
AIMS Mathematics, 8(12): 29734–29758.

DOI: 10.3934/math.20231522

Received: 15 June 2023

Revised: 19 October 2023

Accepted: 19 October 2023

Published: 02 November 2023

http://www.aimspress.com/journal/Math

Research article

Unsteady-state turbulent flow field predictions with a convolutional

autoencoder architecture

Álvaro Abucide1, Koldo Portal2, Unai Fernandez-Gamiz2, Ekaitz Zulueta1,* and Iker Azurmendi1,3

1 Automatic Control and System Engineering Department, University of the Basque Country

UPV/EHU, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
2 Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country

UPV/EHU, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
3 CS Centro Stirling S. Coop., Avda. Álava 3, 20550 Aretxabaleta, Spain

* Correspondence: Email: ekaitz.zulueta@ehu.eus.

Abstract: Traditional numerical methods, such as computational fluid dynamics (CFD), demand large

computational resources and memory for modeling fluid dynamic systems. Hence, deep learning (DL)

and, specifically Convolutional Neural Networks (CNN) autoencoders have resulted in accurate tools

to obtain approximations of the streamwise and vertical velocities and pressure fields, when stationary

flows are considered. The novelty of this paper consists of predicting the future instants from an initial

one with a CNN autoencoder architecture when an unsteady flow is considered. Two neural models

are proposed: The former predicts the future instants on the basis of an initial sample and the latter

approximates the initial sample. The inputs of the CNNs take the signed distance function (SDF) and

the flow region channel (FRC), and, for the representation of the temporal evolution, the previous CFD

sample is added. To increment the amount of training data of the second neural model, a data

augmentation technique based on the similarity principle for fluid dynamics is implemented. As a result,

low absolute error rates are obtained in the prediction of the first samples near the shapes surfaces.

Even in the most advanced time instants, the prediction of the vortices zone is quite reliable. 62.12

and 9000 speed-up ratios are achieved by the predictions of the first and second neural models,

respectively, compared to the computational cost regarded by the CFD simulations.

Keywords: computational fluid dynamics; unsteady flow; deep learning; CNN; data augmentation

Mathematics Subject Classification: 76F99, 65Z05

29735

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

1. Introduction

The study of turbulence in fluids has been a significant research topic for many years due to its

impact on a wide variety of applications. Experimentation with turbulent flows has improved the

understanding of the behavior of turbulences and has allowed the design of more efficient systems.

Unfortunately, experiments with turbulent flows are usually too costly and impractical. Computational

fluids dynamics (CFD) simulations provide detailed enough results when constraints appear in the

physical experiments. This is principally possible thanks to the exponential advances in computational

resources. Nonetheless, CFD has its drawbacks. For example, when fine meshing is required or a

complex geometry is analyzed, the computational resources demanded by CFD become prohibitive.

The generation of the mesh and the closure model requires the user’s influence, which may limit the

quality of the CFD simulation. To solve these drawbacks, CFD problems have been solved with deep

learning techniques [1]. In this case, unsteady flows are predicted by a convolutional neural network

(CNN) architecture.

Aerodynamic shape optimization (ASO) is one of the issues in which DL has been recently

involved. Qin et al. [2] proposed an artificial neural network (ANN) and deep reinforcement learning

(DRL) to reach aerodynamic optimization in a blade profile. Qiu et al. [3] employed a novel

optimization strategy based on the proper orthogonal decomposition (POD) method to reduce the

design variables of the transonic airfoil RAE2822 and the transonic wing ONERA M6.

Two main objectives of DL in CFD applications are the reduction of computational costs and the

direct calculation of some fluid features. For example, Hanna et al. [4] and Bao et al. [5] focused on

diminishing the computation time in the modeling and simulation of coarse meshes. Tlales et al. [6]

reduced the computational costs by applying a clustering technique as a mesh adaptation sensor. Guo

et al. [7] predicted non-uniform steady laminar flow fields around bluff body objects with low

computational costs and demonstrated the capacity of generalization of the CNNs to the rapid

approximation of the flow field. Ribeiro et al. [8] and Kashefi et al. [9] obtained estimations of the

streamwise and vertical velocities and pressure fields for slight modifications of a series of diversely

shaped geometries, using an autoencoder (AE) and a PointNet architecture, respectively. Moreover,

Murata et al. [10] applied a CNN auto-encoder for the application of modal decomposition.

Instead of the estimation of the flow fields, other works focus on different purposes. Some studies

focus on turbulence modeling, such as the tensor basis neural network (TBNN) architecture proposed

by Ling et al. [11] to predict the Reynolds stress tensor, which provided more accurate results than the

ones obtained with Reynolds-Averaged Navier-Stokes (RANS) models. Lee and You [12] used a

Generative Adversarial Network (GAN) architecture to generate a surrogate model to predict the

shedding of non-stationary laminar vortices on a circular cylinder. Liu et al. [13] and Deng et al. [14]

applied a CNN architecture for detecting impacts and vortices, respectively.

The difficulty in the analysis of fluid dynamics features when a 3D-shaped geometry or turbulent

flows are considered remarkably increases. This implies that most of the works study 2D geometries

and laminar flows. The works of Guo et al. [7] and Nowruzi et al. [15] accomplished accurate

solutions with 3D geometries, assuming large computational costs. Mohan et al. [16] developed a

DL framework to reduce the geometry and, consequently, the computational costs. Some studies

obtained quality and computational-efficient results, regarding turbulent flows. For example,

Portal-Porras et al. [17] developed different CNN structures to predict the coupled velocity fields

with turbulent flows. Abucide-Armas et al. [18] conceived a data augmentation technique to reduce

29736

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

the amount of CFD simulations required to train the network and obtained low error rates for turbulent

flows and variable input velocities to the domain. Thuerey et al. [19] predicted the streamwise and

vertical velocities and pressure fields of the RANS-based Spalart-Allmaras turbulence model on

airfoils, and Fang et al. [20] employed a TBNN to analyze the specific case of turbulent channel flow.

CFD applications frequently need to know the time evolution of the different parameters and

features of a fluid. Many of the aforementioned works are based on the behavior of the fluid in a

specific state. The temporal evolution of the latent vectors is obtained by a nonlinear autoencoder

mixed with sparse identification of nonlinear dynamics (SINDy) in the works of Champion et al. [21]

and Fukami et al. [22] and with a Gaussian process by Maulik et al. [23]. Other studies employ

recurrent neural networks (RNN) to analyze the flow properties on a time-based approach. For example,

Agostini [24] predicted the streamwise velocity field with an AE and CNN framework. King et al. [25],

Maulik et al. [26] and Gonzalez and Balajewicz [27] predicted some flow properties on time-based

approaches.

This paper aims to exploit the CFD simulated data to train different versions of a CNN

architecture. The data contains the simulations of turbulent fluid streamwise and vertical velocities and

the pressure fields around different-shaped geometries. First, the CNN purpose is to predict the future

states of a fluid given an initial CFD obtained state and then it predicts the futures states based on the

previously predicted sample. In addition, the CNN is trained to obtain the initial state based on the

corresponding geometric information. The current work focuses on the prediction of the velocity and

pressure when unsteady flows are considered.

2. Materials and methods

2.1. Numerical simulations

The Unsteady Reynolds Navier-Stokes (URANS) approach was adopted for the current

simulations since they are usually employed when long term periodical oscillations in a turbulent flow

are investigated. The URANS equations are obtained by the following procedure. The Navier-Stokes

equations for incompressible flow are time-filtered according to Eq (1):

𝛿〈𝑢𝑖〉

𝛿𝑡
+

𝛿

𝛿𝑥𝑗
(〈𝑢𝑗𝑢𝑖〉) = −

1

𝜌

𝛿〈𝑝〉

𝛿𝑥𝑖
+ 𝜐

𝛿2〈𝑢𝑖〉

𝛿𝑥𝑘
2 . (1)

Then, the turbulent stress tensor 𝜏𝑖𝑗 = 〈𝑢𝑖〉〈𝑢𝑗〉 − 〈𝑢𝑗𝑢𝑖〉 is introduced, which gives the final

URANS equation:

𝛿〈𝑢𝑖〉

𝛿𝑡
+

𝛿

𝛿𝑥𝑗
(〈𝑢𝑖〉〈𝑢𝑗〉) = −

1

𝜌

𝛿〈𝑝〉

𝛿𝑥𝑖
+

𝛿〈𝑝〉

𝛿𝑥𝑗
+ 𝜐

𝛿2〈𝑢𝑖〉

𝛿𝑥𝑘
2 . (2)

More detailed explanations of the URANS approach are given, e.g. in [28]. Star-CCM+

commercial code was used to run the CFD simulations. The CFD code employs finite volume methods

to convert the continuous systems of equations into a set of discrete algebraic equations. The following

geometries are considered: circle, ellipse, square, rectangle, triangle and equilateral triangle. Table 1

contains the descriptions of the geometries where the sketch indicates the orientation with angle 0º.

29737

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

Table 1. Geometric data.

Shape Sketch Orientation Scale

Circle

- a = 0.02 m

Ellipse

60º a=0.02 m;

b=0.04 m

Square

21º a=0.02 m

Rectangle

114º a=0.02 m;

b=0.04 m;

Triangle

276º a=0.02 m

b=0.035 m

=80º

Equilateral triangle

105º a=0.02 m

Overall, 500 samples of each geometry are simulated, giving a total of 3000 samples. For each

sample, the vertical and streamwise velocities and the pressure fields are computed. Each simulation

lasted 0.3 seconds with a time-step of 2·10-4 s. Data was collected after each time step, once the flow

was fully developed, at t=0.2 s. The time intervals were chosen to be small enough to capture the vortex

shedding. The robustness of the solution is ensured with an upwind scheme [29,30] which discretizes

the convective terms. The RANS-based k-ω shear stress transport (SST) turbulence model introduced

by Menter [31] was used to model the turbulence. The studies of Rajani et al. [32] and Rahman et al. [33]

have successfully computed unsteady state simulations applied to similar cases. All the simulations

were converged until a satisfactory residual convergence was achieved for the velocity and pressure

quantities.

The numerical domain is composed of a rectangular two-dimensional computational domain with

29738

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

the shape located in the center of the domain; see Aramendia et al. [34]. The left and right sides of the

domain were set as the inlet and outlet, respectively. Top and bottom sides were set as no-slip walls,

as well as the shape edge. Figure 1 shows a detailed view of the computational domain and its

dimensions.

Figure 1. Numerical domain (not to scale).

The precision of, the convergence of and the time required to attain the solution of a CFD analysis

strongly depend on the design and construction of a high-quality grid. Within this domain, a mesh of

two-dimensional polyhedral cells was generated. The cell density is greater around the shape and on

the domain walls. In addition, a volumetric control was designed to refine the mesh around the body

to maintain the y+ value below 1. Figure 2 illustrates the mesh distribution around a square shape.

Figure 2. Example of the mesh distribution around the square.

With regards to the fluid, incompressible turbulent unsteady air is considered. The density (ρ) of

the selected fluid is equal to 1.18415 kg/m3, and its dynamic viscosity (µ) is equal to 1.85508·10-5

Pa·s. Both magnitudes are assumed to be constant. The velocity at the inlet (u) is 5 m/s. Consequently,

the CFD numerical simulations have been run within a range of Re of 6380-12760. The CFD

simulation data was interpolated into a 79172 grid to be manageable by the CNN [35].

In order to verify sufficient mesh resolution, the Richardson extrapolation method [36] was

applied to the mean drag coefficient for the case of the circle, with 𝑅𝑒 = 6,380. This method consists

of estimating the value of a parameter when the mesh size tends to zero (in other words, the mesh

quantity tends to infinity) from a minimum of three meshes. Therefore, a coarse mesh (around 16,000

cells) a medium mesh (around 25,000 cells) and a fine mesh (around 44,000 cells) were designed. As

summarized in Table 2, the convergence condition (R), which should be between 0 and 1 to ensure

29739

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

monotonic convergence, is fulfilled. Additionally, the drag coefficient obtained with the fine mesh is

close to the estimated value. Moreover, the results have been compared with the experimental data

reported by Roshko et al. [37] for the same case, showing fairly accurate results.

Table 2. Mesh verification and comparison with experimental data for the case of a cylinder.

Mesh Resolution Richardson Extrapolation
Experimental

Coarse Medium Fine RE p R

0.796 0.835 0.858 0.907 0.681 0.566 0.91

2.2. Convolutional neural network architecture

CNNs are a type of neural network proposed by LeCun et al. [38] which are extremely efficient

in the identification of patterns in a group of images on the pixel level. The digital images are, in

essence, matrices. Therefore, the vertical and downstream velocities and pressure fields are also

matrices, which enables the CNN architecture to identify the patterns.

Ronneberger et al. [39] proposed the U-Net architecture for medical images segmentation. Ribeiro

et al. [8] demonstrated the adaptability of the U-Net to accurately predict the coupled velocity and

pressure fields, providing the three solutions all at once. The CNN architecture consists of an encoder

network that compresses the geometric input data to obtain a condensed version of the data, which

facilitates the CNN in detecting the relevant patterns. This reduced version of the geometrical

information is called latent geometry representation (LGR). Subsequently, the LGR is mapped into the

data space, through a decoder network. The decoder network can take one, two or three decoders,

depending on the number of variables studied. Figure 3 shows two simplified diagrams of the network

architecture for one and three decoders.

(a) (b)

Figure 3. Simplified diagrams of the U-Net. a) 1 decoder and b) 3 decoders.

The encoder-decoder network architecture is now described in detail. The encoder part is

constituted of 4 or 5 decoder blocks, depending on the case, which, in turn, contain 3 convolution

layers. The convolution layer parameters are the following:

• Filters: 8, 16, 32 and 32 or 8, 16, 16, 32 and 32 for each encoder block, respectively.

• Kernel size: 3, 5 or 7, depending on the model.

Each encoder block is formed by the following layers:

29740

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

• A convolution layer with an equal number of filters at its input as the output of the previous

block, and the output with the corresponding number of filters plus a ReLU layer. In the first

encoder block, the number of filters is equal to the number of inputs of the CNN.

• A convolution layer with an equal number of filters in its input and output and a ReLU layer.

• Lastly, the same process as the previous point plus a max-pooling layer.

Each decoder block is formed by the following layers:

• A deconvolution layer with the double number of filters compared to the corresponding, and

an output equal to the corresponding number of filters plus a ReLU layer.

• A deconvolution layer with the input and output equal to the number of filters plus a ReLU

layer.

• A max-pooling layer before the deconvolution layer, with the corresponding number of filters

for input and output, and a ReLU layer. In the last decoder block, the max-pooling is not

considered, and the deconvolution takes a unique output, which corresponds to the evaluated

variable.

In this study, two variants of CNN are analyzed. In the first one, the future instants of the

downstream and vertical velocities and pressure fields are predicted. In fluid dynamics, the state of a

fluid at time instant t is strongly dependent on its previous state, t-1. The fluid transition between the

states is of great importance. In terms of a neural network, this dependency is implemented with an

input to the net, representing the t-1 state. Due to the addition of the previous instant of the CFD sample

to the inputs of the CNN, each variable must be analyzed separately. The simultaneous analysis of the

three variables would be erroneous, due to mixing information between the variables. The second

variant focuses on the prediction of the first sample, needed for the prediction of the following states.

In this case, three decoders are implemented, and the CNN inputs regard solely the geometric

information. Figure 4 represents the two architectures analyzed with an [8, 16, 32, 32] filter

configuration.

(a) (b)

Figure 4. Diagrams of the complete architecture of the CNN for an 8, 16, 32, 32 filter

configuration. a) 1 decoder and b) 3 decoders.

The pressure field can be determined by solving the Poisson equation, see Eq (3). Nevertheless,

since the prediction of the velocity through a neural network implies the appearance of an error, if the

pressure is calculated with Eq (3), the error in the pressure is carried from the predictions of the

velocities made by the neural model.

29741

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

∆𝑝 = −𝜌∇ · (v · ∇v) = −𝜌𝑇𝑟((∇v)(∇v)). (3)

Physics-informed neural networks (PINNs) compose a type of neural networks that provide the

prediction of the solution of a nonlinear partial differential equation (PDE) [40–43]. The loss function

of these neural networks is formed by the residual of the PDE. The methodology used in this work

could be converted to a PINN methodology by employing Eq (2) as the PDE needed for PINN.

Nowadays, ChatGPT is a popular tool generating code. The following lines contain a ChatGPT

prompt that describes the network architecture in order to generate the Python code of the neural

network [44,45]: Develop a Python code for the prediction of the velocity and pressure fields around

the following geometries in two dimensions: circle, ellipse, square, rectangle, triangle and equilateral

triangle. Specifically, use convolutional neural networks to encode geometric features and then use

deconvolutional neural networks to decode the outputs. Input is 79 by 172 images, and the output has

the same size.

2.3. Convolutional neural network inputs

Following the studies of Guo et al. [7], the signed distance function was considered as an input to

the CNN. The SDF is a function that measures the distance between any point in the grid and the

nearest boundary of a closed geometry shape. The sign of the value depends on whether the point is

inside (negative) or outside (positive) the closed geometry. This function provides smaller values than

the typical binary representation. The mathematical expression of this function is given by Eq (4).

𝑆𝐷𝐹(𝑥) = {
𝑑(𝑥, 𝜗Ω) 𝑖𝑓 𝑥 ∈ Ω

−𝑑(𝑥, 𝜗Ω) 𝑖𝑓 𝑥 ∈ Ωc,

(4)

where Ω is a subset of a metric space, X, with metric d, and ϑΩ is the boundary of Ω. For any x ∈ X:

𝑑(𝑥, 𝜗Ω): = inf
𝑦∈𝜗Ω

𝑑(𝑥, 𝑦), (5)

where inf denotes the infimum. Grid positions inside the interior of the geometry are assigned negative

distances. Figure 5 shows an example of the SDF of an ellipse.

Figure 5. SDF of an ellipse.

The flow region channel (FRC) represents a multi-class channel that contains information about

29742

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

the boundary conditions of the domain. The information is organized into 5 categories: 0 for the

geometry, 1 for the free flow region, 2 for the no-slip walls, 3 for the inlet and 4 for the outlet. Figure 6

shows a schematic view of the FRC.

Figure 6. Diagram of an FRC (not to scale).

The SDF and FRC represent the inputs of the second variant of the CNN. For the first variant,

which predicts the future states of the fluid, a third input is added. The CFD simulations represent the

third input. In particular, the previous instant of the current CFD-analyzed sample is selected as the

input. The testing of the CNN is initialized with a random sample of the CFD simulations, and in the

next predictions, the previous prediction is the sample used as the current reference for the new

prediction.

2.4. Training parameters

AdamW is the optimizer selected for the training of CNN. It is based on the Adam algorithm,

which updates the gradient vector and the squared gradient using an exponential moving average [46].

β1 and β2 represent the forgetting factors for the gradients and second moments of the gradients,

respectively, and their values were both set to 0.5. AdamW improves regularization by decoupling the

weight decay from the gradient-based update [47]. For the hyper-parameter search, the CNN is trained

for every possible combination of the values given by Tables 3 and 4 for the net which predicts the

future states and the net which predicts the initial state, respectively.

Table 3. Set of parameters considered for the hyper-parameter search for the net which

predicts the future states.

Parameter Values

Filters 8, 16, 32, 32

Kernel size 3 5 7

Loss function L1-norm

Learning rate 0.001 0.0001

Weight decay 0.005

Batch size 32 64 128

Training-test ratio 0.7-0.3

Number of epochs 2000

29743

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

Table 4. Set of parameters considered for the hyper-parameter search for the net which

predicts the initial state.

Parameter Values

Filters 8, 16, 32, 32 8, 16, 16, 32, 32

Kernel size 3 5 7 9

Loss function L1-norm

Learning rate 0.001 0.0001

Weight decay 0.005

Batch size 32 64 128

Training-test ratio 0.7-0.3

Number of epochs 1000 2000

2.5. Data augmentation

The training of the CNN which predicts the initial state of the streamwise and vertical velocities

and the pressure fields needs many data samples to obtain quality results. To increment the amount of

data, a data augmentation technique is applied.

Data augmentation is a well-known technique applied in DL applications. This technique consists

of generating realistic synthetic data to increase the data quantity in the learning process. Typical data

augmentation applies geometric transformations and perturbations to the original data. Nevertheless,

this procedure cannot be implemented in this study. To solve this drawback, a data augmentation

technique based on the similarity theory for fluid dynamics is applied [18]. The Reynolds number is

calculated by Eq (6).

𝑅𝑒 =
𝑢∞𝐷𝜌

𝜇
. (6)

Assuming that the Reynolds number is kept constant in each case, the new input velocity can be

calculated with Eq (7). The fluid and boundary conditions remain constant, and the density and

dynamic viscosity have no influence on the velocity; therefore, with slight modifications in the shape

size, the amount of input data considerably increases.

 𝑢∞𝑖
∗ =

𝐷1

𝐷𝑖
𝑢∞1. (7)

The values of the novel fields are given by Eqs 8–10.

�̂�𝑥𝑖(�̂�, �̂�) =
𝑢𝑥𝑖

𝑢∞𝑖
∗ (

𝑥𝑖

𝐷𝑖
,
𝑦𝑖

𝐷𝑖
), (8)

�̂�𝑦𝑖(�̂�, �̂�) =
𝑢𝑦𝑖

𝑢∞𝑖
∗ (

𝑥𝑖

𝐷𝑖
,
𝑦𝑖

𝐷𝑖
) , (9)

�̂�𝑖(�̂�, �̂�) =
𝑝𝑥𝑖

𝑢∞𝑖
∗2 𝜌

(
𝑥𝑖

𝐷𝑖
,
𝑦𝑖

𝐷𝑖
) , (10)

29744

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

where �̂�𝑥𝑖, �̂�𝑦𝑖 and �̂�𝑖 represent the new coupled velocities and the pressure fields, and xi/Di and

yi/Di represent the new coordinates inside the domain. As the similarity theory establishes, the domain

size changes proportionately with shape size. This is shown by Eq (11), where the equivalence between

two concrete points of the grid is provided.

�̂� =
𝑥1

𝐷1
=

𝑥2

𝐷2
. (11)

3. Results

3.1. CNN that predicts the future states

Table 3 indicates the values of the hyper-parameters selected for the training of the neural

models. In Tables 5–7 the best neural models ordered by minimum mean error are provided. Since

an independent model is generated for each of the three variables, different combinations of the

parameters can be selected. Every training was conducted with 2000 epochs and an [8, 16, 32] filter

configuration. The criterion followed to pick the adequate model is based on the mean and maximum

error given by the tests of each neural model. The training and test sets were the same in every trained

neural model. In the cases of the vertical velocity and the pressure, the minimum mean and maximum

error correspond to the same neural model. However, for the streamwise velocity, the two former

models with the least mean error provide excessively large maximum errors. The results of the third

and fourth models are relatively similar, each one providing less mean error and bigger maximum

error, and vice versa. The fourth model is the chosen one, due to having the least maximum error.

The selection is based on the influence of the large errors in the last samples predicted. Hence, the

IDs of the chosen models are 15, 5 and 12 for the streamwise and vertical velocities and pressure,

respectively.

Table 5. 10 best models for the prediction of the future states of the streamwise velocity field.

ID Kernel size Lr Batch size Training

duration (h)

Mean error

vx (m/s)

Maximum

error vx (m/s)

10 3 0.0001 32 1.70 0.1413 33.4453

13 3 0.0001 64 1.35 0.1561 43.7074

12 7 0.0001 32 2.83 0.1715 15.6595

15 7 0.0001 64 2.60 0.2053 14.8938

4 3 0.001 64 1.37 0.2188 2705.84

11 5 0.0001 32 1.67 0.2217 21.416

3 7 0.001 32 2.74 0.2510 73.7285

14 5 0.0001 64 1.51 0.2847 48.7618

6 7 0.001 64 2.59 0.3729 1848.65

5 5 0.001 64 1.50 0.5728 39398.8

29745

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

Table 6. 10 best models for the prediction of the future states of the vertical velocity field.

ID Kernel size Lr Batch size Training

duration (h)

Mean error

vy (m/s)

Maximum

error vy (m/s)

5 5 0.001 64 1.45 0.0585 9.7446

15 7 0.0001 64 2.55 0.0651 10.5586

12 7 0.0001 32 2.72 0.0651 32.4277

2 5 0.001 32 1.56 0.0674 21.7514

14 5 0.0001 64 1.46 0.0976 18.6669

7 3 0.001 128 1.40 0.0992 35.5557

9 7 0.001 128 2.69 0.0999 15.4869

1 3 0.001 32 1.59 0.1016 802.375

8 5 0.001 128 1.49 0.1094 90.4429

16 3 0.0001 128 1.41 0.1358 34.6491

Table 7. 10 best models for the prediction of the future states of the pressure field.

ID Kernel size Lr Batch size Training

duration (h)

Mean error

p (Pa)

Maximum

error p (Pa)

12 7 0.0001 32 2.72 0.7139 112.09

4 3 0.001 64 1.24 0.8828 132.73

11 5 0.0001 32 1.57 0.9542 119.92

1 3 0.001 32 1.58 0.9748 466.44

14 5 0.0001 64 1.46 0.9933 117.70

5 5 0.001 64 1.44 1.0869 356.00

15 7 0.0001 64 2.54 1.0900 212.32

7 3 0.001 128 1.40 1.1218 549.21

18 7 0.0001 128 2.71 1.1887 108.50

2 5 0.001 32 1.55 1.3195 196.38

Figure 7 and Figure 8 show graphically the comparison of results obtained by the CNN and the

CFD ground-truth data. Table 8 contains the quantitative values of the arithmetic mean and the standard

deviation of the CFD simulations and the CNN tests. The biggest variations appear in the wake due to

being the zone where the turbulences and velocity gradients are more notorious. Conversely, in the

contours of the geometries, the effect of the boundary layer and its separation lead to the appearance

of errors. The deviations between the CFD results and the CNN predictions appear in the

aforementioned zones when the predictions advance through time. Moreover, Figure 9, Figure 10 and

Figure 11 show the histograms for the three variables, where the values given by the CFD are compared

with the CNN test ones. The absolute error in the predictions of the three fields raises over the samples

predicted, due to the dependency on the initial state. The appearance of an excessively high error in a

certain point of the mesh has a direct effect on the precision of the next predictions on that point. In

the first twenty samples predicted, the absolute error is relatively small; however, in the rear zone of

the geometry contour, high absolute errors appear, which are accumulated during the predictions. The

vortices are well predicted, even in the most advanced samples.

29746

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 7. Predictions for the circular shaped geometry for the sample number: a) 1, b) 5,

c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50.

29747

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 8. Predictions for the triangle shaped geometry for the sample number: a) 1, b) 5, c) 10,

d) 15, e) 20, f) 30, g) 40 and h) 50.

29748

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Data distribution of the CFD simulations and CNN tests for the streamwise

velocity field for the sample number: a) 1, b) 5, c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50.

29749

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Data distribution of the CFD simulations and CNN tests for the vertical velocity

field for the sample number: a) 1, b) 5, c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50.

29750

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Data distribution of the CFD simulations and CNN tests for the pressure field

for the sample number: a) 1, b) 5, c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50.

29751

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

Table 8. Arithmetic mean and standard deviation obtained by the CFD simulations and

CNN tests.

Method
CFD CNN

ux (m/s) uy (m/s) p (Pa) ux (m/s) uy (m/s) p (Pa)

Arithmetic mean (µ) 5.0283 -0.0538 8.4882 5.0413 -0.0452 8.5360

Standard deviation (σ) 1.9109 1.7205 17.0865 1.9940 1.7725 16.9417

3.2. CNN that predicts the initial state

The CNN was trained for every combination of the hyper-parameters provided by Table 4, and

Tables 9–11 show the 10 best-trained neural models for the streamwise and vertical velocities and the

pressure, respectively. Analyzing the mean and maximum errors in each case, the following

combination provides the best results:

• Filters combination: 8, 16, 16, 32 and 32

• Kernel size: 3

• Lr: 0.001

• Batch size: 32

• Number of epochs: 2000

This combination is selected due to being the best model for the streamwise velocity and the

pressure and the second best for the vertical velocity. Every model has been run with the same training

and test sets.

Figure 12 shows a prediction with the selected neural model for every analyzed geometry. The

accuracy of the results is evaluated quantitatively in Table 12, where the arithmetic mean and standard

deviation of the CFD simulations and CNN tests are compared. Moreover, the value distribution

obtained by both methods are compared by the histograms of Figure 13.

3.3. Computational cost analysis

In this section, the computational time is required to calculate the streamwise and vertical

velocities and the pressure fields with the CFD software and with the predictions of the neural models.

The training duration of the models for the prediction of the future states is 2.60, 1.45 and 2.72 hours

for the streamwise and vertical velocities and the pressure, respectively. This gives a total of 6.77 hours

of training. The prediction of 50 instants lasts 1.76, 3.77 and 6.06 seconds, respectively. For the neural

model for the prediction of the initial sample, the training took 19.66 minutes, and the predictions take

a mean of 0.08 seconds.

Table 13 shows the comparison between the duration of the predictions of the neural models and

the CFD simulations. In the case of the predictions of the future samples, the time needed to obtain 50

samples of the three variables is compared. For the initial sample, the time needed for a unique

prediction is compared. Both training and testing were carried out using an NVIDIA Quad RTX 6000

GPU and an Intel Xeon Gold 5120 CPU was used for the CFD simulations.

29752

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

Table 9. 10 best models for the prediction of the initial state of the streamwise velocity field.

Filters

combination

Kernel

size

Lr Batch

size

Nº

epochs

Training

duration (min)

Mean error

vx (m/s)

Maximum

error vx (m/s)

8, 16, 16, 32, 32 3 0.001 32 2000 19.66 0.0528 2.4436

8, 16, 32, 32 5 0.001 32 2000 22.33 0.0550 2.5234

8, 16, 16, 32, 32 5 0.001 32 2000 21.60 0.0678 3.0944

8, 16, 32, 32 3 0.001 32 2000 19.45 0.0698 3.2475

8, 16, 32, 32 7 0.001 32 1000 13.84 0.0705 2.5926

8, 16, 32, 32 9 0.0001 32 2000 37.20 0.0707 2.9895

8, 16, 16, 32, 32 5 0.001 32 1000 10.88 0.0746 2.9101

8, 16, 32, 32 7 0.0001 32 2000 27.85 0.0793 4.3594

8, 16, 32, 32 3 0.001 128 2000 17.02 0.0811 4.0057

8, 16, 16, 32, 32 9 0.0001 32 2000 34.19 0.0831 3.7460

Table 10. 10 best models for the prediction of the initial state of the vertical velocity field.

Filters

combination

Kernel

size

Lr Batch

size

Nº epochs Training

duration (min)

Mean error

vx (m/s)

Maximum

error vx (m/s)

8, 16, 32, 32 7 0.0001 32 2000 27.85 0.0281 2.2092

8, 16, 16, 32, 32 3 0.001 32 2000 19.66 0.0288 2.6517

8, 16, 32, 32 5 0.001 32 2000 22.33 0.0292 2.4026

8, 16, 32, 32 7 0.001 32 1000 13.84 0.0310 2.4049

8, 16, 32, 32 3 0.001 32 2000 19.45 0.0333 3.9388

8, 16, 32, 32 5 0.001 64 2000 20.31 0.0343 2.6450

8, 16, 16, 32, 32 5 0.001 32 2000 21.60 0.0353 2.0954

8, 16, 32, 32 9 0.0001 32 2000 37.20 0.0365 2.2067

8, 16, 32, 32 5 0.001 32 1000 11.19 0.0371 1.8295

8, 16, 16, 32, 32 7 0.001 32 1000 12.88 0.0397 4.2255

Table 11. 10 best models for the prediction of the initial state of the pressure field.

Filters

combination

Kernel

size

Lr Batch

size

Nº

epochs

Training

duration (min)

Mean error

vx (m/s)

Maximum

error vx (m/s)

8, 16, 16, 32, 32 3 0.0001 32 2000 19.66 0.2474 16.1953

8, 16, 32, 32 7 0.001 32 1000 13.84 0.2604 18.4768

8, 16, 16, 32, 32 5 0.001 32 2000 22.33 0.2643 16.4145

8, 16, 16, 32, 32 9 0.001 64 2000 32.99 0.2736 19.4038

8, 16, 16 32, 32 5 0.001 32 2000 21.60 0.2770 22.1191

8, 16, 32, 32 5 0.001 64 2000 20.31 0.2814 17.5238

8, 16, 32, 32 3 0.001 32 2000 19.45 0.3048 17.0342

8, 16, 32, 32 7 0.0001 32 2000 27.85 0.3080 23.0767

8, 16, 16, 32, 32 9 0.0001 32 2000 34.19 0.3269 27.6613

8, 16, 32, 32 5 0.001 32 1000 11.19 0.3314 19.8795

29753

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

Table 12. Arithmetic mean and standard deviation obtained by the CFD simulations and

CNN tests.

Method
CFD CNN

ux (m/s) uy (m/s) p (Pa) ux (m/s) uy (m/s) p (Pa)

Arithmetic mean (µ) 5.0674 -0.0644 5.9574 5.0414 -0.0628 6.0475

Standard deviation (σ) 1.6867 1.5074 15.0737 1.6797 1.5142 15.0853

Table 13. Comparison between the calculation time required by the CFD simulations and the

predictions of the neural models for the streamwise and vertical velocities and the pressure.

Net CFD time (s) Prediction time (s) Speedup

Future states of the fields 720.00 11.59 62.12

Initial state 720.00 0.08 9000.00

(a) (b)

(c) (d)

(e) (f)

Figure 12. Predictions of the initial state for the a) circle, b) cylinder, c) square, d) rectangle, e)

triangle and f) equilateral triangle.

29754

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

(a) (b)

(c)

Figure 13. Data distribution of the CFD simulations and CNN tests for the a) streamwise

velocity, b) vertical velocity and c) pressure.

4. Conclusions

The CFD simulations are of great utility for the study of turbulent fluids when they face

concrete geometries. The computational costs of these simulations are frequently too high, and

their precision depends also on the mesh and turbulence model generation. These issues imply the

use of DL techniques to approximate the CFD results and reduce their computational costs. In the

current work, a U-Net structure was applied to predict the streamwise and vertical velocities and

the pressure fields downstream of a series of different geometries. A turbulent fluid was analyzed,

and CFD unsteady simulations were conducted. The predictions were accomplished using a time-

based approach, predicting the immediate future sample based on its dependency on its previous

state. Until the twentieth sample, the predictions are relatively reliable. The absolute errors are

higher in the streamwise velocity than in the vertical velocity and the pressure. The vortices are

well predicted, giving the more inexact results in the back of the contour of the geometries. The

data augmentation technique employed is efficient to increase the number of samples required by

the training, avoiding running extra CFD simulations for each variation in the size of the

geometries. Hence, the trained neural model accurately predicts the streamwise and vertical

velocities and pressure fields. With respect to the reduction of the computational cost, the neural

model which predicts the future states is 62.12 times faster than the CFD simulations, and the

model for the initial sample is 9000 times faster thanks to the data augmentation applied. The

limitation of the proposed method is based on the necessity to obtain the CFD data and the

computational time and resources required by the training process. In addition, the current CNN

29755

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

model has been tested in the five proposed geometries. Therefore, the model is considered

generalizable for similar geometries and shapes. For future works, this U-Net structure can be

applied to simulate and predict the fields of more aerodynamic shapes, such as airfoils or wings.

The addition of historical inputs, such as multiple previous time steps, may be considered, too.

Furthermore, to attain aerodynamic optimization, DL techniques can be applied to predict the best

shape of an airfoil with an added gurney flap.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Acknowledgments

The authors were supported by the government of the Basque Country through the research grant

ELKARTEK KK-2021/00014 BASQNET (Estudio de nuevas técnicas de inteligencia artificial

basadas en Deep Learning dirigidas a la optimización de procesos industriales) and IT1514-22. K. P.-

P. was supported by the INVESTIGO program of the Basque Country 2022.

The authors are grateful for the support provided by the SGIker of UPV/EHU.

Conflict of interest

Unai Fernandez-Gamiz and Ekaitz Zulueta are the Guest Editors of special issue "Artificial

Intelligence for Fluid Mechanics and its Engineering Applications" for AIMS Mathematics. Unai

Fernandez-Gamiz and Ekaitz Zulueta were not involved in the editorial review and the decision to

publish this article.

All authors declare no conflicts of interest in this paper.

References

1. S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev.

Fluid Mech., 52 (2020), 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214

2. S. Qin, S. Wang, L. Wang, C. Wang, G. Sun, Y. Zhong, Multi-objective optimization of cascade

blade profile based on reinforcement learning, Appl. Sci., 11 (2021), 106.

https://doi.org/10.3390/app11010106

3. Y. Qiu, J. Bai, N. Liu, C. Wang, Global aerodynamic design optimization based on data

dimensionality reduction, Chinese J. Aeronaut., 31 (2018), 643–659.

https://doi.org/10.1016/j.cja.2018.02.005

4. B. N. Hanna, N. T. Dinh, R. W. Youngblood, I. A. Bolotnov, Coarse-grid computational fluid

dynamic (CG-CFD) error prediction using machine learning, preprint paper, 2017.

https://doi.org/10.48550/arXiv.1710.09105

5. H. Bao, J. Feng, N. Dinh, H. Zhang, Computationally efficient CFD prediction of bubbly flow

using physics-guided deep learning, Int. J. Multiphase Flow, 131 (2020), 103378.

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103378

https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.3390/app11010106
https://doi.org/10.1016/j.cja.2018.02.005
https://doi.org/10.48550/arXiv.1710.09105
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103378

29756

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

6. K. Tlales, K. E. Otmani, G. Ntoukas, G. Rubio, E. Ferrer, Machine learning adaptation for laminar

and turbulent flows: applications to high order discontinuous Galerkin solvers, preprint paper,

2022. https://doi.org/10.48550/arXiv.2209.02401

7. X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady flow approximation, In:

Proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2016, 481–490.

https://doi.org/10.1145/2939672.2939738

8. M. D. Ribeiro, A. Rehman, S. Ahmed, A. Dengel, DeepCFD: Efficient steady-state laminar flow

approximation with deep convolutional neural networks, preprint paper, 2020.

https://doi.org/10.48550/arXiv.2004.08826

9. A. Kashefi, D. Rempe, L. J. Guibas, A point-cloud deep learning framework for prediction of fluid

flow fields on irregular geometries, Phys. Fluids, 33 (2021), 027104.

https://doi.org/10.1063/5.0033376

10. T. Murata, K. Fukami, K. Fukagata, Nonlinear mode decomposition with convolutional neural

networks for fluid dynamics, J. Fluid Mech., 882 (2020), A13.

https://doi.org/10.1017/jfm.2019.822

11. J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using deep neural

networks with embedded invariance, J. Fluid Mech., 807 (2016), 155–166.

https://doi.org/10.1017/jfm.2016.615

12. S. Lee, D. You, Prediction of laminar vortex shedding over a cylinder using deep learning, preprint

paper, 2017. https://doi.org/10.48550/arXiv.1712.07854

13. Y. Liu, Y. Lu, Y. Wang, D. Sun, L. Deng, F. Wang, et al., A CNN-based shock detection method

in flow visualization, Comput. Fluids, 184 (2019), 1–9.

https://doi.org/10.1016/j.compfluid.2019.03.022

14. L. Deng, Y. Wang, Y. Liu, F. Wang, S. Li, J. Liu, A CNN-based vortex identification method, J.

Vis., 22 (2019), 65–78, https://doi.org/10.1007/s12650-018-0523-1

15. H. Nowruzi, H. Ghassemi, M. Ghiasi, Performance predicting of 2D and 3D submerged hydrofoils

using CFD and ANNs, J. Mar. Sci. Technol., 22 (2017), 710–733. https://doi.org/10.1007/s00773-

017-0443-0

16. A. Mohan, D. Daniel, M. Chertkov, D. Livescu, Compressed convolutional LSTM: An efficient

deep learning framework to model high fidelity 3D turbulence, preprint paper, 2019.

https://doi.org/10.48550/arXiv.1903.00033

17. K. Portal-Porras, U. Fernandez-Gamiz, A. Ugarte-Anero, F. Zulueta, A. Zulueta, Alternative

artificial neural network structures for turbulent flow velocity field prediction, Mathematics, 9

(2021), 1939. https://doi.org/10.3390/math9161939

18. A. Abucide-Armas, K. Portal-Porras, U. Fernandez-Gamiz, E. Zulueta, A. Teso-Fz-Betoño, A data

augmentation-based technique for deep learning applied to CFD simulations, Mathematics, 9

(2021), 1843. https://doi.org/10.3390/math9161843

19. N. Thuerey, K. Weißenow, L. Prantl, X. Hu, Deep learning methods for Reynolds-averaged

Navier–Stokes simulations of airfoil flows, AIAA J., 58 (2020), 25–36,

https://doi.org/10.2514/1.J058291

20. R. Fang, D. Sondak, P. Protopapas, S. Succi, Deep learning for turbulent channel flow, preprint

paper, 2018. https://doi.org/10.48550/arXiv.1812.02241

https://doi.org/10.48550/arXiv.2209.02401
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.48550/arXiv.2004.08826
https://doi.org/10.1063/5.0033376
https://doi.org/10.1017/jfm.2019.822
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.48550/arXiv.1712.07854
https://doi.org/10.1016/j.compfluid.2019.03.022
https://doi.org/10.1007/s12650-018-0523-1
https://doi.org/10.1007/s00773-017-0443-0
https://doi.org/10.1007/s00773-017-0443-0
https://doi.org/10.48550/arXiv.1903.00033
https://doi.org/10.3390/math9161939
https://doi.org/10.3390/math9161843
https://doi.org/10.2514/1.J058291
https://doi.org/10.48550/arXiv.1812.02241

29757

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

21 K. Champion, B. Lusch, J. N. Kutz, S. L. Brunton, Data-driven discovery of coordinates and

governing equations, Proc. Natl. Acad. Sci. USA, 116 (2019), 22445–22451.

https://doi.org/10.1073/pnas.1906995116

22. K. Fukami, T. Murata, K. Zhang, K. Fukagata, Sparse identification of nonlinear dynamics with

low-dimensionalized flow representations, J. Fluid Mech., 926 (2021), A10.

https://doi.org/10.1017/jfm.2021.697

23. R. Maulik, T. Botsas, N. Ramachandra, L. R. Mason, I. Pan, Latent-space time evolution of non-

intrusive reduced-order models using Gaussian process emulation, Phys. D Nonlinear Phenom.,

416 (2021), 132797. https://doi.org/10.1016/j.physd.2020.132797

24. L. Agostini, Exploration and prediction of fluid dynamical systems using auto-encoder technology,

Phys. Fluids, 32 (2020), 067103. https://doi.org/10.1063/5.0012906

25. R. King, O. Hennigh, A. Mohan, M. Chertkov, From deep to physics-informed learning of

turbulence: Diagnostics, preprint paper, 2018. https://doi.org/10.48550/arXiv.1810.07785

26. R. Maulik, B. Lusch, P. Balaprakash, Reduced-order modeling of advection-dominated systems

with recurrent neural networks and convolutional autoencoders, Phys. Fluids, 33 (2021), 037106.

https://doi.org/10.1063/5.0039986

27. F. J. Gonzalez, M. Balajewicz, Deep convolutional recurrent autoencoders for learning low-

dimensional feature dynamics of fluid systems, preprint paper, 2018.

https://doi.org/10.48550/arXiv.1808.01346

28. G. Iaccarino, A. Ooi, P. A. Durbin, M. Behnia, Reynolds averaged simulation of unsteady

separated flow, Int. J. Heat Fluid Flow, 24 (2003), 147–156. https://doi.org/10.1016/S0142-

727X(02)00210-2

29. S. Osher, S. Chakravarthy, Upwind schemes and boundary conditions with applications to Euler

equations in general geometries, J. Comput. Phys., 50 (1983), 447–481,

https://doi.org/10.1016/0021-9991(83)90106-7

30. Siemens Software, 2023. Available from: https://www.plm.automation.siemens.com/global/en/.

31. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA

J., 32 (1994), 1598–1605. https://doi.org/10.2514/3.12149

32. B. N. Rajani, A. Kandasamy, S. Majumdar, Numerical simulation of laminar flow past a circular

cylinder, Appl. Math. Model., 33 (2009), 1228–1247. https://doi.org/10.1016/j.apm.2008.01.017

33. M. M. Rahman, M. M. Karim, M. A. Alim, Numerical investigation of unsteady flow past a

circular cylinder using 2-D finite volume method, J. Nav. Arch. Mar. Engg., 4 (1970), 27–42.

https://doi.org/10.3329/jname.v4i1.914

34. I. Aramendia, U. Fernandez-Gamiz, E. Zulueta Guerrero, J. Lopez-Guede, J. Sancho, Power

control optimization of an underwater piezoelectric energy harvester, Appl. Sci., 8 (2018), 389.

https://doi.org/10.3390/app8030389

35. S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, S. Kaushik, Prediction of aerodynamic flow fields

using convolutional neural networks, Comput. Mech., 64 (2019), 525–545.

https://doi.org/10.1007/s00466-019-01740-0

36. L. F. Richardson, J. A. Gaunt, VIII. The deferred approach to the limit, Philos. Trans. Royal Soc.

London. Series A Containing Papers Math. Phys. Char., 226 (1927), 299–361.

https://doi.org/10.1098/rsta.1927.0008

37. A. Roshko, Vortex shedding from circular cylinders at low Reynolds numbers, J. Fluid Mech., 46

(1971), 749–756. https://doi.org/10.1017/S002211207100082X

https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1017/jfm.2021.697
https://doi.org/10.1016/j.physd.2020.132797
https://doi.org/10.1063/5.0012906
https://doi.org/10.48550/arXiv.1810.07785
https://doi.org/10.1063/5.0039986
https://doi.org/10.48550/arXiv.1808.01346
https://doi.org/10.1016/S0142-727X(02)00210-2
https://doi.org/10.1016/S0142-727X(02)00210-2
https://doi.org/10.1016/0021-9991(83)90106-7
https://www.plm.automation.siemens.com/global/en/
https://doi.org/10.2514/3.12149
https://doi.org/10.1016/j.apm.2008.01.017
https://doi.org/10.3329/jname.v4i1.914
https://doi.org/10.3390/app8030389
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1098/rsta.1927.0008
https://doi.org/10.1017/S002211207100082X

29758

AIMS Mathematics Volume 8, Issue 12, 29734–29758.

38. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document

recognition, Proc. IEEE, 86 (1998), 2278–2324. https://doi.org/10.1109/5.726791

39. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image

segmentation, In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing

and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer

Science, 9351 (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

40. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential

equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

41. A. Kashefi, T. Mukerji, Physics-informed PointNet: A deep learning solver for steady-state

incompressible flows and thermal fields on multiple sets of irregular geometries, J. Comput. Phys.,

468 (2022), 111510. https://doi.org/10.1016/j.jcp.2022.111510

42. X. Jin, S. Cai, H. Li, G. E. Karniadakis, NSFnets (Navier-Stokes flow nets): Physics-informed

neural networks for the incompressible Navier-Stokes equations, J. Comput. Phys., 426 (2021),

109951. https://doi.org/10.1016/j.jcp.2020.109951

43. A. Kashefi, T. Mukerji, Prediction of fluid flow in porous media by sparse observations and

physics-informed PointNet, Neural Networks, 167 (2022), 80–91.

https://doi.org/10.1016/j.neunet.2023.08.006

44. A. Kashefi, T. Mukerji, Chatgpt for programming numerical methods, J. Mach. Learn. Model.

Comput., 4 (2023), 1–74. https://doi.org/10.1615/JMachLearnModelComput.2023048492

45. V. Kumar, L. Gleyzer, A. Kahana, K. Shukla, G. E. Karniadakis, MyCrunchGPT: A chatGPT

assisted framework for scientific machine learning, J. Mach. Learn. Model. Comput., 2023.

https://doi.org/10.1615/JMachLearnModelComput.2023049518 2023

46. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint paper, 2014.

https://doi.org/10.48550/ARXIV.1412.6980

47. I. Loshchilov, F. Hutter, Decoupled weight decay regularization, preprint paper, 2017.

https://doi.org/10.48550/ARXIV.1711.05101

© 2023 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1109/5.726791
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2022.111510
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.neunet.2023.08.006
https://doi.org/10.1615/JMachLearnModelComput.2023048492
https://doi.org/10.1615/JMachLearnModelComput.2023049518%202023
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1711.05101

