li, X. S. Lu, Y. Zhou, Cross-correlations between crude oil and exchange markets for selected oil rich economies, Physica A, 453 (2016), 131-143. doi: 10.1016/j.physa.2016.02.039
    [24] A. K. Mishra, N. Swain, D. K. Malhotra, Volatility spillover between stock and foreign exchange markets: Indian evidence, Int. J. Business, 12 (2007), 343-359.
    [25] D. Choi, V. Fang, T. Fu, Volatility spillovers between New Zealand stock market returns and exchange rate changes before and after the 1997 Asian financial crisis, Asian journal of Finance and Accounting, 1 (2009), 106-117.
    [26] C. Walid, A. Chaker, O. Masood, et al. Stock market volatility and exchange rates in emerging countries: a Markov switching approach, Emerg. Mark. Rev., 12 (2011), 272-292. doi: 10.1016/j.ememar.2011.04.003
    [27] K. Grobys, Are volatility spillovers between currency and equity market driven by economic states? Evidence from the US economy, Econ. Lett., 127 (2015), 72-75. doi: 10.1016/j.econlet.2014.12.034
    [28] N. Oberholzer, S. T. von Boetticher, Volatility Spill-over between the JSE/FTSE Indices and the South African Rand, Proc. Econ. Finan., 24 (2015), 501-510. doi: 10.1016/S2212-5671(15)00618-8
    [29] W. Mensi, M. Beljid, A. Boubaker, et al. Correlations and volatility spillovers across commodity and stock markets: linking energies, food and gold, Econ. Model., 32 (2013), 15-22. doi: 10.1016/j.econmod.2013.01.023
    [30] Z. Dai, X. Chen, F. Wen, A modified Perry's conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations, Appl. Math. Comput., 270 (2015), 378-386.
    [31] T. Choudry, S. Hassan, S. Shabi, Relationship between gold and stock markets during the global financial crisis: evidence from nonlinear causality tests, Int. Rev. Financ. Anal., 41 (2015), 247-256. doi: 10.1016/j.irfa.2015.03.011
    [32] A. I. Maghyereh, T. Awartani, Volatility spillovers and cross-hedging between gold, oil and equities: evidence from the Gulf Cooperation Council countries, Energy Economics, 68 (2017), 440-453. doi: 10.1016/j.eneco.2017.10.025
    [33] S. J. Taylor, Modeling Financial Time Series. John Wiley and Sons, Ltd., 1986.
    [34] Z. F, Dai, H. Zhu, Forecasting stock market returns by combining sum-of-the-parts and ensemble empirical mode decomposition, Appl. Econ., 52 (2020), 2309-2323. doi: 10.1080/00036846.2019.1688244
    [35] T. G. Andersen, T. Bollerslev, Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns, J. Finance, 52 (1997), 975-1005. doi: 10.1111/j.1540-6261.1997.tb02722.x
    [36] T. G. Andersen, T. Bollerslev, F. X. Diebold, et al. The distribution of realized stock return volatility, J. Financ. Econ., 61 (2001), 43-76. doi: 10.1016/S0304-405X(01)00055-1
    [37] T. G. Andersen, T. Bollerslev, F. X. Diebold, et al. Modeling and forecasting realized volatility, Econometrica, 71 (2003), 529-626.
    [38] J. Y. Campbell, S. B. Thompson, Predicting excess stock returns out of sample: can anything beat the historical average? Rev. Financ. Stud., 21 (2008), 1509-1531.
    [39] C. J. Neely, D. E. Rapach, J. Tu, et al. Forecasting the equity risk premium: the role of technical indicators, Manag. Sci., 60 (2014), 1772-1791. doi: 10.1287/mnsc.2013.1838
    [40] D. E. Rapach, J. K. Strauss, G. Zhou, Out-of-sample equity premium prediction: combination forecasts and links to the real economy, Rev. Financ. Stud., 23 (2010), 821-862. doi: 10.1093/rfs/hhp063
    [41] Z. F. Dai, H. T. Zhou, Prediction of stock returns: sum-of-the-parts method and economic constraint method, Sustainability, 12 (2020), 541.
    [42] Z. F. Dai, H. Zhu, Stock return predictability from a mixed model perspective, Pac-Basin. Finac. J., 60 (2020), 101267.
    [43] F. Wang, W. Zhao, S. Jiang, Detecting asynchrony of two series using multiscale cross-trend sample entropy, Nonlinear Dynam., 99 (2020), 1451-1465. doi: 10.1007/s11071-019-05366-y
    [44] Z. F, Dai. H. Zhu, F. Wen, Two nonparametric approaches to mean absolute deviation portfolio selection model, J. Ind. Manag. Optim., 13 (2019), 1.
    [45] Z. F. Dai, X. Dong, J. Kang, et al. Forecasting stock market returns: new technical indicators and two-step economic constraint method, N. Am. J. Econ. Finance, 53 (2020), 101216.
    [46] Z. F. Dai, F. H. Wen, Some improved sparse and stable portfolio optimization problems, Financ. Res. Lett., 27 (2018), 46-52. doi: 10.1016/j.frl.2018.02.026
    [47] F. Wen, Y. Zhao, M. Zhang, et al. Forecasting realized volatility of crude oil futures with equity market uncertainty, Appl. Econ., 51 (2019), 6411-6427. doi: 10.1080/00036846.2019.1619023
    [48] F. Wen, L. Xu, G. Ouyang, et al. Retail investor attention and stock price crash risk: Evidence from China, Int. Rev. Financ. Anal., 65 (2019), 101376.
    [49] Z. F. Dai, H. Zhu, A modified Hestenes-Stiefel-type derivative-free method for large-scale nonlinear monotone equations, Mathematics, 8 (2020), 168.
    [50] T. E. Clark, K. D. West, Approximately normal tests for equal predictive accuracy in nested models, J. Econometrics, 138 (2007), 291-311.
    [51] A. Inoue, L. Kilian, In-sample or out-of-sample tests of predictability: Which one should we use? Economet. Rev., 23 (2004), 371-402.
    [52] Y. Zhang, F. Ma, T. Wang, et al. Out-of-sample volatility prediction: A new mixed-frequency approach, J. Forecasting, 38 (2019), 669-680 doi: 10.1002/for.2590
    [53] Y. Zhang, F. Ma, Y. Liao, Forecasting global equity market volatilities, Int. J. Forecasting, 2020.
    [54] T. Choudhry, F. I. Papadimitriou, S. Shabi, Stock market volatility and business cycle: evidence from linear and nonlinear causality tests, J. Bank. Financ., 66 (2016), 89-101. doi: 10.1016/j.jbankfin.2016.02.005
    [55] J. Chen, F. Jiang, Y. Liu, et al. International volatility risk and Chinese stock return predictability, J. Int. Money Financ., 70 (2016), 183-203.
  • This article has been cited by:

    1. Yanyan Sun, Xiaoting Bo, Wenyong Duan, Qun Lu, Stability analysis of load frequency control for power systems with interval time-varying delays, 2023, 10, 2296-598X, 10.3389/fenrg.2022.1008860
    2. Xiao Ge, Xinzuo Ma, Yuanyuan Zhang, Han Xue, Seakweng Vong, Stability analysis of systems with additive time-varying delays via new bivariate quadratic reciprocally convex inequality, 2024, 9, 2473-6988, 36273, 10.3934/math.20241721
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5546) PDF downloads(579) Cited by(3)

Figures and Tables

Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog