In this paper, we established some necessary and sufficient conditions for the four symmetric systems to be consistent. Moreover, we derived the expressions of their general solutions when they were solvable. As an application, we investigated the solvability conditions of matrix equations involving $ \eta $-Hermicity matrices. Finally, we presented an example to illustrate the main results of this paper.
Citation: Long-Sheng Liu, Shuo Zhang, Hai-Xia Chang. Four symmetric systems of the matrix equations with an application over the Hamilton quaternions[J]. AIMS Mathematics, 2024, 9(12): 33662-33691. doi: 10.3934/math.20241607
In this paper, we established some necessary and sufficient conditions for the four symmetric systems to be consistent. Moreover, we derived the expressions of their general solutions when they were solvable. As an application, we investigated the solvability conditions of matrix equations involving $ \eta $-Hermicity matrices. Finally, we presented an example to illustrate the main results of this paper.
[1] | C. C. Took, D. P. Mandic, Augmented second-order statistics of quaternion random signals, Signal Process., 91 (2011), 214–224. https://doi.org/10.1016/j.sigpro.2010.06.024 doi: 10.1016/j.sigpro.2010.06.024 |
[2] | L. Q. Qi, Z. Y. Luo, Q. W. Wang, X. Z. Zhang, Quaternion matrix optimization: Motivation and analysis, J. Optim. Theory Appl., 193 (2022), 621–648. https://doi.org/10.1007/s10957-021-01906-y doi: 10.1007/s10957-021-01906-y |
[3] | T. Li, Q. W. Wang, Structure preserving quaternion biconjugate gradient method, SIAM J. Matrix Anal. Appl., 45 (2024), 306–326. https://doi.org/10.1137/23M1547299 doi: 10.1137/23M1547299 |
[4] | X. F. Zhang, W. Ding, T. Li, Tensor form of GPBiCG algorithm for solving the generalized Sylvester quaternion tensor equations, J. Franklin Inst., 360 (2023), 5929–5946. https://doi.org/10.1016/j.jfranklin.2023.04.009 doi: 10.1016/j.jfranklin.2023.04.009 |
[5] | E. B. Castelan, V. G. da Silva, On the solution of a Sylvester equation appearing in descriptor systems control theory, Syst. Control Lett., 54 (2005), 109–117. https://doi.org/10.1016/j.sysconle.2004.07.002 doi: 10.1016/j.sysconle.2004.07.002 |
[6] | Y. N. Zhang, D. C. Jiang, J. Wang, A recurrent neural network for solving Sylvester equation with time-varying coefficients, IEEE Trans. Neural Netw., 13 (2002), 1053–1063. http://dx.doi.org/10.1109/TNN.2002.1031938 doi: 10.1109/TNN.2002.1031938 |
[7] | V. L. Syrmos, F. L. Lewis, Output feedback eigenstructure assignment using two Sylvester equations, IEEE Trans. Autom. Control, 38 (1993), 495–499. http://dx.doi.org/10.1109/9.210155 doi: 10.1109/9.210155 |
[8] | A. Dmytryshyn, B. K$\dot{a}$gstr$\ddot{o}$m, Coupled Sylvester-type matrix equations and block diagonalization, SIAM J. Math. Anal., 36 (2015), 580–593. https://doi.org/10.1137/151005907 doi: 10.1137/151005907 |
[9] | L. S. Liu, S. Zhang, A coupled quaternion matrix equations with applications, J. Appl. Math. Comput., 69 (2023), 4069–4089. https://doi.org/10.1007/s12190-023-01916-1 doi: 10.1007/s12190-023-01916-1 |
[10] | L. S. Liu, The general solution to a system of linear coupled quaternion matrix equations with an application, Adv. Appl. Clifford Algebras, 33 (2023), 48. https://doi.org/10.1007/s00006-023-01283-x doi: 10.1007/s00006-023-01283-x |
[11] | K. W. Si, Q. W. Wang, The general solution to a classical matrix equation $AXB = C$ over the dual split quaternion algebra, Symmetry, 16 (2024), 491. https://doi.org/10.3390/sym16040491 doi: 10.3390/sym16040491 |
[12] | I. Kyrchei, Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations, Linear Algebra Appl., 438 (2013), 136–152. https://doi.org/10.1016/j.laa.2012.07.049 doi: 10.1016/j.laa.2012.07.049 |
[13] | M. S. Mehany, Q. W. Wang, Three symmetrical systems of coupled Sylvester-like quaternion matrix equations, Symmetry, 14 (2022), 550. https://doi.org/10.3390/sym14030550 doi: 10.3390/sym14030550 |
[14] | Q. W. Wang, Z. H. He, Systems of coupled generalized Sylvester matrix equations, Automatica, 50 (2014), 2840–2844. https://doi.org/10.1016/j.automatica.2014.10.033 doi: 10.1016/j.automatica.2014.10.033 |
[15] | L. S. Liu, Q. W. Wang, M. S. Mehany, A Sylvester-type matrix equation over the Hamilton quaternions with an application, Mathematics, 10 (2022), 1758. https://doi.org/10.3390/math10101758 doi: 10.3390/math10101758 |
[16] | L. Wang, Q. W. Wang, Z. H. He, The common solution of some matrix equations, Algebra Colloq., 23 (2016), 71–81. https://doi.org/10.1142/S1005386716000092 doi: 10.1142/S1005386716000092 |
[17] | C. C. Took, D. P. Mandic, F. Z. Zhang, On the unitary diagonalization of a special class of quaternion matrices, Appl. Math. Lett., 24 (2011), 1806–1809. https://doi.org/10.1016/j.aml.2011.04.038 doi: 10.1016/j.aml.2011.04.038 |
[18] | G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. https://doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070 |
[19] | Z. H. He, Q. W. Wang, A real quaternion matrix equation with applications, Linear Multilinear Algebra, 61 (2013), 725–740. https://doi.org/10.1080/03081087.2012.703192 doi: 10.1080/03081087.2012.703192 |
[20] | S. Barnett, Matrices: Methods and applications, New York: Oxford Academic, 1990. https://doi.org/10.1093/oso/9780198596653.001.0001 |
[21] | Z. H. He, Q. W. Wang, The general solutions to some systems of matrix equations, Linear Multilinear Algebra, 63 (2015), 2017–2032. https://doi.org/10.1080/03081087.2014.896361 doi: 10.1080/03081087.2014.896361 |