
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(6): 15008–15023.
DOI: 10.3934/math.2024727
Received: 20 December 2023
Revised: 08 April 2024
Accepted: 09 April 2024
Published: 25 April 2024

Research article

Some generic hypersurfaces in a Euclidean space

Hanan Alohali and Sharief Deshmukh*

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh,
11451, Saudi Arabia

* Correspondence: Email: shariefd@ksu.edu.sa.

Abstract: In this paper, we find three nontrivial characterizations of Euclidean spheres. In the first
result, we show that the existence of a nonzero nontrivial concircular vector field ω on a compact and
connected hypersurface N of the Euclidean space Rm+1 with a mean curvature α constant along the
integral curves of ω and a shape operator T satisfying T (ω) = αω implies that α is a constant and N is
isometric to a sphere, and the converse also holds. In the second result, we show that the presence of a
unit Killing vector field v on a compact and connected hypersurface N of a Euclidean space Rm+1 gives
a nonzero function σ = g (Tv, v) with shape operator T , and the integral of the function mασRic (v, v)
has a certain lower bound, and is isometric to an odd-dimensional sphere, and the converse holds too.
Finally, we show that for a compact and connected hypersurface N with support ρ and basic vector field
u, the integral of the Ricci curvature Ric (u,u) has a specific lower bound and is necessarily isometric
to a sphere, and the converse also holds.
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1. Introduction

The geometry of hypersurfaces lies at the foundation of differential geometry, it started with the
theory of curves and surfaces in the Euclidean 3-space R3 [11]. Given an orientable immersed
hypersurface N in the Euclidean space Rm+1 with immersion ϕ : N → Rm+1, we have the unit normal
ζ, the shape operator T , the support ρ = 〈ϕ, ζ〉 a smooth function defined on the hypersurface N and
the mean curvature α, given by mα = trT being trace of the shape operator T [11]. If the hypersurface
N of the Euclidean space Rm+1 is compact, then we have the following well-known Minkowski’s
formula: ∫

N
(1 + ρα) = 0. (1.1)
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As an outcome of Minkowski’s formula, we conclude that there are no compact minimal hypersurfaces
(hypersurfaces with mean curvature α = 0) in the Euclidean space Rm+1.

Among compact hypersurfaces of Euclidean spaces, important are the Euclidean spheres S m(c) of
constant curvature c, with the imbedding ϕ : S m(c) → Rm+1, ϕ (x) = x, shape operator T = −

√
cI,

and unit normal ζ =
√

cϕ. Taking a as a nonzero constant vector field on Rm+1, we can express it as
a = u + f ζ, where f = 〈a, ζ〉 and u is the tangential projection of a on the sphere S m(c). Letting g
be the induced metric and ∇ the Riemannian connection on the sphere S m(c) and differentiating the
equation a = u + f ζ with respect to the vector field E on S m(c), we have

∇Eu = −
√

c f E, ∇ f =
√

cu, (1.2)

where ∇ f is the gradient of f .
On an odd dimensional sphere S 2m−1(c) with imbedding ϕ : S 2m−1(c) → R2m with unit normal

ζ =
√

cϕ, shape operator T = −
√

cI, apart from the above vector field u, there is a unit vector field v
defined on S 2m−1(c) by

v = Jζ, (1.3)

where J is the complex structure on the Euclidean space R2m. Differentiating the above equation using
the Euclidean connection D with respect to a vector field E on S 2m−1(c), one confirms

∇Ev−
√

c 〈E, v〉 ζ =
√

cJE,

that is,
∇Ev =

√
c (JE)T , (1.4)

where (JE)T is the tangential projection of JE on S 2m−1(c).
Given an immersed hypersurface N of the Euclidean space Rm+1, the natural tools for studying

the geometry of N are the shape operator T , the mean curvature α, the curvature tensor R, the Ricci
tensor Ric, the Ricci operator S , and the scalar curvature τ of N. In [8], it is shown that a compact
hypersurface M of the Euclidean space Rm+1 satisfies the inequality

‖T‖2 τ ≥
1
2
‖R‖2 + ‖S ‖2 + 2m(m − 1) ‖∇α‖2 ,

if and only if α is a constant and N is isometric to the n-sphere S m
(
α2

)
. Also, in [9], the position

vector field ϕ of a compactly immersed hypersurface N in the Euclidean space Rm+1 with immersion
ϕ : N → Rm+1 and unit normal ζ was used to define a vector field u on the hypersurface N as the
tangential projection of the position vector field ϕ that leads to the integral formula∫

N

{
Ric (u,u) + m(m − 1) − ρ2τ

}
= 0,

where ρ = 〈ϕ, ζ〉 is the support of N. In [7,9], the above integral was used, which led to many important
geometric implications on the compact hypersurface N of the Euclidean space Rm+1. Moreover, in [8],
it is shown that a compact hypersurface N of positive Ricci curvature in the Euclidean space Rm+1 with
scalar curvature τ ≤ λ1(m−1) is necessarily isometric to the sphere S m(c), where λ1 is the first nonzero
eigenvalue of the Laplace operator ∆ of N with respect to the induced metric.
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Recently, there has been a trend toward studying the geometry of the hypersurfaces in Rm+1, as the
graphs of the smooth functions h : Rm+1 → R are called the translation hypersurfaces. The focus, in
translation hypersurface N of the Euclidean space Rm+1, is on the property function h : Rm+1 → R,
whose graph is N. In [18], translation hypersurfaces of Rm+1 are studied, whose Gauss-Kronecker
curvature depends on either its first p variables or on the rest q variables, where m = p + q, and
conditions on a translation hypersurface to have Gauss-Kronecker zero curvature are found. If a
translation hypersurface N is defined as the graph of the function h : Rm+1 → R with h satisfying
certain additional conditions, then it is called a separable hypersurface. Separable hypersurfaces in the
Euclidean space Rm+1 have an interesting geometry, as studied in [6, 12, 13, 19]. A complete
classification of separable hypersurfaces with zero Gauss-Kronecker curvature in the Euclidean space
Rm+1 is obtained in [6].

In this paper, we are interested in studying the impact of the existence of a concircular vector field
as well as a Killing vector field on the immersed hypersurface N of the Euclidean space Rm+1. A vector
field ω on a Riemannian manifold (N, g) is a concircular vector field if

∇Eω = σE, E ∈ Ψ(N),

where σ is a function on N and Ψ(N) is the space of smooth vector fields on N. We shall use the
abbreviation CLVF for a concircular vector field. It is known that a CLVF ω on a Riemannian manifold
(N, g) influences the geometry of (N, g) [4,5]. Moreover, a CLVF ω has a role in general relativity [3].To
understand the role of CLVF in relativity, recall that m-dimensional generalized Robertson-Walker
space-time, m > 3, is the warped product I ×h2 M, with Lorentz metric g = −dt2 + h2g∗, where I
is an interval h : I → R is a positive smooth function and (M, g∗) is a Riemannian manifold with
dim M = (m − 1). In [3], Chen has proved a very significant result involving a CLVF, namely: A
Lorentzian manifold admits a nontrivial timelike CLVF if and only if it is a generalized Robertson-
Walker space-time. Note that Eq (1.2) shows that the vector field u is a CLVF on the sphere S m(c) with
potential function σ = −

√
c f and naturally the shape operator T of the sphere S m(c) as a hypersurface

of the Euclidean space Rm+1 satisfies T (u) = αu, where α = −
√

c is the mean curvature of S m(c).
This naturally raises a question: Is a compact and connected hypersurface N with shape operator T
and mean curvature α of the Euclidean space Rm+1 admitting a nonzero CLVF u satisfying T (u) = αu,
u (α) = 0, necessarily isometric to S m(c)? In Section 3, we show that this question has an affirmative
answer, and indeed, we show that the converse is also true.

Similarly, a vector field ω on an m-dimensional Riemannian manifold (N, g) is said to be a Killing
vector field if

£ωg = 0,

and we shall use the abbreviation KGVF for a Killing vector field. Note that the presence of a KGVF
ω on (N, g) influences its geometry as well as topology [2, 14, 17, 21]. Note that the unit vector field v
on the sphere S 2m−1(c) satisfies Eq (1.4), which leads to

£vg = 0,

that is, v is a unit KGVF on the sphere S 2m−1(c). We see that σ = g (Tv, v) = −
√

c is a constant, and
the following holds: ∫

S 2m−1(c)
mασRic (v, v) =

∫
S 2m−1(c)

(
m(m − 1)α2σ2 − ‖∇σ‖2

)
. (1.7)
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This raises the next question: Does a compact and connected hypersurface N with shape operator T ,
mean curvature α, induced metric g, admitting a unit KGVF v, of a Euclidean space Rm+1 with nonzero
function σ = g (Tv, v) satisfying Eq (1.7) necessarily imply m is odd, α a constant, and M isometric
to S 2m−1(c)? In Section 4 of this paper, we answer this question and find a characterization of the
sphere S 2m−1(c).

Finally, in the last section, we consider an immersed compact and connected hypersurface N in the
Euclidean space Rm+1 with immersion ϕ : N → Rm+1, unit normal ζ, and shape operator T . Then,
we express the position vector field ϕ as ϕ = u + f ζ, where f = 〈ϕ, ζ〉 is the support function of the
hypersurface. In the last section, we shall prove that for a compact and connected hypersurface N with
nonzero support function and if the following condition holds∫

N
Ric (u,u) ≥

m − 1
m

∫
N

(divu)2 ,

then the mean curvature α is a constant and N is the sphere S m
(
α2

)
.

2. Preliminaries

Let N be an orientable hypersurface of the Euclidean space Rm+1 with unit normal ζ, shape
operator T . We denote the Euclidean metric by 〈, 〉 and by g the induced metric on N, and by ∇ and D,
the Riemannian connection with respect to g and the Euclidean connection, respectively. Then, we
have [11]

DEF = ∇EF + g (T E, F) ζ, DEζ = −T E, E, F ∈ Ψ (N) , (2.1)

where Ψ (N) is the space of smooth vector fields on N. The curvature tensor field of the hypersurface
N is given by

R(E, F)G = g (T F,G) T E − g (T E,G) T F, E, F,G ∈ Ψ (N) , (2.2)

and the Ricci tensor of N has the expression

Ric (E, F) = mαg (T E, F) − g (T E,T F) , (2.3)

where α is the mean curvature of the hypersurface N, given by mα = trT , the trace of the shape operator
T . For a local orthonormal frame {wk}

m
1 on the hypersurface, the scalar curvature τ of the hypersurface

N is given by

τ =

m∑
k=1

Ric (wk,wk) ,

and combining the above equation with (2.3), gives

τ = m2α2 − ‖T‖2 , (2.4)

where

‖T‖2 =

m∑
k=1

g (Twk,Twk) .

The Codazzi equation of the hypersurface N is given by

(∇ET ) F = (∇FT ) E, E, F ∈ Ψ (N) , (2.5)
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where (∇ET ) F = ∇ET F − T (∇EF). Note that, as the shape operator T is symmetric, we have for
E ∈ Ψ(N) and a local frame {wk}

m
1 ,

mE (α) =

m∑
k=1

Eg (Twk,wk) =

m∑
k=1

g ((∇ET ) (wk) ,wk) + 2
m∑

k=1

g (Twk,∇Ewk)

=

m∑
k=1

g
((
∇wkT

)
(E) ,wk

)
+ 2

m∑
k=1

g (Twk,∇Ewk)

=

m∑
k=1

g
(
E,

(
∇wkT

)
(wk)

)
+ 2

m∑
k=1

g (Twk,∇Ewk) , (2.6)

and using the facts that

Twk =

m∑
j=1

λ
j
kw j, ∇Ewk =

m∑
i=1

ωi
k(E)wi,

where
(
λ

j
k

)
is a symmetric matrix and ωi

k are connection forms, which are skew symmetric, that is,
ωi

k + ωk
i = 0; in Eq (2.6), we conclude

mE (α) =

m∑
k=1

g
(
E,

(
∇wkT

)
(wk)

)
.

Therefore, the gradient of α has the expression

∇α =
1
m

m∑
k=1

(
∇wkT

)
(wk) . (2.7)

Let ω be a CLVF on an m-dimensional Riemannian manifold (N, g). Then, we have

∇Eω = σE, E ∈ Ψ (N) , (2.8)

where σ is the potential function of the CLVF ω. A CLVF ω on (N, g) is said to be nontrivial if it
is not parallel. We have the following expression for the curvature tensor field of (N, g) involving
the CLVF ω

R (E, F)ω = E (σ) F − F (σ) E, E, F ∈ Ψ (N) .

Taking the trace in the above equation, we see that the Ricci tensor of (N, g) is given by

Ric (E, ω) = −(m − 1)E (σ) , E ∈ Ψ (N) . (2.9)

The Ricci operator S of the Riemannian manifold (N, g) is given by

Ric (E, F) = g (S E, F) ,

and thus, using Eq (2.9), we see that the Ricci operator S operating on the CLVF ω is given by

S (ω) = −(m − 1)∇σ, (2.10)
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where ∇σ is the gradient of σ.
Now, consider a KGVF v on an m-dimensional Riemannian manifold (N, g) that satisfies [11]

£vg = 0. (2.11)

Note that the flow of a KGVF on a Riemannian manifold consists of isometries, and therefore, its
presence influences both the topology and geometry of the manifold on which they live. For instance,
if v is a KGVF on a Riemannian manifold (N, g), then the scalar curvature τ of (N, g) is constant
along the integral curves of v. It is known that, if a positively curved Riemannian manifold (N, g)
admits a nontrivial KGVF, then its fundamental group contains a cyclic subgroup of constant index
depending on dim N [17]. Also, the presence of a nontrivial KGVF influences the dimension of the
Riemannian manifold on which they live. For instance, on the even-dimensional unit sphere S 2m there
does not exist a unit KGVF, where as on S 2m+1 a unit KGVF exists [2,11]. Moreover, the presence of
a nontrivial KGVF on a compact Riemannian manifold (N, g) does not allow it to have a non-positive
Ricci curvature [11].

There is a skew-symmetric operator φ associated with the KGVF v on (N, g) that satisfies

∇Ev = φE, E ∈ Ψ (N) , (2.12)

and that the covariant derivative of the operator φ is given by

(∇Eφ) (F) = R (E, v) F, E, F ∈ Ψ (N) . (2.13)

It is clear from Eq (2.12) that v, being a unit KGVF on (N, g), satisfies

φv = 0. (2.14)

Note that the flow of a KGVF v on an m-dimensional Riemannian manifold (N, g) consists of
isometries of (N, g). Now suppose that N is an orientable hypersurface of the Euclidean space Rm+1

with shape operator T , mean curvature α, and induced metric. Suppose that there is a unit KGVF v on
the hypersurface N. We say that the shape operator T of the hypersurface is invariant under the unit
KGVF v if

ψ∗t (T ) = T ◦ dψt, (2.15)

where {ψt} is the flow of the unit KGVF v.

Lemma 1. Let v be a unit KGVF on the hypersurface N of the Euclidean space Rm+1 such that the
shape operator T is invariant under v. Then the shape operator satisfies

(∇ET ) (v) = φ (T E) − T (φE) , E ∈ Ψ (N) .

Proof. Since T is invariant under v, Eq (2.15) implies

£vT = 0,

which gives
[v,T E] = T [v, E], E ∈ Ψ (N) ,

that is, in view of Eq (2.12), we have

(∇vT ) (E) = φ (T E) − T (φE) , E ∈ Ψ (N) .

Combining the above equation with Eq (2.5), we get the result. �
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3. Hypersurfaces with a concircular vector field

In this section, we are interested in studying the impact of a nonzero CRVF ω with potential σ on
a compact hypersurface N of the Euclidean space Rm+1. We would like to recall that given a smooth
curve β : I → N on the hypersurface N with mean curvature α, we get a smooth function f : I → R
defined by f = α◦β and if f is a constant function, we say the mean curvature α is a constant along the
curve β on the hypersurface. Naturally, if the mean curvature α is a constant, then it will be constant
along each curve on the hypersurface. However, mean curvature α being constant along some curves
on hypersurface N does not imply that α is a constant on N. In the following result, we shall assume
that the mean curvature α is a constant along the integral curves of the CRVF ω, which is a weaker
condition than asking if the mean curvature α is a constant. Indeed, we prove the following:

Theorem 1. A compact and connected hypersurface N of the Euclidean space Rm+1, m > 1, admits
a nonzero nontrivial CRVF ω such that the mean curvature α is constant along the integral curves of
ω and the shape operator T satisfies T (ω) = αω, if and only if α is a constant and N is isometric
to S m

(
α2

)
.

Proof. Suppose that the compact and connected hypersurface N of Rm+1, m > 1, admits a nonzero
nontrivial CRVF ω with potential σ, such that the mean curvature α is constant along the integral
curves of ω and the shape operator T satisfies

T (ω) = αω. (3.1)

Then we have
ω (α) = 0. (3.2)

Using Eqs (2.8) and (3.1), we get

(∇ET ) (ω) = E (α)ω + σαE − σT E, E ∈ Ψ (N) ,

that is,
σ (T E − αE) = E (α)ω − (∇ET ) (ω) , E ∈ Ψ (N) . (3.3)

Now, using a local frame {wk}
m
1 on the hypersurface N, we have

σ2 ‖T − αI‖2 =

m∑
k=1

g (σ (Twk − αwk) , σ (Twk − αwk)) ,

and employing Eq (3.3) in the above equation leads to

σ2 ‖T − αI‖2 =

m∑
k=1

g
(
wk (α)ω −

(
∇wkT

)
(ω) ,wk (α)ω −

(
∇wkT

)
(ω)

)
= ‖∇α‖2 ‖ω‖2 +

m∑
k=1

g
((
∇wkT

)
(ω) ,

(
∇wkT

)
(ω)

)
− 2g (∇α, (∇ωT ) (ω)) . (3.4)

Moreover, Eqs (3.1) and (3.2) give

(∇ωT ) (ω) = ∇ω (αω) − T (σω) = 0. (3.5)
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Next, using Eq (3.1), we compute(
∇wkT

)
(ω) = wk (α)ω + ασwk − σT (wk) ,

which, on using Eq (3.2), on some simplifications, gives

m∑
k=1

g
((
∇wkT

)
(ω) ,

(
∇wkT

)
(ω)

)
= ‖∇α‖2 ‖ω‖2 + σ2 ‖T‖2 − mσ2α2. (3.6)

Thus, Eqs (3.4)–(3.6), yield

σ2 ‖T − αI‖2 = 2 ‖∇α‖2 ‖ω‖2 + σ2
(
‖T‖2 − mα2

)
. (3.7)

Also, we have

‖T − αI‖2 =

m∑
k=1

g ((Twk − αwk) , (Twk − αwk))

= ‖T‖2 + mα2 − 2α
m∑

k=1

g (Twk,wk)

= ‖T‖2 − mα2.

Substituting this last equation in Eq (3.7), we arrive at

2 ‖∇α‖2 ‖ω‖2 = 0,

and as ω is a nonzero vector field on the connected hypersurface N, we conclude that α is a constant.
Now, using Eq (3.1) in the expression of the Ricci operator S of the hypersurface N, we get

S (ω) = mαT (ω) − T 2 (ω) = (m − 1)α2ω.

Combining this equation with Eq (2.10), we have

∇σ = −α2ω.

Differentiating the above equation with respect to a vector field E on N, and using Eq (2.8), we get

∇E∇σ = −α2σE, E ∈ Ψ (N) . (3.8)

The mean curvature α is a constant; it has to be a nonzero constant as N is a compact hypersurface by
virtue of the fact that there are no compact minimal hypersurfaces in the Euclidean space Rm+1, which
is guaranteed by Minkowski’s formula (1.1). Now, it remains to show that the potential σ cannot be a
constant. To achieve it, we see that Eq (2.8) implies divω = mσ, which, on integration, yields∫

N
σ = 0,

and if σ were a constant, it should give σ = 0, which would make ω a trivial CRVF, which is a
contradiction. Hence, σ is a non-constant function. Hence, Eq (3.8) is Obata’s differential
equation [15,16], which confirms that N is isometric to S n

(
α2

)
.
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Conversely, suppose N is isometric to S n (c). Then, by Eq (1.2), there is a CRVF u on S m(c) with
potential σ = −

√
c f . We claim that u is a nonzero and nontrivial CRVF on S m(c). If u = 0, then by

Eq (1.2), it will follow that f = 0, and consequently, the constant vector a = 0, which is contrary to
our assumption that a is a nonzero constant vector field on the Euclidean space Rm+1. Similarly, if u is
parallel, then by Eq (1.2), we have f = 0, and the second equation in Eq (1.2) will imply u = 0, which
is a contradiction. Hence, u is a nonzero and nontrivial CRVF on S m(c), which satisfies T (u) = αu
and u (α) = 0. This completes the proof. �

4. Hypersurfaces with a Killing vector field

In this section, we are interested in studying hypersurfaces of the Euclidean space Rm+1, which admit
a unit KGVF. Let N be an orientable hypersurface of the Euclidean space Rm+1 with shape operator T ,
mean curvature α, and v be a unit KGVF on N with respect to which the shape operator T is invariant.
We prove the following:

Theorem 2. A compact and connected hypersurface N of the Euclidean space Rm+1, m > 1, with mean
curvature α and shape operator T , admits a unit KGVF v such that the shape operator T is invariant
under v and the function σ = g (Tv, v) is nonzero and satisfies∫

N
mασRic (v, v) ≥

∫
N

(
m(m − 1)σ2α2 − ‖∇σ‖2

)
,

if and only if m is odd, m = (2n − 1), α is a constant, and N is isometric to S 2n−1
(
α2

)
.

Proof. Suppose N is a compact and connected hypersurface of the Euclidean space Rm+1, m > 1, that
admits a unit KGVF v such that the shape operator T is invariant under v and the function σ = g (Tv, v)
is nonzero and satisfies the condition∫

N
mασRic (v, v) ≥

∫
N

(
m(m − 1)σ2α2 − ‖∇σ‖2

)
. (4.1)

Define a vector field u = Tv−σv; it follows that g (u, v) = 0, that is, the vector field u is orthogonal to
the unit KGVF v. Now, using Eq (2.12) and Lemma 1, we compute

∇Eu = (∇ET ) (v) + T (φE) − E (σ) v − σφE,

that is,
∇Eu = φ (T E) − E (σ) v − σφE, E ∈ Ψ (N) . (4.2)

Taking the inner product in the above equation with the vector field v and using g (u, v) = 0 and Eqs
(2.12) and (2.14), we get

−g (u, φE) = −E (σ) , E ∈ Ψ (N) ,

that is,
∇σ = −φu. (4.3)
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Differentiating the above equation with respect to E ∈ Ψ (N) and using Eqs (4.2), (2.13), and (2.14),
we get

∇E∇σ = − (∇Eφ) (u) − φ (φ (T E) − E (σ) v − σφE)

= −R (E, v) u − φ2 (T E) + σφ2E, E ∈ Ψ (N) . (4.4)

Note that by Eqs (2.13) and (2.14), we have

R (E, v) v = −φ2E, E ∈ Ψ (N) , (4.5)

and using it in Eq (4.4), we conclude

∇E∇σ = −R (E, v) u + R (T E, v) v − σR (E, v) v, E ∈ Ψ (N) .

Now, using u = Tv − σv to plug the first and last terms in the right-hand side of the above equation,
we confirm

∇E∇σ = −R (E, v) Tv + R (T E, v) v,

which, using Eq (2.2), yields

∇E∇σ = − ‖Tv‖2 T E + σT 2E, E ∈ Ψ (N) .

Taking the trace in the above equation and using ∆σ = div (∇σ), we conclude

∆σ = −mα ‖Tv‖2 + σ ‖T‖2 ,

that is,
σ∆σ = −mασ ‖Tv‖2 + σ2 ‖T‖2 . (4.6)

Using Eq (2.3), we have

‖Tv‖2 = mαg (Tv, v) − Ric (v, v) = mασ − Ric (v, v) ,

and inserting it in Eq (4.6), gives

σ∆σ = −m2α2σ2 + mασRic (v, v) + σ2 ‖T‖2 .

Integrating the above equation, yields

−

∫
N
‖∇σ‖2 =

∫
N

(
−m2α2σ2 + mασRic (v, v) + σ2 ‖T‖2

)
,

which is rearranged as∫
N
σ2

(
‖T‖2 − mα2

)
=

∫
N

(
m(m − 1)α2σ2 − ‖∇σ‖2

)
−

∫
N

mασRic (v, v) .

Using the inequality (4.1) in the above equation, it confirms∫
N
σ2

(
‖T‖2 − mα2

)
≤ 0.
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However, by Schwartz’s inequality, we have ‖T‖2 ≥ mα2 and therefore, the integrand on the left-hand
side of the above inequality is non-negative. Hence, we have

σ2
(
‖T‖2 − mα2

)
= 0,

with the function σ nonzero on connected N, which implies
(
‖T‖2 − mα2

)
= 0. The equality ‖T‖2 =

mα2 in Schwartz’s inequality holds if and only if

T = αI, (4.7)

which gives
(∇ET ) (F) = E (α) F, E, F ∈ Ψ (N) .

Taking a local frame {wk}
m
1 on the hypersurface N, in the above equation, we have

m∑
k=1

(
∇wkT

)
(wk) =

m∑
k=1

wk (α) wk,

which, in view of Eq (2.7), implies
m∇α = ∇α,

and as m > 1, it confirms that α is a constant. Then, by Eqs (2.2) and (4.7), we have

R (E, F) G = α2 {g (F,G) E − g (E,G) F} , E, F,G ∈ Ψ (N) .

Note that α , 0, because compact minimal hypersurfaces in Euclidean space do not exist. Hence,
α2 > 0, and N is isometric to S m

(
α2

)
. Note that a Killing vector field on an even-dimensional compact

Riemannian manifold of positive sectional curvature must vanish at some point [11]. Therefore, as v is
a unit vector field, it never vanishes, and it announces that m cannot be even. Hence, m = 2n − 1, that
is, N is isometric to S 2n−1

(
α2

)
.

Conversely, suppose N is isometric to S 2n−1
(
α2

)
. Then by Eqs (1.3) and (1.4), there is a unit vector

field v = Jζ on S 2n−1
(
α2

)
that satisfies

∇Ev = α (JE)T , E ∈ Ψ
(
S 2n−1

(
α2

))
, (4.8)

where J is the complex structure of the ambient Euclidean space R2n, and ζ is the unit normal, and
(JE)T is the tangential projection of the vector field JE to S 2n−1

(
α2

)
. Taking the inner product in

Eq (4.8) by the vector field F on the sphere S 2n−1
(
α2

)
, we have

g (∇Ev, F) = αg
(
(JE)T (JE)T , F

)
= α 〈JE, F〉 ,

and we conclude
(£vg) (E, F) = α 〈JE, F〉 + α 〈JF, E〉 = 0,

by virtue of the skew symmetry of the complex structure, that is, the Euclidean metric is a Hermitian
metric. Hence, v is a unit KGVF on S 2n−1

(
α2

)
. Note that, in this case the shape operator is T = αI,

and the function σ = g (Tv, v) = α is a nonzero constant. Moreover, with m = 2n − 1∫
S 2n−1(α2)

mασRic (v, v) =

∫
S 2n−1(α2)

2(2n − 1)(n − 1)α4 (4.9)
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and ∫
S 2n−1(α2)

(
m(m − 1)σ2α2 − ‖∇σ‖2

)
=

∫
S 2n−1(α2)

2(2n − 1)(n − 1)α4, (4.10)

as ∇σ = 0. Hence, by Eqs (4.9) and (4.10), we get∫
S 2n−1(α2)

mασRic (v, v) =

∫
S 2n−1(α2)

(
m(m − 1)σ2α2 − ‖∇σ‖2

)
,

and this finishes the proof. �

5. Hypersurfaces with a generic bound on Ricci curvature

Let N be an immersed hypersurface in the Euclidean space Rm+1 with unit normal ζ, shape operator
T , and mean curvature α. Let ϕ : N → Rm+1 be the immersion and ρ = 〈ϕ, ζ〉 be the support of N. The
position vector field ϕ is expressed as

ϕ = u + ρζ, (5.1)

and we call u the basic vector field of the hypersurface N. Differentiating Eq (5.1), using Eq (2.1), and
equating similar components, we get

∇Eu = E + ρT E, ∇ρ = −Tu, E ∈ Ψ(N). (5.2)

The first equation in Eq (5.2), gives
divu = m (1 + ρα) . (5.3)

In this section, we prove the following result:

Theorem 3. A compact and connected immersed hypersurface N of the Euclidean space Rm+1, m > 1,
with nonzero support ρ and basic vector field u satisfies∫

N
Ric (u,u) ≥

m − 1
m

∫
N

(divu)2 ,

if and only if, the mean curvature α is a constant and N is isometric to S m(α2).

Proof. Suppose that the immersed hypersurface N of the Euclidean space Rm+1, m > 1, has nonzero
support ρ and the basic vector field u satisfy∫

N
Ric (u,u) ≥

m − 1
m

∫
N

(divu)2 . (5.4)

Using Eq (5.2), we have
ρ (T E − αE) = ∇Eu − (1 + ρα) E,

and using a local frame {wk}
m
1 on the hypersurface N with the above equation, we get

ρ2 ‖T − αI‖2 =

m∑
k=1

g (ρ (Twk − αwk) , ρ (Twk − αwk))
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=

m∑
k=1

g
(
∇wku − (1 + ρα) wk,∇wku − (1 + ρα) wk

)
= ‖∇u‖2 + m (1 + ρα)2

− 2 (1 + ρα) divu.

Using Eq (5.3) in the above equation, we have

ρ2 ‖T − αI‖2 = ‖∇u‖2 −
1
m

(divu)2 . (5.5)

Note that on using Eq (5.2), we have

(£ug) (E, F) = 2g (E, F) + 2ρg (T E, F) , E, F ∈ Ψ(N),

which gives

|£ug|2 =
∑

jk

(£ug)
(
w j,wk

)
= 4

∑
jk

(
g
(
w j,wk

)
+ ρg

(
Tw j,wk

))2

= 4
(
m + 2mρα + ρ2 ‖T‖2

)
.

Integrating the last equation, while using Minkowski’s formula, we have

1
2

∫
N
|£ug|2 = 2

∫
N

(
ρ2 ‖T‖2 + mρα

)
. (5.6)

Next, we recall the following integral formula [20]∫
N

(
Ric (u,u) +

1
2
|£ug|2 − ‖∇u‖2 − (divu)2

)
= 0,

which holds for any vector field on the compact Riemannian manifold (N,g).
Using the above integral formula with the integral of Eq (5.5), we get∫

N
ρ2 ‖T − αI‖2 =

∫
N

(
Ric (u,u) +

1
2
|£ug|2 − (divu)2

−
1
m

(divu)2
)

. (5.7)

Now, using Eq (1.1) in Eq (5.6), we have

1
2

∫
N
|£ug|2 = 2

∫
N

(
ρ2

(
‖T‖2 − mα2

)
+ m

(
ρ2α2 + ρα

))
= 2

∫
N

(
ρ2

(
‖T‖2 − mα2

)
+ m

(
ρ2α2 + 2ρα + 1

))
= 2

∫
N

(
ρ2

(
‖T‖2 − mα2

)
+ m (1 + ρα)2

)
.

Employing (5.1), in the above equation, we conclude

1
2

∫
N
|£ug|2 = 2

∫
N

(
ρ2

(
‖T‖2 − mα2

)
+

1
m

(divu)2
)

.
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Inserting this equation in Eq (5.7), we find that∫
N
ρ2 ‖T − αI‖2 =

∫
N

(
Ric (u,u) + 2ρ2

(
‖T‖2 − mα2

)
−

m − 1
m

(divu)2
)

. (5.8)

Finally, observe that

‖T − αI‖2 =

m∑
k=1

g (Twk − αwk,Twk − αwk)

= ‖T‖2 − 2mα2 + mα2,

that is,
ρ2 ‖T − αI‖2 = ρ2

(
‖T‖2 − mα2

)
and utilizing the above equation in Eq (5.8), we obtain∫

N
ρ2 ‖T − αI‖2 =

m − 1
m

∫
N

(divu)2
−

∫
N

Ric (u,u) .

Using inequality (5.4) in the above equation, we get∫
N
ρ2 ‖T − αI‖2 ≤ 0,

which gives ρ2 ‖T − αI‖2 = 0. However, the support ρ , 0 on connected N implies

T = αI,

and as in the proof of Theorem 2, we realize that α is a constant, and by Eq (2.2), the curvature tensor
of N is given by

R (E, F) G = α2 {g (F,G) E − g (E,G) F} , E, F,G ∈ Ψ (N) ,

with constant α , 0 as there are no compact minimal hypersurfaces in the Euclidean space. Hence, N
is isometric to S m

(
α2

)
.

Conversely, suppose N is isometric to S m
(
α2

)
. Then, the embedding ϕ : S m

(
α2

)
→ Rm+1 has shape

operator T = αI, unit normal ζ = −αϕ and support ρ = − 1
α
, 0. Moreover, the basic vector field u = 0.

Hence, the condition (5.4) vacuously holds as an equality. �

6. Conclusions

In Sections 3 and 4, we have employed a CLVF and a KGVF on a compact hypersurface N,
respectively, of the Euclidean space Rm+1 to find a characterization of spheres S m (c) and S 2n−1(c),
respectively. This further increases the scope of the study of hypersurfaces in the Euclidean space
Rm+1; for instance, one would be interested in analyzing the impact of the presence of a geodesic
vector field ξ on an orientable hypersurface N of the Euclidean space Rm+1 [10]. A vector field ξ on a
Riemannian manifold (N, g) is said to be a geodesic vector field, if its integral curves are geodesics of
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(N, g). A unit Killing vector field on (N, g) is a geodesic vector field, and the converse is not true. To
support this fact that a geodesic vector field need not be a KGVF, we need to introduce
a 3-dimensional trans-Sasakian manifold (N, g, φ, ζ, η, f , h), where (N, g) is a 3-dimensional
Riemannian manifold, φ is a (1, 1) tensor field, ζ is a unit vector field (called Reeb vector field), η is
1-form dual to ζ, and f , h are smooth functions on M satisfying [1]

φ2 = −I + η ⊗ ζ, φ (ζ) = 0, η ◦ φ = 0, g (φE, φF) = g (E, F) − η (E) η (F)

and

∇Eζ = − fφE + h (E − η(E)ζ) ,
(∇Eφ) (F) = f (g (E, F) ξ − η (F) E) + h (g (φE, F) ξ − η (F) φE) ,

E, F ∈ Ψ(N). A trans-Sasakian manifold (N, g, φ, ζ, η, f , h) is said to be proper, if neither of the
functions f nor h are zero. It is easy to see that ∇ζζ = 0, that is, ζ is a geodesic vector field. However,
on a proper trans-Sasakian manifold (N, g, φ, ζ, η, f , h)(

£ζg
)

(E, F) = 2hg (φE, φF) , 0,

that is, ζ is not a Killing vector field. Hence, on a proper trans-Sasakian manifold (N, g, φ, ζ, η, f , h),
the Reeb vector field ζ is a geodesic vector field that is not a KGVF. Thus, a geodesic vector field being
a nontrivial generalization of a Killing vector field makes it a potential case for studying the impact of
the presence of a geodesic vector field on the geometry of an orientable hypersurface of the Euclidean
space Rm+1.
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