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Abstract: Weighted hesitant fuzzy set (WHFS) is an extension of hesitant fuzzy set (HFS), in
which the weights indicate that the decision maker has different confidence in giving every possible
assessment of the membership degree. In this paper, we redefine the union and intersection operations
of weighted hesitant fuzzy elements (WHFEs), investigate their operation properties, and propose the
variance function of the weighted hesitant fuzzy element (WHFE) to compare WHFEs. Furthermore,
we develop two aggregation operators such as weighted hesitant fuzzy ordered weighted averaging
(WHFOWA) and weighted hesitant fuzzy ordered weighted geometric (WHFOWG) operators to
aggregate weighted hesitant fuzzy information, and present multiple-attribute group decision making
algorithm under weighted hesitant fuzzy environment. Finally, four numerical examples are used to
illustrate the effectiveness of our proposed aggregation operators.
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1. Introduction

Fuzzy set introduced by Zadeh [1] has achieved a great success in many fields such as approximate
reasoning, fuzzy control, fuzzy decision making and so on. With the complexity in the real decision
making process, some researchers generalized the concept of fuzzy set. Considering the difficulty
to establish the membership degree of an element to a fuzzy set, Torra [2, 3] introduced the concept
of hesitant fuzzy set (HFS) which permitted the membership degree having a set of possible values,
and could reflect the human’s hesitancy more objectively than the other classical extensions of fuzzy
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set. After then, many researchers have paid attention on this topic and obtained some meaningful
conclusions. Generally speaking, most of these works can be mainly divided into three categories:

1) Aggregation operators. Aggregation operators are important tools to aggregate fuzzy
information, but how to aggregate different fuzzy information usually relied on different domain
knowledge. Hence, aiming at different scenarios, many researchers proposed different aggregation
operators. For example, Bedregal et al. [4] investigated the classical aggregation operator for hesitant
fuzzy element(HFE), Xia et al. [5, 6] proposed a series of aggregation operators for hesitant fuzzy
information, Wei [7] and Zeng et al. [8] investigated hesitant fuzzy prioritized operators, respectively.
Similar to exponentiation, Zhang [9] introduced hesitant fuzzy power aggregation operators, Zhu
et al. [10] and Yu et al. [11] investigated hesitant fuzzy geometric Bonferroni means and generalized
hesitant fuzzy Bonferroni means, respectively, Peng et al. [12] investigated the continuous hesitant
fuzzy aggregation operators and applied in decision making.

2) Information measure. Information measure is the basis of all kinds of decision making methods,
thus many scholars investigated the meaningful topic. For example, Xu et al. [13–15] investigated the
distance, similarity measure and correlation measure of hesitant fuzzy sets (HFSs), Peng et al. [16]
presented the generalized hesitant fuzzy weighted distance and applied it in multiple criteria decision
making, Li et al. [17, 18] proposed several kinds of distance of HFSs based on the hesitancy degree of
hesitant fuzzy element (HFE), Chen et al. [19] investigated correlation coefficient of HFSs and apply
it into clustering analysis, Farhadinia [20] investigated the relationship among entropy, similarity
measure and distance measure for HFSs and interval-valued hesitant fuzzy sets, Zeng et al. [21]
investigated the relationship between the distance and the similarity measure of HFSs and applied in
pattern recognition.

3) Extensions of HFSs. All kinds of extensions of HFSs are used to further describe the imprecise
information in the real life. For example, Khan et al. [22–24] introduced several novel similarity
measures for the q-rung orthopair fuzzy sets. Zeng et al. [25, 26] introduced weighted interval-valued
hesitant fuzzy set and weighted hesitant fuzzy linguistic term set, and applied in group decision
making, respectively, Zhu et al. [27] introduced dual hesitant fuzzy set, Chen et al. [28] and Wei
et al. [29] developed interval-valued hesitant fuzzy sets, respectively, Rodrı́guez et al. [30, 31]
investigated hesitant fuzzy linguistic term sets for decision making, Wei et al. [32] introduced some
aggregation operators for hesitant fuzzy linguistic term sets and applied in multi-criteria decision
making, Zhu et al. [33] introduced linguistic preference relation under hesitant fuzzy environment,
Liao et al. [34, 35] investigated distance and similarity measures between hesitant fuzzy linguistic
term sets and the consistency and consensus of hesitant fuzzy preference relation, and applied in
group decision making, Onar et al. [36] and Xu et al. [37] utilized hesitant fuzzy Technique for Order
Preference by Similarity to an Ideal Solution(TOPSIS) to obtain optimal strategy, respectively, Zhang
et al. [38] investigated the extension of VIseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) method based on hesitant fuzzy set(HFS), Qian et al. [39] proposed the generalized hesitant
fuzzy set and applied in decision support system.

It needs to point out that each possible value involved in the HFS is distributed with the same
importance or preference (weight). However, in some practical applications, especially in
multi-attribute decision making, several possible values may sometimes have different importance,
thus they are distributed different weights because decision makers hesitate among several possible
values. Namely, the weights of the possible values are different. For instance, assuming that five
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experts are authorized to evaluate one supplier anonymously according to a given criteria or attribute,
and each assessment that can indicate the satisfaction degree of the expert to the supplier is provided
to the decision maker. Suppose the five assessments provided by the five experts are 0.6, 0.7, 0.6, 0.8
and 0.8, respectively, and the experts cannot persuade each other, thus, while determining the
satisfaction degree of the supplier, the decision maker hesitate among three values, 0.6, 0.7, 0.8.
According to the approach of constructing HFS in general, the membership degree of an element to a
set can be represented as the hesitant fuzzy element (HFE) {0.6, 0.7, 0.8}. But, in fact, 0.6 is provided
by two experts, 0.8 is provided by two experts, but only one expert provides 0.7. Hence, the decision
maker may prefer to 0.6 and 0.8 while determining the membership degree, it is obvious that the
classical HFS or HFE cannot accurately represent these important fuzzy information. Based on this,
Zhang and Wu [40] introduced the concept of weighted hesitant fuzzy set (WHFS) and presented
some operations of weighted hesitant fuzzy elements (WHFEs) and some operations based on
T -norm.

Recently, Zhu and Xu [41] introduced the concept of probabilistic hesitant fuzzy set (PHFS). It
needs to point out that there exists some differences between WHFS and PHFS, the former assigns
weights to each HFE, where the weights are from experts, and the latter allocates probabilities to
every HFE, where the set of HFE is a countable set and probability can be determined by its
frequency. Hence, these two variants express different application background. Inspired by the idea of
WHFS in Zhang and Wu [40], considering the different background of group decision making in the
real life, in this paper, we redefine some operations such as union and intersection of weighted
hesitant fuzzy elements (WHFEs), propose the variance function of WHFE and present the ranking
rule to compare WHFEs based on the score function and variance function. Furthermore, we
investigate the characteristics of weighted hesitant fuzzy element and develop two kinds of
aggregation operators such as weighted hesitant fuzzy ordered weighted averaging (WHFOWA)
operator and weighted hesitant fuzzy ordered weighted geometric (WHFOWG) operator to aggregate
weighted hesitant fuzzy information, and develop the mathematical model of multi-attribute group
decision making. Finally, four numerical examples are used to illustrate the effectiveness and
feasibility of our proposed method.

The organization of our study is as follows. In Section 2, we review some basic notions of HFS and
HFE. In Section 3, we review the concept of WHFS, redefine the intersection and union operations of
weighted hesitant fuzzy elements (WHFEs), investigate their operation properties, propose the variance
function of weighted hesitant fuzzy element, and present the ranking rule to compare the WHFEs
based on the score function and variance function. In Section 4, we develop two aggregation operators
such as weighted hesitant fuzzy ordered weighted averaging (WHFOWA) and weighted hesitant fuzzy
ordered weighted geometric (WHFOWG) operators to aggregate weighted hesitant fuzzy information,
and propose multi-attribute group decision making algorithm. In Section 5, four numerical examples
are used to illustrate the effectiveness of our techniques. The conclusion is given in the last section.

2. Preliminaries

In this paper, we use X = {x1, x2, · · · , xn} to denote the discourse set, HFS and HFE stand for hesitant
fuzzy set and hesitant fuzzy element, respectively, WHFS and WHFE stand for weighted hesitant fuzzy
set and weighted hesitant fuzzy element, respectively, h and hw stand for hesitant fuzzy element (HFE)
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and weighted hesitant fuzzy element (WHFE), respectively.

Definition 1. [2] Given a fixed set X, then a hesitant fuzzy set (HFS) on X is in terms of a function that
when applied to X returns a subset of [0, 1].

For conveniences, Xia and Xu [5] proposed a simple and convenient symbol to express the HFS

E = {< x, hE(x) > |x ∈ X}

where hE(x) is a collection including multiple values in range [0,1], denoting the possible membership
degree of the element x ∈ X to the set E. h = hE(x) is called a hesitant fuzzy element (HFE).

Furthermore, Torra [2] and Xia and Xu [5] introduced the following operations for hesitant fuzzy
elements (HFEs) h, h1 and h2, respectively.

(1) h− = min h, h+ = max h;
(2) hc =

⋃
γ∈h{1 − γ};

(3) h1
⋃

h2 = {γ ∈ h1 ∪ h2|γ ≥ max(h−1 , h
−
2 )} =

⋃
γ1∈h1,γ2∈h2

max{γ1, γ2};
(4) h1

⋂
h2 = {γ ∈ h1 ∩ h2|γ ≤ min(h+

1 , h
+
2 )} =

⋂
γ1∈h1,γ2∈h2

min{γ1, γ2};
(5) hλ =

⋃
γ∈h{γ

λ}, λ > 0;
(6) λh =

⋃
γ∈h{1 − (1 − γ)λ}, λ > 0;

(7) h1 ⊕ h2 =
⋃

γ1∈h1,γ2∈h2
{γ1 + γ2 − γ1γ2};

(8) h1 ⊗ h2 =
⋃

γ1∈h1,γ2∈h2
{γ1γ2}.

Furthermore, let hi, i = 1, 2, · · · , n be a collection of HFEs, Liao et al. [34] introduced the following
operations.

(9) ⊕n
i=1hi =

⋃
γi∈hi
{1 −

∏n
i=1(1 − γi)};

(10) ⊗n
i=1hi =

⋃
γi∈hi
{
∏n

i=1 γi}.

Meanwhile, Xia and Xu [5] introduced the score function of HFE h, s(h) =
1

ł(h)

∑
γ∈h

γ, where ł(h)

is the number of the elements in h. For any given two HFEs h1 and h2, Xia and Xu [5] give the ranking
rule to compare the HFEs: If s(h1) > s(h2), then h1 > h2; if s(h1) = s(h2), then h1 = h2.

After then, Farhadinia [42] and Rodrı́guez et al. [43] proposed the improved method to compare
HFEs, respectively. Furthermore, Liao et al. [34] introduced the variance function as second ranking
index to compare HFEs.

Definition 2. [34] For a given HFE h, v(h) =
1

ł(h)

√∑
γi,γ j∈h

(γi − γ j)2 is called the variance function

of HFE h, where ł(h) is the number of the elements in h.
In the following, Liao et al. [34] proposed the ranking rule to compare HFEs based on the score

function and variance function of HFE h.
(a) If s(h1) > s(h2), then h1 > h2.
(b) If s(h1) = s(h2), then

(1) If v(h1) > v(h2), then h1 < h2;
(2) If v(h1) = v(h2), then h1 = h2.

AIMS Mathematics Volume 7, Issue 8, 14117–14138.



14121

3. Weighted hesitant fuzzy set

Definition 3. [40] Let X = {x1, x2, · · · , xn} be a fixed set, then a weighted hesitant fuzzy set (WHFS)
EW on X is in terms of a function that when applied to X returns a subset with values as

Ew = {< x, hw
E(x) > |x ∈ X}

where hw
E(x) = {< γ1,w1 >, < γ2,w2 >, · · · , < γm,wm >}, γ j( j = 1, 2, · · · ,m) is a set of some values

in [0, 1] which denotes the possible membership degree of the element x ∈ X to the set EW , and
w j ∈ [0, 1]( j = 1, 2, · · · ,m),

∑m
j=1 w j = 1, is called the weight of γ j, in which the weight w j denotes the

importance of γ j being taken as the membership degree of x, or the preference value that the decision
maker takes γ j as the membership degree of element x, then hw = hw

E(x) is called a weighted hesitant
fuzzy element (WHFE).

Remark 1. Weighted hesitant fuzzy set (WHFS) is a variant of traditional HFS, and describes the
human uncertainty more objectively and precisely.

Remark 2. The difference between HFS and WHFS is that the former assumes that the possible
membership degrees have the equal importance, and the latter assumes that the possible membership

degrees have different importance. Specially, If the weight w j =
1
m

, for every j = 1, 2, · · · ,m in WHFE
hw, then the WHFE

hw = {< γ1,
1
m
>, < γ2,

1
m
>, · · · , < γm,

1
m
>},

then the WHFE hw will become the classical HFE h = {γ1, γ2, · · · , γm}. Here, we suppose that the
WHFE

hw = {< γ1,
1
m
>, < γ2,

1
m
>, · · · , < γm,

1
m
>}

is equivalent to the HFE h = {γ1, γ2, · · · , γm}. Thus, in this paper, we will make no distinction and
denote

hw = {< γ1,
1
m
>, < γ2,

1
m
>, · · · , < γm,

1
m
>}

⇐⇒ h = {γ1, γ2, · · · , γm}.

Furthermore, Zhang and Wu [40] introduced some operations of WHFEs in the following.

Definition 4. [40] Given three WHFEs hw =
⋃

γ∈hw{< γ,wγ >}, hw
1 =

⋃
γ1∈hw

1
{< γ1,wγ1 >} and hw

2 =⋃
γ2∈hw

2
{< γ2,wγ2 >}, for λ > 0, then

(1) (hw)c =
⋃

γ∈hw{< 1 − γ,wγ >};
(2) hw

1

⋃
hw

2 =
⋃

γ1∈hw
1 ,γ2∈hw

2
{< γ1 ∨ γ2,wγ1 · wγ2} >};

(3) hw
1

⋂
hw

2 =
⋃

γ1∈hw
1 ,γ2∈hw

2
{< γ1 ∧ γ2,wγ1 · wγ2} >};

(4) (hw)λ =
⋃

γ∈hw{< γλ,wγ >};
(5) λhw =

⋃
γ∈hw{< 1 − (1 − γ)λ,wγ >};

(6) hw
1 ⊕ hw

2 =
⋃

γ1∈hw
1 ,γ2∈hw

2
{< γ1 + γ2 − γ1γ2,wγ1wγ2 >};

(7) hw
1 ⊗ hw

2 =
⋃

γ1∈hw
1 ,γ2∈hw

2
{< γ1γ2,wγ1wγ2 >}.

Now we use an example to illustrate the shortcoming of the above operations such as “
⋃

” and “
⋂

”.
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Example 1. Given two WHFEs hw
1 = {< 0.6, 0.5 >, < 0.7, 0.5 >} and hw

2 = {< 0.3, 0.5 >, < 0.8, 0.5 >},
because every possible value in WHFEs hw

1 and hw
2 has the same weight, then the WHFEs hw

1 and hw
2

can be thought of as the classic hesitant fuzzy elements (HFEs) or WHFEs hw
1 and hw

2 are equivalent to
the HFEs h1 and h2. However, known by Definition 4, we have:

hw
1
⋃

hw
2 = {< 0.6 ∨ 0.3, 0.5 · 0.5 >, < 0.6 ∨ 0.8, 0.5 · 0.5 >, < 0.7 ∨ 0.3, 0.5 · 0.5 >, < 0.7 ∨ 0.8, 0.5 · 0.5 >}

= {< 0.6, 0.25 >, < 0.8, 0.25 >, < 0.7, 0.25 >, < 0.8, 0.25 >}
= {< 0.6, 0.25 >, < 0.7, 0.25 >, < 0.8, 0.5 >}.

hw
1
⋂

hw
2 = {< 0.6 ∧ 0.3, 0.5 · 0.5 >, < 0.6 ∧ 0.8, 0.5 · 0.5 >, < 0.7 ∧ 0.3, 0.5 · 0.5 >, < 0.7 ∧ 0.8, 0.5 · 0.5 >}

= {< 0.3, 0.25 >, < 0.6, 0.25 >, < 0.3, 0.25 >, < 0.7, 0.25 >}
= {< 0.3, 0.5 >, < 0.6, 0.25 >, < 0.7, 0.25 >}.

If we take WHFEs hw
1 and hw

2 as the HFEs h1 and h2, then known by the definitions of “
⋃

” and “
⋂

”
for HFEs, we also have:

h1

⋃
h2 = {0.6 ∨ 0.3, 0.6 ∨ 0.8, 0.7 ∨ 0.3, 0.7 ∨ 0.8} = {0.6, 0.7, 0.8}.

h1

⋂
h2 = {0.6 ∧ 0.3, 0.6 ∧ 0.8, 0.7 ∧ 0.3, 0.7 ∧ 0.8} = {0.3, 0.6, 0.7}.

Because both h1
⋃

h2 and h1
⋂

h2 have three possible values and every possible value has the same
weight, then we make use of the equivalent expression between HFE and WHFE, and use WHFE to
denote them, namely,

hw
1

⋃
hw

2 = {< 0.6,
1
3
>, < 0.7,

1
3
>, < 0.8,

1
3
>}

and
hw

1

⋂
hw

2 = {< 0.3,
1
3
>, < 0.6,

1
3
>, < 0.7,

1
3
>}.

Obviously, we find that the above calculation results are inconsistent, and the later result seems
more intuitive and logical than the former one.

Consequently, we think that it is necessary to improve and redefine the definitions of the union and
intersection operations of WHFEs.

Definition 5. Given two WHFEs hw
1 , h

w
2 , then

(1) hw
1

⋃
hw

2 =
⋃

γ1∈hw
1 ,γ2∈hw

2
{< max{γ1, γ2},w′max{γ1,γ2}

>}, for values in WHFEs, we choose maximum
of two WHFEs, and for weight w′max{γ1,γ2}

can be determined through three steps:
1) If γ1 = γ2, then we choose average of two weights wmax{γ1,γ2} =

wγ1 +wγ2
2 as new weight; if γ1 >

γ2, then we choose maximum of two weights wmax{γ1,γ2} = wγ1 as new weight, contrary, we choose
minimum of two weights as new weight wmax{γ1,γ2} = wγ2;

2) If there exists the several same values γi which belongs to the above calculation results
⋃
{<

γi,wγi >}, then the weight can be computed through arithmetic mean wmax{γ1,γ2,··· ,γl} =
1
l

l∑
k=1

wγk , where

l is the number of γi in
⋃
{< γi,wγi >};

3) Owing to sum of multiple weights maybe beyond 1, we need to normalize {wmax{γ1,γ2}} to obtain
new weight {w′max{γ1,γ2}

}.
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(2) hw
1

⋂
hw

2 =
⋂

γ1∈hw
1 ,γ2∈hw

2
{< min{γ1, γ2},w′min{γ1,γ2}

>}, for values in WHFEs, we choose minimum
of two WHFEs, and for weight w′min{γ1,γ2}

can be determined through three steps:
1) If γ1 = γ2, then we choose average of two weights wmin{γ1,γ2} =

wγ1 +wγ2
2 as new weight; if γ1 > γ2,

then we choose minimum of two weights wmin{γ1,γ2} = wγ1 as new weight, contrary, we choose minimum
of two weights as new weight wmin{γ1,γ2} = wγ2;

2) If there exists the several same values γi which belongs to the above calculation results
⋂
{<

γi,wγi >}, then the weight can be computed through arithmetic mean wmin{γ1,γ2,··· ,γl} =
1
l

l∑
k=1

wγk , where

l is the number of γi in
⋂
{< γi,wγi >};

3) Owing to sum of multiple weights maybe beyond 1, we need to normalize {wmin{γ1,γ2}} to obtain
new weight {w′min{γ1,γ2}

}.
Thus, according to Definition 5, we re-calculate Example 1 and have the following conclusions.

Example 2. Given two WHFEs hw
1 = {< 0.6, 0.5 >, < 0.7, 0.5 >} and hw

2 = {< 0.3, 0.5 >, < 0.8, 0.5 >},
then known by Definition 5, we have:

{< 0.6 ∨ 0.3, 0.5 >, < 0.6 ∨ 0.8, 0.5 >, < 0.7 ∨ 0.3, 0.5 >, < 0.7 ∨ 0.8, 0.5 >}
= {< 0.6, 0.5 >, < 0.8, 0.5 >, < 0.7, 0.5 >, < 0.8, 0.5 >}
= {< 0.6, 0.5 >, < 0.7, 0.5 >, < 0.8, 0.5 >}.

Thus, we have:

hw
1

⋃
hw

2 = {< 0.6,
1
3
>, < 0.7,

1
3
>, < 0.8,

1
3
>}.

Similarly,

{< 0.6 ∧ 0.3, 0.5 >, < 0.6 ∧ 0.8, 0.5 >, < 0.7 ∧ 0.3, 0.5 >, < 0.7 ∧ 0.8, 0.5 >}
= {< 0.3, 0.5 >, < 0.6, 0.5 >, < 0.3, 0.5 >, < 0.7, 0.5 >}
= {< 0.3, 0.5 >, < 0.6, 0.5 >, < 0.7, 0.5 >}.

Then we obtain
hw

1

⋂
hw

2 = {< 0.3,
1
3
>, < 0.6,

1
3
>, < 0.7,

1
3
>}.

Remark 3. These calculation results are completely consistent with our intuition and logic, and show
that Definition 5 is more reasonable.

In the following, we use an example to explain these operations of WHFEs.

Example 3. Let
hw

1 = {< 0.6, 0.3 >, < 0.7, 0.25 >, < 0.8, 0.45 >}

and
hw

2 = {< 0.65, 0.4 >, < 0.7, 0.35 >, < 0.9, 0.25 >}

be two WHFEs, and λ > 0, then we have:
(1)

(hw
1 )c = {< 0.4, 0.3 >, < 0.3, 0.25 >, < 0.2, 0.45 >},

(hw
2 )c = {< 0.35, 0.4 >, < 0.3, 0.35 >, < 0.1, 0.25 >}.

AIMS Mathematics Volume 7, Issue 8, 14117–14138.
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(2)

{< 0.6 ∨ 0.65, 0.4 >, < 0.6 ∨ 0.7, 0.35 >, < 0.6 ∨ 0.9, 0.25 >, < 0.7 ∨ 0.65, 0.25 >, < 0.7 ∨ 0.7, 0.3 >,
< 0.7 ∨ 0.9, 0.25 >, < 0.8 ∨ 0.65, 0.45 >, < 0.8 ∨ 0.7, 0.45 >, < 0.8 ∨ 0.9, 0.25 >}
= {< 0.65, 0.4 >, < 0.7, 0.35 >, < 0.9, 0.25 >, < 0.7, 0.25 >, < 0.7, 0.3 >,
< 0.9, 0.25 >, < 0.8, 0.45 >, < 0.8, 0.45 >, < 0.9, 0.25 >}
= {< 0.65, 0.4 >, < 0.7, 0.3 >, < 0.8, 0.45 >, < 0.9, 0.25 >}.

It needs to point out that we compute the average of some weights as its final weight for the same
values in the above calculation process.

So, we have

hw
1

⋃
hw

2 (x) = {< 0.65, 0.2857 >, < 0.7, 0.2143 >, < 0.8, 0.3214 >, < 0.9, 0.1786 >}.

(3) Similarly, we have

hw
1

⋂
hw

2 = {< 0.6, 0.2069 >, < 0.65, 0.2759 >, < 0.7, 0.2069 >, < 0.8, 0.3103 >}.

(4)
(hw

1 )λ = {< 0.6λ, 0.3 >, < 0.7λ, 0.25 >, < 0.8λ, 0.45 >},

(hw
2 )λ = {< 0.65λ, 0.4 >, < 0.7λ, 0.35 >, < 0.9λ, 0.25 >}.

(5)
λhw

1 = {< 1 − 0.4λ, 0.3 >, < 1 − 0.3λ, 0.25 >, < 1 − 0.2λ, 0.45 >},

λhw
2 (x) = {< 1 − 0.35λ, 0.4 >, < 1 − 0.3λ, 0.35 >, < 1 − 0.1λ, 0.25 >}.

(6)

hw
1 ⊕ hw

2 ={< 0.86, 0.12 >, < 0.88, 0.105 >, < 0.96, 0.075 >, < 0.895, 0.1 >,
< 0.91, 0.0875 >, < 0.97, 0.0625 >, < 0.93, 0.18 >, < 0.94, 0.1575 >, < 0.98, 0.1125 >}.

(7)

hw
1 ⊗ hw

2 ={< 0.39, 0.12 >, < 0.42, 0.105 >, < 0.54, 0.075 >, < 0.455, 0.1 >,
< 0.49, 0.0875 >, < 0.63, 0.0625 >, < 0.52, 0.18 >, < 0.56, 0.1575 >, < 0.72, 0.1125 >}.

In the following we give some conclusions.

Theorem 1. For three WHFEs hw, hw
1 and hw

2 , then (hw)c, hw
1

⋃
hw

2 , h
w
1

⋂
hw

2 , (h
w)λ, λhw(x), hw

1⊕hw
2 , h

w
1⊗hw

2
are also WHFEs.

Because all of these possible values belong to [0, 1], and their weights are normalized or satisfy
multiplication, thus all of the weights add up to 1, then the proof of Theorem 1 can be done.

Remark 4. Theorem 1 shows that the WHFEs are closed with respect to these operations.

Theorem 2. For three WHFEs hw, hw
1 and hw

2 , and λ > 0, then we have
(1) (hw

1

⋃
hw

2 )c = (hw
1 )c ⋂(hw

2 )c;
(2) (hw

1

⋂
hw

2 )c = (hw
1 )c ⋃(hw

2 )c;
(3) ((hw)c)λ = (λhw)c;
(4) λ(hw)c = ((hw)λ)c;
(5) (hw

1 ⊕ hw
2 )c = (hw

1 )c ⊗ (hw
2 )c;

(6) (hw
1 ⊗ hw

2 )c = (hw
1 )c ⊕ (hw

2 )c.
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Proof. Here, we only give the proof of (1), (3) and (5), the rest can be similarly proved.
(1)

(hw
1

⋃
hw

2 )c = (
⋃

γ1∈hw
1 ,γ2∈hw

2 ,γ1,γ2

{< 1 −max{γ1, γ2},w′max{γ1,γ2}
>})

⋃
(

⋃
γ1∈hw

1 ,γ2∈hw
2 ,γ1=γ2

{< 1 −max{γ1, γ2},w′max{γ1,γ2}
>})

= (
⋃

γ1∈hw
1 ,γ2∈hw

2 ,γ1,γ2

{< min{1 − γ1, 1 − γ2},w′max{1−γ1,1−γ2}
>})

⋃
(

⋃
γ1∈hw

1 ,γ2∈hw
2 ,γ1=γ2

{< min{1 − γ1, 1 − γ2},w′max{γ1,γ2}
>})

= (hw
1 )c

⋂
(hw

2 )c.

(3)
((hw)c)λ =

⋃
γ∈hw

{< (1 − γ)λ,wγ >},

and
(λhw)c =

⋃
γ∈hw

{< 1 − (1 − (1 − γ)λ),wγ >} =
⋃
γ∈hw

{< (1 − γ)λ,wγ >} = ((hw)c)λ.

(5)

(hw
1 ⊕ hw

2 )c =
⋃

γ1∈hw
1 ,γ2∈hw

2

{< 1 − (γ1 + γ2 − γ1γ2),wγ1wγ2 >}

=
⋃

γ1∈hw
1 ,γ2∈hw

2

{< (1 − γ1)(1 − γ2),wγ1wγ2 >}

= (hw
1 )c ⊗ (hw

2 )c.

Here, we complete the proof of Theorem 2. �

Remark 5. Theorem 2 shows that both of
⋂

and
⋃

operations, and ⊕ and ⊗ operations satisfy De
Morgan’s law, respectively.

Definition 6. [40] For a given WHFE hw, s(hw) =
∑
γ∈hw wγ · γ was called as the score function of

WHFE hw.

Definition 7. For a given WHFE hw,

v(hw) =

√∑
γ∈hw

wγ(γ − s(hw))2 (1)

is called as the variance function of WHFE hw.

Remark 6. Known by the definitions of score function and variance function for HFS and WHFS, the
main difference is that WHFS has weight adjustment. Hence, the calculations of score function and
variance function are different.
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In the following, we propose the ranking rule to compare any two WHFEs hw
1 and hw

2 .
(a) If s(hw

1 ) > s(hw
2 ), then hw

1 > hw
2 .

(b) If s(hw
1 ) = s(hw

2 ), then
(1) If v(hw

1 ) > v(hw
2 ), then hw

1 < hw
2 .

(2) If v(hw
1 ) = v(hw

2 ), then hw
1 = hw

2 .

4. Multi-attribute group decision making with weighted hesitant fuzzy information

In this section, we will propose two kinds of aggregation operators based on weighted hesitant fuzzy
information, and investigate their related properties.

For given WHFEs collection, hw
1 , h

w
2 , · · · , h

w
n , Zhang and Wu [40] proposed two kinds of aggregation

operators such as WHFWA and WHFWG operators as follows:

WHFWA(hw
1 , h

w
2 , · · · , h

w
n ) =

n⊕
j=1

(ω jhw
j ) =

⋃
γ1∈hw

1 ,··· ,γn∈hw
n

< 1 −
n∏

j=1

(1 − γ j)ω j ,wγ1wγ2 · · ·wγn >

 ,
WHFWG(hw

1 , h
w
2 , · · · , h

w
n ) =

n⊗
j=1

(hw
j )ω j =

⋃
γ1∈hw

1 ,··· ,γn∈hw
n

< n∏
j=1

γ
ω j

j ,wγ1wγ2 · · ·wγn >

 ,
where ω = (ω1, ω2, · · · , ωn) is the weight vector of hw

j , j = 1, 2, · · · , n, and ω j ≥ 0,
∑n

j=1 ω j = 1.

Theorem 3. Let hw
1 , h

w
2 , · · · , h

w
n be a collection of WHFEs, and ω = (ω1, ω2, · · · , ωn) be the weight

vector with ω j ≥ 0,
∑n

j=1 ω j = 1, then

WHFWG(hw
1 , h

w
2 , · · · , h

w
n ) ≤WHFWA(hw

1 , h
w
2 , · · · , h

w
n ).

Proof. Known by Wei et al. [32], we have

n∏
j=1

γ
ω j

j ≤ 1 −
n∏

j=1

(1 − γ j)ω j .

Since the weights corresponding to both
∏n

j=1 γ
ω j

j and 1−
∏n

j=1(1−γ j)ω j are the same as wγ1wγ2 · · ·wγn ,
hence we have

s(WHFWG(hw
1 , h

w
2 , · · · , h

w
n )) ≤ s(WHFWA(hw

1 , h
w
2 , · · · , h

w
n )).

Hence, we complete the proof of Theorem 3. �

Motivated by the idea of OWA operator introduced by Yager [44], we propose two kinds of
aggregation operators to aggregate weighted hesitant fuzzy information.

Definition 8. Let hw
1 , h

w
2 , · · · , h

w
n be a collection of WHFEs, and ω = (ω1, ω2, · · · , ωn) be the weight

vector withω j ≥ 0,
∑n

j=1 ω j = 1, and WHFOWA and WHFOWG operators are defined in the following,
where (hw

σ(1), h
w
σ(2), · · · , h

w
σ(n)) represents a permutation of hw

σ(i) ≥ hw
σ( j) for all i < j.
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WHFOWA(hw
1 , h

w
2 , · · · , h

w
n ) =

n⊕
j=1

(ω jhw
σ( j))

=
⋃

γσ(1)∈hw
σ(1),··· ,γσ(n)∈hw

σ(n)

< 1 −
n∏

j=1

(1 − γσ( j))ω j ,wγσ(1)wγσ(2) · · ·wγσ(n) >

 .
WHFOWG(hw

1 , h
w
2 , · · · , h

w
n ) =

n⊗
j=1

(hw
σ( j))

ω j

=
⋃

γσ(1)∈hw
σ(1),··· ,γσ(n)∈hw

σ(n)

< n∏
j=1

γ
ω j

σ( j),wγσ(1)wγσ(2) · · ·wγσ(n) >

 .
Now we will give the detail algorithm steps in order to apply these two kinds of aggregation

operators in multi-attribute group decision making based on weighted hesitant fuzzy information.
Let A = {A1, A2, · · · , An} and C = {C1,C2, · · · ,Cm} be the collection of alternatives and the set

of attributes, respectively. E = {E1, E2, · · · , Et} and rk
i j ∈ [0, 1] represent the set of experts and the

assessment from the expert Ek respect to the alternative Ai under every attribute C j, respectively. Our
goal is to choose the best alternative.

Hence, we utilize WHFEs as our decision making data to aggregate these fuzzy information and
compare their score function and variance function in order to make the ranking relation.

Step 1. For every alternative Ai under each attribute C j, considering two kinds of different cases, we
construct the WHFE hw

i j by incorporating the experts’ assessments, respectively.

Case 1. The weights of the experts are unknown, then

hw
i j(C j) = {< ri j,wi j > |wi j = p/t} (2)

where ri j ∈ ∪k{rk
i j}, p is the number of the experts who give the assessment ri j and t is the number of

experts.

Case 2. The weight vector of the experts, v = (v1, v2, · · · , vt)T with vk ≥ 0 and
∑t

k=1 vk = 1, is given,
then

hw
i j(C j) = {< ri j,wi j > |wi j =

∑
k∈N(ri j)

vk} (3)

where ri j ∈ ∪k{rk
i j} and N(ri j) denotes the collection of the experts who give the assessment ri j.

For convenience, we use an example to illustrate the establishing of weight for weighted hesitant
fuzzy element hw(x).

Example 4. To compare three kinds of cars such as A, B and C under the attribute “Comfort” and ten
experts(E1, E2, · · · , E10) are authorized to provide their assessments. For A, the assessments provided
by the experts are 0.6, 0.7, 0.8, 0.6, 0.75, 0.7, 0.7, 0.8, 0.6, 0.7, respectively. Now we merge the ten
experts’ assessments by incorporating the evaluated values.

If the weights of the experts are unknown, then according to Eq (2), we obtain the WHFE

hw(x) = {< 0.6, 0.3 >, < 0.7, 0.4 >, < 0.75, 0.1 >, < 0.8, 0.2 >}.
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If the weight vector of the experts is given as

v = (0.1, 0.12, 0, 08, 0, 09, 0.15, 0.08, 0.1, 0.08, 0.1, 0.1)T ,

then according to Eq (3), we get the WHFE

hw(x) = {< 0.6, 0.29 >, < 0.7, 0.4 >, < 0.75, 0.15 >, < 0.8, 0.16 >}.

Here, we give the calculation process of < 0.6, 0.29 >. Since three experts, E1, E4 and E9, give their
assessment values 0.6, and the weights associated with them are 0.1, 0.09 and 0.1, respectively, then
w = 0.1 + 0.09 + 0.1 = 0.29, so we have < 0.6, 0.29 >.

Step 2. Assume that ω = (ω1, ω2, · · · , ωm)T with ω j ≥ 0 and
∑m

j=1 ω j = 1 is the weight vector of
the attributes. For every alternative Ai, we aggregate the WHFEs hw

i j(C j), j = 1, 2, · · · ,m, by applying
the WHFWA, WHFWG, WHFOWA and WHFOWG operators to derive the overall aggregation value
hw(Ai). Here we utilize WHFOWA operator, then

hw(Ai) = WHFOWA(hw
i1(C1), hw

i2(C2), · · · , hw
im(Cm)).

Step 3. Calculate the score function s(hw(Ai)) and variance function v(hw(Ai)) of hw(Ai).

Step 4. Rank the alternatives according to s(hw(Ai)) and v(hw(Ai)), i = 1, 2, · · · , n, and choose the best
one.

5. Numerical examples

To illustrate the effectiveness of our proposed approach, we present four numerical examples in this
section.

Example 5. There are four software packages A1, A2, A3, A4 to be selected. And these packages will
be considered by three experts Ek(k = 1, 2, 3) from four attributes:

(1) Investment in new software (C1);
(2) Performance improvement (C2);
(3) Cost of transferring systems (C3);
(4) Reliability (C4). Because of different attributes having different importance, thus we have the

weight vector, w = (0.3, 0.25, 0.25, 0.2)T .
After completion of decision making process, we obtain decision making matrix

A(k) =
(
r(k)

i j
)
(k = 1, 2, 3) (see Tables 1–3) described by weighted hesitant fuzzy element. Every value in

WHFE represents the membership degree. In the following, we give the ranking relation of four
software packages by applying our proposed approach.

Table 1. The preference matrix provided by E1.

C1 C2 C3 C4

A1 0.6 0.8 0.5 0.6
A2 0.5 0.9 0.8 0.7
A3 0.7 0.6 0.7 0.6
A4 0.8 0.7 0.8 0.9
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Table 2. The preference matrix provided by E2.

C1 C2 C3 C4

A1 0.6 0.85 0.65 0.6
A2 0.7 0.8 0.8 0.75
A3 0.8 0.6 0.75 0.6
A4 0.8 0.7 0.8 0.85

Table 3. The preference matrix provided by E3.

C1 C2 C3 C4

A1 0.8 0.85 0.65 0.7
A2 0.7 0.8 0.8 0.75
A3 0.7 0.8 0.75 0.9
A4 0.9 0.75 0.85 0.9

Case 1. Assume that the weights of the experts are unknown.

Step 1. We utilize Eq (2) and obtain the WHFE A = {< ri j,wi j >} under unknown experts weights
environments as follows:

For A1, we have

hw
A1

(C1) = {< 0.6, 2/3 >, < 0.8, 1/3 >}, hw
A1

(C2) = {< 0.8, 1/3 >, < 0.85, 2/3 >}.

hw
A1

(C3) = {< 0.5, 1/3 >, < 0.65, 2/3 >}, hw
A1

(C4) = {< 0.6, 2/3 >, < 0.7, 1/3 >}.

For A2, we have

hw
A2

(C1) = {< 0.5, 1/3 >, < 0.7, 2/3 >}, hw
A2

(C2) = {< 0.8, 2/3 >, < 0.9, 1/3 >}.

hw
A2

(C3) = {< 0.8, 1 >}, hw
A2

(C4) = {< 0.7, 1/3 >, < 0.75, 2/3 >}.

For A3, we have

hw
A3

(C1) = {< 0.7, 2/3 >, < 0.8, 1/3 >}, hw
A3

(C2) = {< 0.6, 2/3 >, < 0.8, 1/3 >}.

hw
A3

(C3) = {< 0.7, 1/3 >, < 0.75, 2/3 >}, hw
A3

(C4) = {< 0.6, 2/3 >, < 0.9, 1/3 >}.

For A4, we have

hw
A4

(C1) = {< 0.8, 2/3 >, < 0.9, 1/3 >}, hw
A4

(C2) = {< 0.7, 2/3 >, < 0.75, 1/3 >}.

hw
A4

(C3) = {< 0.8, 2/3 >, < 0.85, 1/3 >}, hw
A4

(C4) = {< 0.85, 1/3 >, < 0.9, 2/3 >}.

Step 2. We apply WHFOWA operator to aggregate all of preference values < ri j,wi j >, j = 1, 2, 3, 4,
and obtain hw(Ai), i = 1, 2, 3, 4 as follows:
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hw(A1) = { < 0.8632, 0.0494 >, < 0.8313, 0.0247 >, < 0.9144, 0.0988 >, < 0.8944, 0.0494 >,
< 0.9340, 0.0988 >, < 0.9186, 0.0494 >, < 0.9587, 0.1975 >, < 0.9490, 0.0988 >,
< 0.8526, 0.0247 >, < 0.8183, 0.0123 >, < 0.9078, 0.0494 >, < 0.8863, 0.0247 >,
< 0.9289, 0.0494 >, < 0.9123, 0.0247 >, < 0.9555, 0.0988 >, < 0.9451, 0.0494 >}.

hw(A2) = { < 0.9637, 0.0741 >, < 0.9785, 0.1481 >, < 0.9507, 0.037 >, < 0.9708, 0.0741 >,
< 0.9795, 0.1481 >, < 0.9878, 0.2963 >, < 0.9722, 0.0741 >, < 0.9835, 0.1481 >}.

hw(A3) = { < 0.9116, 0.0988 >, < 0.9244, 0.0494 >, < 0.9476, 0.1975 >, < 0.9552, 0.0988 >,
< 0.9048, 0.0494 >, < 0.9186, 0.0247 >, < 0.9435, 0.0988 >, < 0.9517, 0.0494 >,
< 0.8846, 0.0494 >, < 0.9014, 0.0247 >, < 0.9316, 0.0988 >, < 0.9415, 0.0494 >,
< 0.8757, 0.0247 >, < 0.8937, 0.0123 >, < 0.9263, 0.0494 >, < 0.937, 0.0247 >}.

hw(A4) = { < 0.9722, 0.0988 >, < 0.9887, 0.1975 >, < 0.9567, 0.0494 >, < 0.9825, 0.0988 >,
< 0.9609, 0.0494 >, < 0.9841, 0.0988 >, < 0.9392, 0.0247 >, < 0.9753, 0.0494 >,
< 0.9622, 0.0494 >, < 0.9847, 0.0988 >, < 0.9413, 0.0247 >, < 0.9762, 0.0494 >,
< 0.9469, 0.0247 >, < 0.9785, 0.0494 >, < 0.9175, 0.0123 >, < 0.9665, 0.0247 >}.

Step 3. We calculate the score function and variance function of hw(Ai), i = 1, 2, 3, 4, and have
s(hw(A1)) = 0.9256, v(hw(A1)) = 0.0345, s(hw(A2)) = 0.9790, v(hw(A2)) = 0.0090, s(hw(A3)) = 0.9307,
v(hw(A3)) = 0.0213,s(hw(A4)) = 0.9747, v(hw(A4)) = 0.0148.

Step 4. Rank the alternatives according to s(hw(Ai)) and v(hw(Ai)), i = 1, 2, 3, 4, therefore, we obtain
the ranking relation of alternatives, A2 � A4 � A3 � A1, and the best alternative is A2.

Case 2. Assume that the weights of the experts are v = (0.4, 0.3, 0.3)T .

Step 1. We utilize Eq (3), and obtain the WHFSs A = {< ri j,wi j >} as follows:
For A1, we have

hw
A1

(C1) = {< 0.6, 0.7 >, < 0.8, 0.3 >}, hw
A1

(C2) = {< 0.8, 0.4 >, < 0.85, 0.6 >}.

hw
A1

(C3) = {< 0.5, 0.4 >, < 0.65, 0.6 >}, hw
A1

(C4) = {< 0.6, 0.7 >, < 0.7, 0.3 >}.

For A2, we have

hw
A2

(C1) = {< 0.5, 0.4 >, < 0.7, 0.6 >}, hw
A2

(C2) = {< 0.8, 0.6 >, < 0.9, 0.4 >}.

hw
A2

(C3) = {< 0.8, 1 >}, hw
A2

(C4) = {< 0.7, 0.4 >, < 0.75, 0.6 >}.

For A3, we have

hw
A3

(C1) = {< 0.7, 0.7 >, < 0.8, 0.3 >}, hw
A3

(C2) = {< 0.6, 0.7 >, < 0.8, 0.3 >}.
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hw
A3

(C3) = {< 0.7, 0.4 >, < 0.75, 0.6 >}, hw
A3

(C4) = {< 0.6, 0.7 >, < 0.9, 0.3 >}.

For A4, we have

hw
A4

(C1) = {< 0.8, 0.7 >, < 0.9, 0.3 >}, hw
A4

(C2) = {< 0.7, 0.7 >, < 0.75, 0.3 >}.

hw
A4

(C3) = {< 0.8, 0.7 >, < 0.85, 0.3 >}, hw
A4

(C4) = {< 0.85, 0.3 >, < 0.9, 0.7 >}.

Step 2. We apply WHFOWA operator to aggregate all of preference values < ri j,wi j >, j = 1, 2, 3, 4,
and obtain hw(Ai), i = 1, 2, 3, 4 as follows:

hw(A1) = { < 0.8896, 0.0784 >, < 0.8539, 0.0336 >, < 0.9224, 0.1176 >, < 0.8973, 0.0504 >,
< 0.9327, 0.1176 >, < 0.9109, 0.0504 >, < 0.9527, 0.1764 >, < 0.9374, 0.0756 >,
< 0.8707, 0.0336 >, < 0.8288, 0.0144 >, < 0.9091, 0.0504 >, < 0.8797, 0.0216 >,
< 0.9211, 0.0504 >, < 0.8956, 0.0216 >, < 0.9446, 0.0756 >, < 0.9266, 0.0324 >}.

hw(A2) = { < 0.9643, 0.0960 >, < 0.9749, 0.1440 >, < 0.9627, 0.0640 >, < 0.9737, 0.0960 >,
< 0.9772, 0.1440 >, < 0.9839, 0.2160 >, < 0.9761, 0.096 >, < 0.9832, 0.1440 >}.

hw(A3) = { < 0.9263, 0.1372 >, < 0.9298, 0.0588 >, < 0.9480, 0.2058 >, < 0.9505, 0.0882 >,
< 0.9136, 0.0588 >, < 0.9177, 0.0252 >, < 0.9391, 0.0882 >, < 0.9420, 0.0378 >,
< 0.8943, 0.0588 >, < 0.8994, 0.0252 >, < 0.9255, 0.0882 >, < 0.9291, 0.0378 >,
< 0.8761, 0.0252 >, < 0.8821, 0.0108 >, < 0.9127, 0.0378 >, < 0.9169, 0.0162 >}.

hw(A4) = { < 0.9744, 0.1029 >, < 0.9910, 0.2401 >, < 0.9553, 0.0441 >, < 0.9842, 0.1029 >,
< 0.9608, 0.0441 >, < 0.9862, 0.1029 >, < 0.9315, 0.0189 >, < 0.9758, 0.0441 >,
< 0.9604, 0.0441 >, < 0.9860, 0.1029 >, < 0.9309, 0.0189 >, < 0.9756, 0.0441 >,
< 0.9393, 0.0189 >, < 0.9786, 0.0441 >, < 0.8941, 0.0081 >, < 0.9627, 0.0189 >}.

Step 3. We calculate the score function and variance function of hw(Ai), i = 1, 2, 3, 4, and have
s(hw(A1)) = 0.9199, v(hw(A1)) = 0.0280, s(hw(A2)) = 0.9766, v(hw(A2)) = 0.0068, s(hw(A3)) = 0.9290,
v(hw(A3)) = 0.0187,s(hw(A4)) = 0.9769, v(hw(A4)) = 0.0168.

Step 4. Rank the alternatives according to s(hw(Ai)) and v(hw(Ai)), i = 1, 2, 3, 4, therefore, we obtain
the ranking of alternatives, A4 � A2 � A3 � A1, and the best alternative is A4.

Similarly, we can use WHFOWG operator to aggregate weighted hesitant fuzzy information and
have the following conclusions.

Case 1. Assume that the weights of the experts are unknown.
We calculate the score function and variance function of hw(Ai), i = 1, 2, 3, 4, and have s(hw(A1)) =

0.4190, v(hw(A1)) = 0.0725, s(hw(A2)) = 0.4795, v(hw(A2)) = 0.0311, s(hw(A3)) = 0.4409, v(hw(A3)) =

0.0964, s(hw(A4)) = 0.6196, v(hw(A4)) = 0.0613. and obtain the ranking of alternatives, A4 � A2 �

A3 � A1, and the best alternative is A4.
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Case 2. Assume that the weights of the experts are v = (0.4, 0.3, 0.3)T .
We calculate the score function and variance function of hw(Ai), i = 1, 2, 3, 4, and have s(hw(A1)) =

0.4078, v(hw(A1)) = 0.0758, s(hw(A2)) = 0.4874, v(hw(A2)) = 0.0277, s(hw(A3)) = 0.4227, v(hw(A3)) =

0.0976, s(hw(A4)) = 0.6042, v(hw(A4)) = 0.0664, and obtain the ranking of alternatives, A4 � A2 �

A3 � A1, and the best alternative is A4.
By combining the calculation results of both WHFOWA and WHFOWG operators, we find that the

best alternative is A4.
In addition, we will make comparison analysis between our algorithm and the one of classical

hesitant fuzzy set. Aimed at the data in Example 5, we retain the possible membership degrees and
cancel the weight information, thus, these HFEs are listed in the following:

For A1, we have

hA1(C1) = {0.6, 0.8}, hA1(C2) = {0.8, 0.85}, hA1(C3) = {0.5, 0.65}, hA1(C4) = {0.6, 0.7}.

For A2, we have

hA2(C1) = {0.5, 0.7}, hA2(C2) = {0.8, 0.9}, hA2(C3) = {0.8}, hA2(C4) = {0.7, 0.75}.

For A3, we have

hA3(C1) = {0.7, 0.8}, hA3(C2) = {0.6, 0.8}, hA3(C3) = {0.7, 0.75}, hA3(C4) = {0.6, 0.9}.

For A4, we have

hA4(C1) = {0.8, 0.9}, hA4(C2) = {0.7, 0.75}, hA4(C3) = {0.8, 0.85}, hA4(C4) = {0.85, 0.9}.

We apply HFOWA operator to aggregate origin values < γi j >, j = 1, 2, 3, 4 and results h(Ai), i =

1, 2, 3, 4 are as follows:

hA1 = {0.984, 0.988, 0.9888, 0.9916, 0.988, 0.991, 0.9916, 0.9937,
0.992, 0.994, 0.9944, 0.9958, 0.994, 0.9955, 0.9958, 0.9969}.

hA2 = {0.994, 0.995, 0.997, 0.9975, 0.9964, 0.997, 0.9982, 0.9985}.

hA3 = {0.9856, 0.9964, 0.988, 0.997, 0.9928, 0.9982, 0.994, 0.9985,
0.9904, 0.9976, 0.992, 0.998, 0.9952, 0.9988, 0.996, 0.999}.

hA4 = {0.9982, 0.9988, 0.9987, 0.9991, 0.9985, 0.999, 0.9989, 0.9992,
0.9991, 0.9994, 0.9993, 0.9996, 0.9992, 0.9995, 0.9994, 0.9996}.

Then we calculate the score function and the variance function of h(Ai), i = 1, 2, 3, 4, and the results
are listed as follows:

s(h(A1)) = 0.9922, v(h(A1)) = 0.0137, s(h(A2)) = 0.9967, v(h(A2)) = 0.0041.
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s(h(A3)) = 0.9948, v(h(A3)) = 0.0158, s(h(A4)) = 0.9990, v(h(A4)) = 0.0016.

Therefore, we obtain the ranking relation of alternatives, A4 � A2 � A3 � A1, and the best alternative
is A4.

Remark 7. By analyzing the results of WHFE and HFE in Case 1 and Case 2, we find that the ranking
result of WHFE is the same as the one of HFE though the weights of experts and the WHFEs are
different, thus it shows that the weighted hesitant fuzzy element has higher sensitivity.

Example 6. [40] Assume that a factory intends to choose a new site for new buildings. Now there exist
three possible alternatives Yi(i = 1, 2, 3) to be considered, three attributes include (1) G1(Price); (2)
G2(Location); and (3) G3 Environment, and the weight vector of three attributes is w = (0.3, 0.2, 0.5)T .
The related data is described as weighted hesitant fuzzy element, hw

i j =
⋃

γi j∈hw
i j
{< γi j,wγi j >}, where γi j

represents the possible membership degree which is the satisfaction degree of the alternative Yi respect
to the attribute G j, and wγi j is the weight of γi j. The origin data is listed in Table 4.

Table 4. Weighted hesitant fuzzy decision matrix.

G1 G2 G3

Y1 {(0.6,0.3),(0.5,0.3),(0.4,0.4)} {(0.6,0.8),(0.4,0.2)} {(0.5,0.3),(0.3,0.7)}
Y2 {(0.4,0.6),(0.3,0.4)} {(0.8,1)} {(0.4,0.2),(0.3,0.3),(0.2,0.5)}
Y3 {(0.8,1)} {(0.7,0.1),(0.6,0.3),(0.5,0.6)} {(0.2,0.5),(0.1,0.5)}

Then according to the related steps, we have the following calculation results.

Step 1. Obtain origin data under weighted hesitant fuzzy environment, see Table 4.

Step 2. Apply WHFOWA operator to aggregate all WHFEs, and obtain hw(Yi), i = 1, 2, 3 in the
following:

hw(Y1) = { < 0.7035, 0.072 >, < 0.7157, 0.1680 >, < 0.4429, 0.018 >, < 0.4657, 0.0420 >,
< 0.6830, 0.072 >, < 0.6960, 0.1680 >, < 0.4043, 0.018 >, < 0.4287, 0.0420 >,
< 0.6819, 0.096 >, < 0.6949, 0.224 >, < 0.4022, 0.024 >, < 0.4266, 0.056 >}.

hw(Y2) = { < 0.8671, 0.12 >, < 0.8677, 0.18 >, < 0.8683, 0.3 >, < 0.8434, 0.08 >,
< 0.8442, 0.12 >, < 0.8449, 0.2 >}.

hw(Y3) = { < 0.8414, 0.05 >, < 0.8318, 0.05 >, < 0.8641, 0.15 >, < 0.8559, 0.15 >,
< 0.8820, 0.3 >, < 0.8748, 0.3 >}.

Step 3. Calculate the score function and variance function, then we have:

s(hw(Y1)) = 0.6445, v(hw(Y1)) = 0.1072, s(hw(Y2)) = 0.8585.

v(hw
A(Y2)) = 0.0115, s(hw(Y3)) = 0.8687, v(hw(Y3)) = 0.0140.
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Step 4. Rank the alternatives based on the score function and the variance function of every alternative,
then we have the ranking relation: A3 � A2 � A1.

Remark 8. The ranking result based on the WHFOWA operator is the same as that of WHFHWA
operator in Zhang and Wu [40].

Remark 9. Numerical examples show that our proposed algorithm has good order preservation.

Example 7. In this example, we adopt the data from [5] by adding the same weights for HFEs data to
construct the weighted hesitant fuzzy elements, list these data in Table 5, and make comparison.

After we compute the score function of our operator aggregation result, we have:

s(hw(Y1)) = 0.574, s(hw(Y2)) = 0.5978, s(hw(Y3)) = 0.5321, s(hw(Y4)) = 0.8116.

And the ranking of these alternatives are that: Y4 � Y2 � Y1 � Y3. By comparing with the result in [5],
we find that there exists the same ranking order, but the consequence values give us more accurate
information for alternatives.

Table 5. Weighted hesitant fuzzy decision matrix.

G1 G2

Y1 {(0.2,1/3),(0.4,1/3),(0.7,1/3)} {(0.2,1/3),(0.6,1/3),(0.8,1/3)}
Y2 {(0.2,1/4),(0.4,1/4),(0.7,1/4),(0.9,1/4)} {(0.1,1/4),(0.2,1/4),(0.4,1/4),(0.5,1/4)}
Y3 {(0.3,1/4),(0.5,1/4),(0.6,1/4),(0.7,1/4)} {(0.2,1/4),(0.4,1/4),(0.5,1/4),(0.6,1/4)}
Y4 {(0.3,1/3),(0.5,1/3),(0.6,1/3)} {(0.2,1/2),(0.4,1/2))}

G3 G4

Y1 {(0.2,1/5),(0.3,1/5),(0.6,1/5),(0.7,1/5),(0.9,1/5)} {(0.3,1/5),(0.4,1/5),(0.5,1/5),(0.7,1/5),(0.8,1/5)}
Y2 {(0.3,1/4),(0.4,1/4),(0.6,1/4),(0.9,1/4)} {(0.5,1/4),(0.6,1/4),(0.5,1/4),(0.9,1/4)}
Y3 {(0.3,1/4),(0.5,1/4),(0.7,1/4),(0.8,1/4)} {(0.2,1/4),(0.5,1/4),(0.6,1/4),(0.7,1/4)}
Y4 {(0.5,1/3),(0.6,1/3),(0.7,1/3)} {(0.8,1/2),(0.9,1/2))}

Example 8. In this example, we choose the data from [14] by adding the same weights for HFEs data
to construct the weighted hesitant fuzzy elements, list these data in Table 6, and make comparison.

Suppose that the ideal alternative is A∗ = {1}, then we can obtain the score function of operator
aggregation result, and have:

s(hw(A1)) = 0.5875, s(hw(A2)) = 0.5871, s(hw(A3)) = 0.8456,

s(hw(A4)) = 0.7292, s(hw(A5)) = 0.7232.

Hence, we have the ranking order of alternatives: A3 � A4 � A5 � A1 � A2.
Comparing with result from generalized hybrid hesitant weighted distance in [14], A3 � A5 � A4 �

A1 � A2(λ = 1), we find that there exists the difference between the samples A4 and A5. In fact, it also
reflects the difference between the two approaches.
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Table 6. Weighted hesitant fuzzy decision matrix.

P1 P2

A1 {(0.5,1/3),(0.4,1/3),(0.3,1/3)} {(0.9,1/4),(0.8,1/4),(0.7,1/4),(0.1,1/4)}
A2 {(0.5,1/2),(0.3,1/2)} {(0.9,1/4),(0.7,1/4),(0.6,1/4),(0.2,1/4)}
A3 {(0.7,1/2),(0.6,1/2)} {(0.9,1/2),(0.6,1/2)}
A4 {(0.8,1/4),(0.7,1/4),(0.4,1/4),(0.3,1/4)} {(0.7,1/3),(0.4,1/3),(0.2,1/3)}
A5 {(0.9,1/5),(0.7,1/5),(0.6,1/5),(0.3,1/5),(0.1,1/5)} {(0.8,1/4),(0.7,1/4),(0.6,1/4),(0.4,1/4)}

P3 P4

A1 {(0.5,1/3),(0.4,1/3),(0.2,1/3)} {(0.9,1/4),(0.6,1/4),(0.5,1/4),(0.3,1/4)}
A2 {(0.8,1/4),(0.6,1/4),(0.5,1/4),(0.1,1/4)} {(0.7,1/3),(0.3,1/3),(0.4,1/3)}
A3 {(0.7,1/3),(0.5,1/3),(0.3,1/3)} {(0.6,1/2),(0.4,1/2)}
A4 {(0.8,1/2),(0.1,1/2)} {(0.9,1/3),(0.8,1/3),(0.6,1/3)}
A5 {(0.9,1/3),(0.8,1/3),(0.7,1/3)} {(0.9,1/4),(0.7,1/4),(0.6,1/4),(0.3,1/4)}

6. Conclusions

Considering that the weighted hesitant fuzzy set (WHFS) introduced by Zhang and Wu [40] is a
powerful tool to describe hesitant fuzzy information, where its membership degrees are given with
some different weights. In this paper, we redefine the union and intersection operations of WHFEs
which are more intuitive and logical, investigate its operation properties, and propose the variance
function of WHFE and the ranking rule to compare WHFEs based on the score function and variance
function. Furthermore, motivated by the idea of OWA operator introduced by Yager [44], we propose
two kinds of aggregation operators such as WHFOWA and WHFOWG operators, and apply in
multiple-attribute group decision making. Finally, four numerical examples are used to illustrate that
our proposed algorithm has good effectiveness.

In the future, we will focus on developing some novel operators under weighted hesitant fuzzy
environment including Frank operator, Bonferroni means, OWA operator and variable weighted
aggregation operator to enrich weighted hesitant fuzzy set theory and method. Furthermore, inspired
by the idea of research in [22–24], we will extend our idea to q-rung orthopair fuzzy sets and propose
some novel generalization of fuzzy sets. Finally, we hope that our research will be able to provide
more new idea and new methods for multi-criteria and multiple-attribute group decision making based
on weighted hesitant fuzzy information.
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