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Abstract: Traditional numerical methods, such as computational fluid dynamics (CFD), demand large 

computational resources and memory for modeling fluid dynamic systems. Hence, deep learning (DL) 

and, specifically Convolutional Neural Networks (CNN) autoencoders have resulted in accurate tools 

to obtain approximations of the streamwise and vertical velocities and pressure fields, when stationary 

flows are considered. The novelty of this paper consists of predicting the future instants from an initial 

one with a CNN autoencoder architecture when an unsteady flow is considered. Two neural models 

are proposed: The former predicts the future instants on the basis of an initial sample and the latter 

approximates the initial sample. The inputs of the CNNs take the signed distance function (SDF) and 

the flow region channel (FRC), and, for the representation of the temporal evolution, the previous CFD 

sample is added. To increment the amount of training data of the second neural model, a data 

augmentation technique based on the similarity principle for fluid dynamics is implemented. As a result, 

low absolute error rates are obtained in the prediction of the first samples near the shapes surfaces. 

Even in the most advanced time instants, the prediction of the vortices zone is quite reliable.  62.12 

and 9000 speed-up ratios are achieved by the predictions of the first and second neural models, 

respectively, compared to the computational cost regarded by the CFD simulations. 
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1. Introduction 

The study of turbulence in fluids has been a significant research topic for many years due to its 

impact on a wide variety of applications. Experimentation with turbulent flows has improved the 

understanding of the behavior of turbulences and has allowed the design of more efficient systems. 

Unfortunately, experiments with turbulent flows are usually too costly and impractical. Computational 

fluids dynamics (CFD) simulations provide detailed enough results when constraints appear in the 

physical experiments. This is principally possible thanks to the exponential advances in computational 

resources. Nonetheless, CFD has its drawbacks. For example, when fine meshing is required or a 

complex geometry is analyzed, the computational resources demanded by CFD become prohibitive. 

The generation of the mesh and the closure model requires the user’s influence, which may limit the 

quality of the CFD simulation. To solve these drawbacks, CFD problems have been solved with deep 

learning techniques [1]. In this case, unsteady flows are predicted by a convolutional neural network 

(CNN) architecture. 

Aerodynamic shape optimization (ASO) is one of the issues in which DL has been recently 

involved. Qin et al. [2] proposed an artificial neural network (ANN) and deep reinforcement learning 

(DRL) to reach aerodynamic optimization in a blade profile. Qiu et al. [3] employed a novel 

optimization strategy based on the proper orthogonal decomposition (POD) method to reduce the 

design variables of the transonic airfoil RAE2822 and the transonic wing ONERA M6. 

Two main objectives of DL in CFD applications are the reduction of computational costs and the 

direct calculation of some fluid features. For example, Hanna et al. [4] and Bao et al. [5] focused on 

diminishing the computation time in the modeling and simulation of coarse meshes. Tlales et al. [6] 

reduced the computational costs by applying a clustering technique as a mesh adaptation sensor. Guo 

et al. [7] predicted non-uniform steady laminar flow fields around bluff body objects with low 

computational costs and demonstrated the capacity of generalization of the CNNs to the rapid 

approximation of the flow field. Ribeiro et al. [8] and Kashefi et al. [9] obtained estimations of the 

streamwise and vertical velocities and pressure fields for slight modifications of a series of diversely 

shaped geometries, using an autoencoder (AE) and a PointNet architecture, respectively. Moreover, 

Murata et al. [10] applied a CNN auto-encoder for the application of modal decomposition. 

Instead of the estimation of the flow fields, other works focus on different purposes. Some studies 

focus on turbulence modeling, such as the tensor basis neural network (TBNN) architecture proposed 

by Ling et al. [11] to predict the Reynolds stress tensor, which provided more accurate results than the 

ones obtained with Reynolds-Averaged Navier-Stokes (RANS) models. Lee and You [12] used a 

Generative Adversarial Network (GAN) architecture to generate a surrogate model to predict the 

shedding of non-stationary laminar vortices on a circular cylinder. Liu et al. [13] and Deng et al. [14] 

applied a CNN architecture for detecting impacts and vortices, respectively. 

The difficulty in the analysis of fluid dynamics features when a 3D-shaped geometry or turbulent 

flows are considered remarkably increases. This implies that most of the works study 2D geometries 

and laminar flows. The works of Guo et al. [7] and Nowruzi et al. [15] accomplished accurate 

solutions with 3D geometries, assuming large computational costs. Mohan et al.  [16] developed a 

DL framework to reduce the geometry and, consequently, the computational costs.  Some studies 

obtained quality and computational-efficient results, regarding turbulent flows. For example, 

Portal-Porras et al. [17] developed different CNN structures to predict the coupled velocity fields 

with turbulent flows. Abucide-Armas et al. [18] conceived a data augmentation technique to reduce 
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the amount of CFD simulations required to train the network and obtained low error rates for turbulent 

flows and variable input velocities to the domain. Thuerey et al. [19] predicted the streamwise and 

vertical velocities and pressure fields of the RANS-based Spalart-Allmaras turbulence model on 

airfoils, and Fang et al. [20] employed a TBNN to analyze the specific case of turbulent channel flow. 

CFD applications frequently need to know the time evolution of the different parameters and 

features of a fluid. Many of the aforementioned works are based on the behavior of the fluid in a 

specific state. The temporal evolution of the latent vectors is obtained by a nonlinear autoencoder 

mixed with sparse identification of nonlinear dynamics (SINDy) in the works of Champion et al. [21] 

and Fukami et al. [22] and with a Gaussian process by Maulik et al. [23]. Other studies employ 

recurrent neural networks (RNN) to analyze the flow properties on a time-based approach. For example, 

Agostini [24] predicted the streamwise velocity field with an AE and CNN framework. King et al. [25], 

Maulik et al. [26] and Gonzalez and Balajewicz [27] predicted some flow properties on time-based 

approaches. 

This paper aims to exploit the CFD simulated data to train different versions of a CNN 

architecture. The data contains the simulations of turbulent fluid streamwise and vertical velocities and 

the pressure fields around different-shaped geometries. First, the CNN purpose is to predict the future 

states of a fluid given an initial CFD obtained state and then it predicts the futures states based on the 

previously predicted sample. In addition, the CNN is trained to obtain the initial state based on the 

corresponding geometric information. The current work focuses on the prediction of the velocity and 

pressure when unsteady flows are considered. 

2. Materials and methods 

2.1. Numerical simulations 

The Unsteady Reynolds Navier-Stokes (URANS) approach was adopted for the current 

simulations since they are usually employed when long term periodical oscillations in a turbulent flow 

are investigated. The URANS equations are obtained by the following procedure. The Navier-Stokes 

equations for incompressible flow are time-filtered according to Eq (1): 
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Then, the turbulent stress tensor 𝜏𝑖𝑗 = 〈𝑢𝑖〉〈𝑢𝑗〉 − 〈𝑢𝑗𝑢𝑖〉  is introduced, which gives the final 

URANS equation: 
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More detailed explanations of the URANS approach are given, e.g. in [28]. Star-CCM+ 

commercial code was used to run the CFD simulations. The CFD code employs finite volume methods 

to convert the continuous systems of equations into a set of discrete algebraic equations. The following 

geometries are considered: circle, ellipse, square, rectangle, triangle and equilateral triangle. Table 1 

contains the descriptions of the geometries where the sketch indicates the orientation with angle 0º. 
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Table 1. Geometric data. 

Shape Sketch Orientation Scale 

Circle 

 

- a = 0.02 m 

Ellipse 

 

60º a=0.02 m; 

b=0.04 m 

Square 

 

21º a=0.02 m 

Rectangle 

 

114º a=0.02 m; 

b=0.04 m; 

Triangle 

 

276º a=0.02 m 

b=0.035 m 

=80º 

Equilateral triangle 

 

105º a=0.02 m 

Overall, 500 samples of each geometry are simulated, giving a total of 3000 samples. For each 

sample, the vertical and streamwise velocities and the pressure fields are computed. Each simulation 

lasted 0.3 seconds with a time-step of 2·10-4 s. Data was collected after each time step, once the flow 

was fully developed, at t=0.2 s. The time intervals were chosen to be small enough to capture the vortex 

shedding. The robustness of the solution is ensured with an upwind scheme [29,30] which discretizes 

the convective terms. The RANS-based k-ω shear stress transport (SST) turbulence model introduced 

by Menter [31] was used to model the turbulence. The studies of Rajani et al. [32] and Rahman et al. [33] 

have successfully computed unsteady state simulations applied to similar cases. All the simulations 

were converged until a satisfactory residual convergence was achieved for the velocity and pressure 

quantities. 

The numerical domain is composed of a rectangular two-dimensional computational domain with 
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the shape located in the center of the domain; see Aramendia et al. [34]. The left and right sides of the 

domain were set as the inlet and outlet, respectively. Top and bottom sides were set as no-slip walls, 

as well as the shape edge. Figure 1 shows a detailed view of the computational domain and its 

dimensions. 

 

Figure 1. Numerical domain (not to scale). 

The precision of, the convergence of and the time required to attain the solution of a CFD analysis 

strongly depend on the design and construction of a high-quality grid. Within this domain, a mesh of 

two-dimensional polyhedral cells was generated. The cell density is greater around the shape and on 

the domain walls. In addition, a volumetric control was designed to refine the mesh around the body 

to maintain the y+ value below 1. Figure 2 illustrates the mesh distribution around a square shape. 

 

Figure 2. Example of the mesh distribution around the square. 

With regards to the fluid, incompressible turbulent unsteady air is considered. The density (ρ) of 

the selected fluid is equal to 1.18415 kg/m3, and its dynamic viscosity (µ) is equal to 1.85508·10-5 

Pa·s. Both magnitudes are assumed to be constant. The velocity at the inlet (u) is 5 m/s. Consequently, 

the CFD numerical simulations have been run within a range of Re of 6380-12760. The CFD 

simulation data was interpolated into a 79172 grid to be manageable by the CNN [35]. 

In order to verify sufficient mesh resolution, the Richardson extrapolation method [36] was 

applied to the mean drag coefficient for the case of the circle, with 𝑅𝑒 = 6,380. This method consists 

of estimating the value of a parameter when the mesh size tends to zero (in other words, the mesh 

quantity tends to infinity) from a minimum of three meshes. Therefore, a coarse mesh (around 16,000 

cells) a medium mesh (around 25,000 cells) and a fine mesh (around 44,000 cells) were designed. As 

summarized in Table 2, the convergence condition (R), which should be between 0 and 1 to ensure 
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monotonic convergence, is fulfilled. Additionally, the drag coefficient obtained with the fine mesh is 

close to the estimated value. Moreover, the results have been compared with the experimental data 

reported by Roshko et al. [37] for the same case, showing fairly accurate results. 

Table 2. Mesh verification and comparison with experimental data for the case of a cylinder. 

Mesh Resolution Richardson Extrapolation 
Experimental 

Coarse Medium Fine RE p R 

0.796 0.835 0.858 0.907 0.681 0.566 0.91 

2.2. Convolutional neural network architecture 

CNNs are a type of neural network proposed by LeCun et al. [38] which are extremely efficient 

in the identification of patterns in a group of images on the pixel level. The digital images are, in 

essence, matrices. Therefore, the vertical and downstream velocities and pressure fields are also 

matrices, which enables the CNN architecture to identify the patterns. 

Ronneberger et al. [39] proposed the U-Net architecture for medical images segmentation. Ribeiro 

et al. [8] demonstrated the adaptability of the U-Net to accurately predict the coupled velocity and 

pressure fields, providing the three solutions all at once. The CNN architecture consists of an encoder 

network that compresses the geometric input data to obtain a condensed version of the data, which 

facilitates the CNN in detecting the relevant patterns. This reduced version of the geometrical 

information is called latent geometry representation (LGR). Subsequently, the LGR is mapped into the 

data space, through a decoder network. The decoder network can take one, two or three decoders, 

depending on the number of variables studied. Figure 3 shows two simplified diagrams of the network 

architecture for one and three decoders. 

 

 

(a) (b) 

Figure 3. Simplified diagrams of the U-Net. a) 1 decoder and b) 3 decoders. 

The encoder-decoder network architecture is now described in detail. The encoder part is 

constituted of 4 or 5 decoder blocks, depending on the case, which, in turn, contain 3 convolution 

layers. The convolution layer parameters are the following: 

• Filters: 8, 16, 32 and 32 or 8, 16, 16, 32 and 32 for each encoder block, respectively. 

• Kernel size: 3, 5 or 7, depending on the model. 

Each encoder block is formed by the following layers: 
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• A convolution layer with an equal number of filters at its input as the output of the previous 

block, and the output with the corresponding number of filters plus a ReLU layer. In the first 

encoder block, the number of filters is equal to the number of inputs of the CNN. 

• A convolution layer with an equal number of filters in its input and output and a ReLU layer. 

• Lastly, the same process as the previous point plus a max-pooling layer. 

Each decoder block is formed by the following layers: 

• A deconvolution layer with the double number of filters compared to the corresponding, and 

an output equal to the corresponding number of filters plus a ReLU layer. 

• A deconvolution layer with the input and output equal to the number of filters plus a ReLU 

layer. 

• A max-pooling layer before the deconvolution layer, with the corresponding number of filters 

for input and output, and a ReLU layer. In the last decoder block, the max-pooling is not 

considered, and the deconvolution takes a unique output, which corresponds to the evaluated 

variable. 

In this study, two variants of CNN are analyzed. In the first one, the future instants of the 

downstream and vertical velocities and pressure fields are predicted. In fluid dynamics, the state of a 

fluid at time instant t is strongly dependent on its previous state, t-1. The fluid transition between the 

states is of great importance. In terms of a neural network, this dependency is implemented with an 

input to the net, representing the t-1 state. Due to the addition of the previous instant of the CFD sample 

to the inputs of the CNN, each variable must be analyzed separately. The simultaneous analysis of the 

three variables would be erroneous, due to mixing information between the variables. The second 

variant focuses on the prediction of the first sample, needed for the prediction of the following states. 

In this case, three decoders are implemented, and the CNN inputs regard solely the geometric 

information. Figure 4 represents the two architectures analyzed with an [8, 16, 32, 32] filter 

configuration. 

 

 

(a) (b) 

Figure 4. Diagrams of the complete architecture of the CNN for an 8, 16, 32, 32 filter 

configuration. a) 1 decoder and b) 3 decoders. 

The pressure field can be determined by solving the Poisson equation, see Eq (3). Nevertheless, 

since the prediction of the velocity through a neural network implies the appearance of an error, if the 

pressure is calculated with Eq (3), the error in the pressure is carried from the predictions of the 

velocities made by the neural model. 
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∆𝑝 = −𝜌∇ · (v · ∇v) = −𝜌𝑇𝑟((∇v)(∇v)). (3) 

Physics-informed neural networks (PINNs) compose a type of neural networks that provide the 

prediction of the solution of a nonlinear partial differential equation (PDE) [40–43]. The loss function 

of these neural networks is formed by the residual of the PDE. The methodology used in this work 

could be converted to a PINN methodology by employing Eq (2) as the PDE needed for PINN. 

Nowadays, ChatGPT is a popular tool generating code. The following lines contain a ChatGPT 

prompt that describes the network architecture in order to generate the Python code of the neural 

network [44,45]: Develop a Python code for the prediction of the velocity and pressure fields around 

the following geometries in two dimensions: circle, ellipse, square, rectangle, triangle and equilateral 

triangle. Specifically, use convolutional neural networks to encode geometric features and then use 

deconvolutional neural networks to decode the outputs. Input is 79 by 172 images, and the output has 

the same size. 

2.3. Convolutional neural network inputs 

Following the studies of Guo et al. [7], the signed distance function was considered as an input to 

the CNN. The SDF is a function that measures the distance between any point in the grid and the 

nearest boundary of a closed geometry shape. The sign of the value depends on whether the point is 

inside (negative) or outside (positive) the closed geometry. This function provides smaller values than 

the typical binary representation. The mathematical expression of this function is given by Eq (4). 

𝑆𝐷𝐹(𝑥) = {
𝑑(𝑥, 𝜗Ω) 𝑖𝑓 𝑥 ∈ Ω

−𝑑(𝑥, 𝜗Ω) 𝑖𝑓 𝑥 ∈ Ωc, 
 

(4) 

where Ω is a subset of a metric space, X, with metric d, and ϑΩ is the boundary of Ω. For any x ∈ X: 

𝑑(𝑥, 𝜗Ω): = inf
𝑦∈𝜗Ω

𝑑(𝑥, 𝑦), (5) 

where inf denotes the infimum. Grid positions inside the interior of the geometry are assigned negative 

distances. Figure 5 shows an example of the SDF of an ellipse. 

 

Figure 5. SDF of an ellipse. 

The flow region channel (FRC) represents a multi-class channel that contains information about 
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the boundary conditions of the domain. The information is organized into 5 categories: 0 for the 

geometry, 1 for the free flow region, 2 for the no-slip walls, 3 for the inlet and 4 for the outlet. Figure 6 

shows a schematic view of the FRC. 

 

Figure 6. Diagram of an FRC (not to scale). 

The SDF and FRC represent the inputs of the second variant of the CNN. For the first variant, 

which predicts the future states of the fluid, a third input is added. The CFD simulations represent the 

third input. In particular, the previous instant of the current CFD-analyzed sample is selected as the 

input. The testing of the CNN is initialized with a random sample of the CFD simulations, and in the 

next predictions, the previous prediction is the sample used as the current reference for the new 

prediction. 

2.4. Training parameters 

AdamW is the optimizer selected for the training of CNN. It is based on the Adam algorithm, 

which updates the gradient vector and the squared gradient using an exponential moving average [46]. 

β1 and β2 represent the forgetting factors for the gradients and second moments of the gradients, 

respectively, and their values were both set to 0.5. AdamW improves regularization by decoupling the 

weight decay from the gradient-based update [47]. For the hyper-parameter search, the CNN is trained 

for every possible combination of the values given by Tables 3 and 4 for the net which predicts the 

future states and the net which predicts the initial state, respectively. 

Table 3. Set of parameters considered for the hyper-parameter search for the net which 

predicts the future states. 

Parameter Values 

Filters 8, 16, 32, 32 

Kernel size 3 5 7 

Loss function L1-norm 

Learning rate 0.001 0.0001 

Weight decay 0.005 

Batch size 32 64 128 

Training-test ratio 0.7-0.3 

Number of epochs 2000 
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Table 4. Set of parameters considered for the hyper-parameter search for the net which 

predicts the initial state. 

Parameter Values 

Filters 8, 16, 32, 32 8, 16, 16, 32, 32 

Kernel size 3 5 7 9 

Loss function L1-norm 

Learning rate 0.001 0.0001 

Weight decay 0.005 

Batch size 32 64 128 

Training-test ratio 0.7-0.3 

Number of epochs 1000 2000 

2.5. Data augmentation 

The training of the CNN which predicts the initial state of the streamwise and vertical velocities 

and the pressure fields needs many data samples to obtain quality results. To increment the amount of 

data, a data augmentation technique is applied. 

Data augmentation is a well-known technique applied in DL applications. This technique consists 

of generating realistic synthetic data to increase the data quantity in the learning process. Typical data 

augmentation applies geometric transformations and perturbations to the original data. Nevertheless, 

this procedure cannot be implemented in this study. To solve this drawback, a data augmentation 

technique based on the similarity theory for fluid dynamics is applied [18]. The Reynolds number is 

calculated by Eq (6). 

𝑅𝑒 =
𝑢∞𝐷𝜌

𝜇
. (6) 

Assuming that the Reynolds number is kept constant in each case, the new input velocity can be 

calculated with Eq (7). The fluid and boundary conditions remain constant, and the density and 

dynamic viscosity have no influence on the velocity; therefore, with slight modifications in the shape 

size, the amount of input data considerably increases. 

 𝑢∞𝑖
∗ =

𝐷1

𝐷𝑖
𝑢∞1. (7) 

The values of the novel fields are given by Eqs 8–10. 

�̂�𝑥𝑖(�̂�, �̂�) =
𝑢𝑥𝑖

𝑢∞𝑖
∗ (

𝑥𝑖

𝐷𝑖
,
𝑦𝑖

𝐷𝑖
), (8) 

�̂�𝑦𝑖(�̂�, �̂�) =
𝑢𝑦𝑖

𝑢∞𝑖
∗ (

𝑥𝑖

𝐷𝑖
,
𝑦𝑖

𝐷𝑖
) , (9) 

�̂�𝑖(�̂�, �̂�) =
𝑝𝑥𝑖

𝑢∞𝑖
∗2 𝜌

(
𝑥𝑖

𝐷𝑖
,
𝑦𝑖

𝐷𝑖
) , (10) 
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where �̂�𝑥𝑖, �̂�𝑦𝑖 and �̂�𝑖 represent the new coupled velocities and the pressure fields, and xi/Di and 

yi/Di represent the new coordinates inside the domain. As the similarity theory establishes, the domain 

size changes proportionately with shape size. This is shown by Eq (11), where the equivalence between 

two concrete points of the grid is provided. 

�̂� =
𝑥1

𝐷1
=

𝑥2

𝐷2
. (11) 

3. Results 

3.1. CNN that predicts the future states 

Table 3 indicates the values of the hyper-parameters selected for the training of the neural 

models. In Tables 5–7 the best neural models ordered by minimum mean error are provided. Since 

an independent model is generated for each of the three variables, different combinations of the 

parameters can be selected. Every training was conducted with 2000 epochs and an [8, 16, 32] filter 

configuration. The criterion followed to pick the adequate model is based on the mean and maximum 

error given by the tests of each neural model. The training and test sets were the same in every trained 

neural model. In the cases of the vertical velocity and the pressure, the minimum mean and maximum 

error correspond to the same neural model. However, for the streamwise velocity, the two former 

models with the least mean error provide excessively large maximum errors. The results of the third 

and fourth models are relatively similar, each one providing less mean error and bigger maximum 

error, and vice versa. The fourth model is the chosen one, due to having the least maximum error. 

The selection is based on the influence of the large errors in the last samples predicted. Hence, the 

IDs of the chosen models are 15, 5 and 12 for the streamwise and vertical velocities and pressure, 

respectively. 

Table 5. 10 best models for the prediction of the future states of the streamwise velocity field. 

ID Kernel size Lr Batch size Training 

duration (h) 

Mean error 

vx (m/s) 

Maximum 

error vx (m/s) 

10 3 0.0001 32 1.70 0.1413 33.4453 

13 3 0.0001 64 1.35 0.1561 43.7074 

12 7 0.0001 32 2.83 0.1715 15.6595 

15 7 0.0001 64 2.60 0.2053 14.8938 

4 3 0.001 64 1.37 0.2188 2705.84 

11 5 0.0001 32 1.67 0.2217 21.416 

3 7 0.001 32 2.74 0.2510 73.7285 

14 5 0.0001 64 1.51 0.2847 48.7618 

6 7 0.001 64 2.59 0.3729 1848.65 

5 5 0.001 64 1.50 0.5728 39398.8 
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Table 6. 10 best models for the prediction of the future states of the vertical velocity field. 

ID Kernel size Lr Batch size Training 

duration (h) 

Mean error 

vy (m/s) 

Maximum 

error vy (m/s) 

5 5 0.001 64 1.45 0.0585 9.7446 

15 7 0.0001 64 2.55 0.0651 10.5586 

12 7 0.0001 32 2.72 0.0651 32.4277 

2 5 0.001 32 1.56 0.0674 21.7514 

14 5 0.0001 64 1.46 0.0976 18.6669 

7 3 0.001 128 1.40 0.0992 35.5557 

9 7 0.001 128 2.69 0.0999 15.4869 

1 3 0.001 32 1.59 0.1016 802.375 

8 5 0.001 128 1.49 0.1094 90.4429 

16 3 0.0001 128 1.41 0.1358 34.6491 

Table 7. 10 best models for the prediction of the future states of the pressure field. 

ID Kernel size Lr Batch size Training 

duration (h) 

Mean error 

p (Pa) 

Maximum 

error p (Pa) 

12 7 0.0001 32 2.72 0.7139 112.09 

4 3 0.001 64 1.24 0.8828 132.73 

11 5 0.0001 32 1.57 0.9542 119.92 

1 3 0.001 32 1.58 0.9748 466.44 

14 5 0.0001 64 1.46 0.9933 117.70 

5 5 0.001 64 1.44 1.0869 356.00 

15 7 0.0001 64 2.54 1.0900 212.32 

7 3 0.001 128 1.40 1.1218 549.21 

18 7 0.0001 128 2.71 1.1887 108.50 

2 5 0.001 32 1.55 1.3195 196.38 

Figure 7 and Figure 8 show graphically the comparison of results obtained by the CNN and the 

CFD ground-truth data. Table 8 contains the quantitative values of the arithmetic mean and the standard 

deviation of the CFD simulations and the CNN tests. The biggest variations appear in the wake due to 

being the zone where the turbulences and velocity gradients are more notorious. Conversely, in the 

contours of the geometries, the effect of the boundary layer and its separation lead to the appearance 

of errors. The deviations between the CFD results and the CNN predictions appear in the 

aforementioned zones when the predictions advance through time. Moreover, Figure 9, Figure 10 and 

Figure 11 show the histograms for the three variables, where the values given by the CFD are compared 

with the CNN test ones. The absolute error in the predictions of the three fields raises over the samples 

predicted, due to the dependency on the initial state. The appearance of an excessively high error in a 

certain point of the mesh has a direct effect on the precision of the next predictions on that point. In 

the first twenty samples predicted, the absolute error is relatively small; however, in the rear zone of 

the geometry contour, high absolute errors appear, which are accumulated during the predictions. The 

vortices are well predicted, even in the most advanced samples. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 7. Predictions for the circular shaped geometry for the sample number: a) 1, b) 5, 

c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 8. Predictions for the triangle shaped geometry for the sample number: a) 1, b) 5, c) 10, 

d) 15, e) 20, f) 30, g) 40 and h) 50. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 9. Data distribution of the CFD simulations and CNN tests for the streamwise 

velocity field for the sample number: a) 1, b) 5, c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 10. Data distribution of the CFD simulations and CNN tests for the vertical velocity 

field for the sample number: a) 1, b) 5, c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 11. Data distribution of the CFD simulations and CNN tests for the pressure field 

for the sample number: a) 1, b) 5, c) 10, d) 15, e) 20, f) 30, g) 40 and h) 50. 
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Table 8. Arithmetic mean and standard deviation obtained by the CFD simulations and 

CNN tests. 

Method 
CFD CNN 

ux (m/s) uy (m/s) p (Pa) ux (m/s) uy (m/s) p (Pa) 

Arithmetic mean (µ) 5.0283 -0.0538 8.4882 5.0413 -0.0452 8.5360 

Standard deviation (σ) 1.9109 1.7205 17.0865 1.9940 1.7725 16.9417 

3.2. CNN that predicts the initial state 

The CNN was trained for every combination of the hyper-parameters provided by Table 4, and 

Tables 9–11 show the 10 best-trained neural models for the streamwise and vertical velocities and the 

pressure, respectively. Analyzing the mean and maximum errors in each case, the following 

combination provides the best results: 

• Filters combination: 8, 16, 16, 32 and 32 

• Kernel size: 3 

• Lr: 0.001 

• Batch size: 32 

• Number of epochs: 2000 

This combination is selected due to being the best model for the streamwise velocity and the 

pressure and the second best for the vertical velocity. Every model has been run with the same training 

and test sets. 

Figure 12 shows a prediction with the selected neural model for every analyzed geometry. The 

accuracy of the results is evaluated quantitatively in Table 12, where the arithmetic mean and standard 

deviation of the CFD simulations and CNN tests are compared. Moreover, the value distribution 

obtained by both methods are compared by the histograms of Figure 13. 

3.3. Computational cost analysis 

In this section, the computational time is required to calculate the streamwise and vertical 

velocities and the pressure fields with the CFD software and with the predictions of the neural models. 

The training duration of the models for the prediction of the future states is 2.60, 1.45 and 2.72 hours 

for the streamwise and vertical velocities and the pressure, respectively. This gives a total of 6.77 hours 

of training. The prediction of 50 instants lasts 1.76, 3.77 and 6.06 seconds, respectively. For the neural 

model for the prediction of the initial sample, the training took 19.66 minutes, and the predictions take 

a mean of 0.08 seconds.  

Table 13 shows the comparison between the duration of the predictions of the neural models and 

the CFD simulations. In the case of the predictions of the future samples, the time needed to obtain 50 

samples of the three variables is compared. For the initial sample, the time needed for a unique 

prediction is compared. Both training and testing were carried out using an NVIDIA Quad RTX 6000 

GPU and an Intel Xeon Gold 5120 CPU was used for the CFD simulations. 
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Table 9. 10 best models for the prediction of the initial state of the streamwise velocity field. 

Filters 

combination 

Kernel 

size 

Lr Batch 

size 

Nº 

epochs 

Training 

duration (min) 

Mean error 

vx (m/s) 

Maximum 

error vx (m/s) 

8, 16, 16, 32, 32 3 0.001 32 2000 19.66 0.0528 2.4436 

8, 16, 32, 32 5 0.001 32 2000 22.33 0.0550 2.5234 

8, 16, 16, 32, 32 5 0.001 32 2000 21.60 0.0678 3.0944 

8, 16, 32, 32 3 0.001 32 2000 19.45 0.0698 3.2475 

8, 16, 32, 32 7 0.001 32 1000 13.84 0.0705 2.5926 

8, 16, 32, 32 9 0.0001 32 2000 37.20 0.0707 2.9895 

8, 16, 16, 32, 32 5 0.001 32 1000 10.88 0.0746 2.9101 

8, 16, 32, 32 7 0.0001 32 2000 27.85 0.0793 4.3594 

8, 16, 32, 32 3 0.001 128 2000 17.02 0.0811 4.0057 

8, 16, 16, 32, 32 9 0.0001 32 2000 34.19 0.0831 3.7460 

Table 10. 10 best models for the prediction of the initial state of the vertical velocity field. 

Filters 

combination 

Kernel 

size 

Lr Batch 

size 

Nº epochs Training 

duration (min) 

Mean error 

vx (m/s) 

Maximum 

error vx (m/s) 

8, 16, 32, 32 7 0.0001 32 2000 27.85 0.0281 2.2092 

8, 16, 16, 32, 32 3 0.001 32 2000 19.66 0.0288 2.6517 

8, 16, 32, 32 5 0.001 32 2000 22.33 0.0292 2.4026 

8, 16, 32, 32 7 0.001 32 1000 13.84 0.0310 2.4049 

8, 16, 32, 32 3 0.001 32 2000 19.45 0.0333 3.9388 

8, 16, 32, 32 5 0.001 64 2000 20.31 0.0343 2.6450 

8, 16, 16, 32, 32 5 0.001 32 2000 21.60 0.0353 2.0954 

8, 16, 32, 32 9 0.0001 32 2000 37.20 0.0365 2.2067 

8, 16, 32, 32 5 0.001 32 1000 11.19 0.0371 1.8295 

8, 16, 16, 32, 32 7 0.001 32 1000 12.88 0.0397 4.2255 

Table 11. 10 best models for the prediction of the initial state of the pressure field. 

Filters 

combination 

Kernel 

size 

Lr Batch 

size 

Nº 

epochs 

Training 

duration (min) 

Mean error 

vx (m/s) 

Maximum 

error vx (m/s) 

8, 16, 16, 32, 32 3 0.0001 32 2000 19.66 0.2474 16.1953 

8, 16, 32, 32 7 0.001 32 1000 13.84 0.2604 18.4768 

8, 16, 16, 32, 32 5 0.001 32 2000 22.33 0.2643 16.4145 

8, 16, 16, 32, 32 9 0.001 64 2000 32.99 0.2736 19.4038 

8, 16, 16 32, 32 5 0.001 32 2000 21.60 0.2770 22.1191 

8, 16, 32, 32 5 0.001 64 2000 20.31 0.2814 17.5238 

8, 16, 32, 32 3 0.001 32 2000 19.45 0.3048 17.0342 

8, 16, 32, 32 7 0.0001 32 2000 27.85 0.3080 23.0767 

8, 16, 16, 32, 32 9 0.0001 32 2000 34.19 0.3269 27.6613 

8, 16, 32, 32 5 0.001 32 1000 11.19 0.3314 19.8795 



29753 

AIMS Mathematics  Volume 8, Issue 12, 29734–29758. 

Table 12. Arithmetic mean and standard deviation obtained by the CFD simulations and 

CNN tests. 

Method 
CFD CNN 

ux (m/s) uy (m/s) p (Pa) ux (m/s) uy (m/s) p (Pa) 

Arithmetic mean (µ) 5.0674 -0.0644 5.9574 5.0414 -0.0628 6.0475 

Standard deviation (σ) 1.6867 1.5074 15.0737 1.6797 1.5142 15.0853 

Table 13. Comparison between the calculation time required by the CFD simulations and the 

predictions of the neural models for the streamwise and vertical velocities and the pressure. 

Net CFD time (s) Prediction time (s) Speedup 

Future states of the fields 720.00 11.59 62.12 

Initial state 720.00 0.08 9000.00 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 12. Predictions of the initial state for the a) circle, b) cylinder, c) square, d) rectangle, e) 

triangle and f) equilateral triangle. 
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(a) (b) 

 

(c) 

Figure 13. Data distribution of the CFD simulations and CNN tests for the a) streamwise 

velocity, b) vertical velocity and c) pressure. 

4. Conclusions 

The CFD simulations are of great utility for the study of turbulent fluids when they face 

concrete geometries. The computational costs of these simulations are frequently too high, and 

their precision depends also on the mesh and turbulence model generation. These issues imply the 

use of DL techniques to approximate the CFD results and reduce their computational costs. In the 

current work, a U-Net structure was applied to predict the streamwise and vertical velocities and 

the pressure fields downstream of a series of different geometries. A turbulent fluid was analyzed, 

and CFD unsteady simulations were conducted. The predictions were accomplished using a time-

based approach, predicting the immediate future sample based on its dependency on its previous 

state. Until the twentieth sample, the predictions are relatively reliable. The absolute errors are 

higher in the streamwise velocity than in the vertical velocity and the pressure. The vortices are 

well predicted, giving the more inexact results in the back of the contour of the geometries. The 

data augmentation technique employed is efficient to increase the number of samples required by 

the training, avoiding running extra CFD simulations for each variation in the size of the 

geometries. Hence, the trained neural model accurately predicts the streamwise and vertical 

velocities and pressure fields. With respect to the reduction of the computational cost, the neural 

model which predicts the future states is 62.12 times faster than the CFD simulations, and the 

model for the initial sample is 9000 times faster thanks to the data augmentation applied.  The 

limitation of the proposed method is based on the necessity to obtain the CFD data and the 

computational time and resources required by the training process. In addition, the current CNN 
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model has been tested in the five proposed geometries. Therefore, the model is considered 

generalizable for similar geometries and shapes. For future works, this U-Net structure can be 

applied to simulate and predict the fields of more aerodynamic shapes, such as airfoils or wings. 

The addition of historical inputs, such as multiple previous time steps, may be considered, too. 

Furthermore, to attain aerodynamic optimization, DL techniques can be applied to predict the best 

shape of an airfoil with an added gurney flap. 
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