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Abstract: There are certain areas of science and technology, such as agriculture, ecology, and 

environmental studies, that emphasize designing competent sampling strategies. The ranked set 

schemes, particularly the neoteric ranked set sampling (NRSS), are one method that meets such 

objectives. The NRSS provides plans that incorporates expert knowledge while choosing samples, 

which is beneficial. This study proposes a novel scheme for creating dispersion charts based on NRSS. 

The proposed scheme aims to improve the accuracy of dispersion charts by reducing the impact of 

outliers and non-normality in data sets. As a highly effective method in estimating population 

parameters, NRSS is used to select samples from the data set. The proposed dispersion charts are 

assessed based on individual performance measure criteria at shifts of different magnitudes. The 

dispersion charts created using this new scheme are compared with traditional dispersion charts, and 

the results demonstrate that the proposed scheme produces charts with higher accuracy and robustness. 

The study highlights the potential benefits of using NRSS-based dispersion charts in various fields, 

including quality control, environmental monitoring, and process control. An actual data application 

from a non-isothermal continuous stirred tank chemical reactor model further validates the simulation 

results. 
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1. Introduction 

Statistical process control (SPC) employs a well-established tool known as a control chart to 

achieve the desired level of performance. Product quality is greatly affected by the variation observed 

in the production process over time. Control charts are used to properly control this variation and detect 

any assignable causes in a timely manner. These charts graphically display the monitoring process of 

a parameter related to a quality characteristic. Control charts are helpful in industrial statistics, as they 

help identify any assignable causes that may impact product quality during manufacturing. The main 

objective of a control chart is to promptly detect any assignable causes that lead to defective products. 

Control charts guarantee that the manufacturing process is in an in control (IC) state when there are no 

assignable causes and in an out-of-control (OC) state when there are, by monitoring any process 

discrepancies caused by assignable factors. 

Control charting techniques are powerful tools used for monitoring process means and dispersion 

within the framework of a statistical process control (SPC) [1]. The basic Shewhart charts are effective 

tools for fault detection in the process and have undergone various modifications over time to cater to 

changing demands and requirements. The most notable developments in control charts are the 

cumulative sum (CUSUM) chart (see [2]) and the exponentially weighted moving average (EWMA) 

chart (see [3]), both of which are memory-based control charts that incorporate current and past process 

data. In any manufacturing process, monitoring and stabilizing process variability are crucial before 

tracking the process location [4]. Different dispersion estimators are used to design variability control 

charts, depending on the nature and requirements of the process [5]. Abbas et al. [6] proposed efficient 

scheme charts to identify faults while monitoring process dispersion, which was later enhanced by 

CUSUM charts to detect changes in the dispersion parameter of industrial processes [7]. 

Selecting suitable sampling plans plays a vital role in achieving pre-specified goals, such as 

stabilizing the variation in the process. There are certain areas of science, such as agriculture, ecology, 

and environmental studies, where the focus is designing efficient sampling designs. Ranked set 

sampling (RSS) is one method that fulfills such objectives. Initially, simple random sampling (SRS) 

was good choice [8], but SRS assures that each selected sample adequately represents the whole 

population [9]. The cases where the population needed to be more efficiently represented the 

alternative sampling strategies such as RSS are used [10]. The SPC community designed control charts 

for RSS that shows an efficient performance for SRS based charts. Later, the extensions of RSS, such 

as the median ranked set sampling (MRSS) and the extreme ranked set sampling (ERSS), are 

introduced under different sampling environments [11]. The improved control charts for monitoring 

process mean and variation are designed after incorporating RSS, MRSS, or ERSS schemes to enhance 

the quality of a product [12]. Abujiya and Muttlak [13] uncovered extensions of RSS and MRSS, such 

as double RSS (DRSS) and double MRSS (DMRSS) schemes, to increase the competence of the 

control chart while monitoring the process mean. Al-Nasser and Al-Rawwash [14] extended the idea 

of RSS and used a robust ranked set sampling scheme to design a location control chart. Al-Omari and 

Haq [15] offered a sampling plan named double L ranked set sampling for the estimation of the 

population mean. The new process dispersion chart based on RSS designed showed superiority over 
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the existing chart [16]. 

Recently, Zamanzade, and Al-Omari [17] introduced a new RSS scheme named neoteric ranked 

set sampling (NRSS) that effectively estimates the population's mean and variance. The technical 

difference between NRSS and RSS is the structure and preparation for a single k2 sample component. 

Once these arrangements are finalized, the k units are selected concerning their ranks to compose the 

final sample. The basic mathematical structure reveals that NRSS performs better than the RSS and 

SRS while estimating the mean and variance at different sample sizes, the association among main and 

auxiliary variables, and the probability distribution of different setups. Nawaz et al. [18] designed 

charts such as Shewhart, CUSUM, and EWMA using the NRSS to monitor process means. Koyuncu 

et al. [19] developed NRSS-based charts for monitoring means under bivariate unbalanced skewed 

distributions. Koyuncu and Karagoz [20] introduced a new structure of robust �̅�-chart and R-chart 

using NRSS. Another charting structure based on NRSS, CSCUSUM, and CSEWMA charts for the 

monitoring process efficiently outperformed the competing charts [21]. Recently, NRSS has been 

getting attention from the statistical process control community [22–25]. 

RSS method is a preferred sampling design where efficient sampling design are required. The 

RSS methods showed certain advantage over SRS method. The neoteric ranked set sampling (NRSS) 

is a recently developed method that comes up with a certain advantage over existing RSS methods, 

particularly to address the issue of variability in the process. The variation in any process is undeniable, 

where slight variations are acceptable, but significant variations are unacceptable in the process [26]. 

This work is significant because it proposes a new scheme for designing dispersion charts that are 

more accurate and informative compared to traditional charts and enable control structures to capture 

defects in the process parameter more accurately. The NRSS scheme allows researchers to collect more 

representative and precise data by selecting samples from subsets of a population that are more 

homogeneous than the population. The available work in the literature on NRSS is for monitoring 

process mean [18–25], while this study is more focused on the monitoring of process dispersion. This 

study considered different dispersion estimators (mean absolute deviation (MAD), interquartile range 

(IQR), range (R), and standard deviation (S)) and designed corresponding dispersion control charts 

established on (SRS, RSS, MRSS, ERSS, and NRSS) sampling schemes. The novelty of this work lies 

in its innovative approach to data analysis using NRSS and its potential to improve the accuracy and 

precision of dispersion charts. The designs of dispersion charts are assessed using individual 

performance measures of an average run length. The run length standard deviation is used for the run 

length distribution's scatteredness. The designed setting of dispersion charts is evaluated at different 

sample sizes (n=5 and 7) and under perfect correlation (ρ=1.0) and imperfect correlation (ρ=0.25, 0.5, 

and 0.75) ranking scenarios. 

The remaining article is arranged in the subsequent lines: Section 2 provides the basic description 

of ranked set schemes. Section 3 presents the definition and formulas for dispersion estimators based 

on NRSS, and Section 4 contains the general dispersion control charting structures under NRSS and 

the description of performance measures. Section 5 includes the efficiency assessment of proposed 

charts under the standard scenario. Section 6 discusses the actual data application, and finally, 

Section 7 provides conclusions and recommendations. 

2. Sampling schemes 

This section defines in detail the ranked set sampling schemes considered in this study for 
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monitoring process dispersion. The SRS scheme remains a simple choice for constructing and 

assessing control charts [27]. The sampling scheme of SRS is the most straightforward, assuming each 

sample contains an equal probability of occurrence. The precision of the estimates from SRS depends 

on the standard error of estimates, while the standard error is directly affected by the sample size. A 

new scheme of control charts designed for ranked set structures (i.e., RSS, MRSS, ERSS, and NRSS) 

shows superiority over the competing charts for SRS. The detailed description of ranked set schemes 

considered in this study is as follows. 

2.1. Ranked set sampling 

The idea of sampling design-based RSS, familiarized by McIntyre [10], is more efficient and 

effective than SRS regarding the standard error of estimates. The RSS schemes are of value when 

sampling designs needs careful consideration for sample selection, specifically, for the sciences such 

as agriculture, ecology, and environmental sciences where the focus is designing efficient sampling 

designs. For such a situation, the investigator needs to think beyond SRS and design more effective 

sampling schemes, such as the RSS schemes. The RSS sampling method is suitable for situations 

where units can be easily ranked based on their importance variable but are difficult and expensive to 

measure, as noted by Abujiya [28]. Under this scheme, sets are randomly selected, and the ranker 

should not be aware of the specific unit selected for a complete measurement. The RSS scheme 

considers the following pattern: 

• Select n2 elements randomly from under a study population built on the n sets of the n random 

samples. 

• The observations selected for each set are arranged to weigh based on either the researcher's 

expertise or auxiliary variable. 

• After the ranking process is finished, the observation with the lowest rank is selected from the first 

set. Then, the value with the second-lowest rank is chosen from the second set, and this process is 

repeated until the observation with the highest rank is selected from the last set, resulting in a total of 

n elements selected from n sets. 

• The process continues m times to obtain m*n observations through m cycles. 

Let Z(i:n)j (i=1,2,…,n; j=1,2,…,m) define as the ith sample having the size of n observations from 

the ith order statistic in the jth cycle. Takahashi and Wakimoto [29] proposed an unbiased estimator for 

the mean and the variance under a perfect ranking scenario: 

�̅�[𝑅𝑆𝑆]𝑗 =
1

𝑛
∑ 𝑍(𝑖:𝑛)𝑗

𝑛
𝑖=1  and 𝜎2

𝑍[𝑅𝑆𝑆]𝑗
=

1

𝑛2
∑ 𝜎2

𝑍(𝑖:𝑛)

𝑛
𝑖=1 ,               (1) 

where 𝜎2
𝑍(𝑖:𝑛)

= 𝐸{𝑍(𝑖:𝑛) − 𝐸(𝑍(𝑖:𝑛))}
2
 is the population variance under the ith order statistic having 

perfect ranking scenario. Dell and Clutter [29] estimated the mean and variance under the imperfect 

ranking scenario of RSS. Suppose (Z, Y) is the bivariate random sample, and the regression between Z 

and Y is linear. Let Y(i:n)j define as the auxiliary variable in the position of the ith unit of the ith ranked 

value in the jth cycle and Z(i:n)j as the variable of interest. Then, the relation between Z and Y is defined 

as: 

𝑍[𝑖:𝑛]𝑗 = 𝜇𝑧 + 𝜌
𝜎𝑍

𝜎𝑌
(𝑌[𝑖:𝑛]𝑗 − 𝜇𝑌) + 𝜖𝑖𝑗, i=1, 2, …, n; j=1, 2, …, m.          (2) 
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where μY, μZ, σY, and σZ are the means and standard deviations of Y and Z, while ∈𝑖𝑗 ~𝑁(0, 𝜎2
𝑍(1 −

𝜌2)), ρ is the correlation among auxiliary variable (Y) and primary variable (Z). Now, the unbiased 

estimators for the mean and variance for the leading variable Z that is ranked using the auxiliary 

variable Y are given as: 

�̅�[𝐼𝑅𝑆𝑆]𝑗 =
1

𝑛
∑ 𝑍(𝑖:𝑛)𝑗

𝑛
𝑖=1  and 𝜎2

𝑍[𝐼𝑅𝑆𝑆]𝑗
=

𝜎𝑍
2

𝑛
{(1 − 𝜌2) +

𝜌2

𝑛𝜎𝑌
2

∑ 𝜎2
𝑌(𝑖:𝑛)𝑗

𝑛
𝑖=1 },      (3) 

where 𝜎2
𝑌(𝑖:𝑛)

= 𝐸{𝑌(𝑖:𝑛) − 𝐸(𝑌(𝑖:𝑛))}
2
  is the population variance under an imperfect ranking 

scenario for the ith order statistic [30]. 

2.2. Median ranked set sampling 

Mostly ranking the units without error is more complicated than using an alternative sampling 

scheme of MRSS [31]. The ranked set scheme is an extension of RSS, and the procedure is as follows: 

• First n2 elements are randomly designated from the marked population and arranged like RSS. 

• Second the selected observations in each set use expert opinion or the auxiliary variable. 

• Now, for the case of odd observations, select the median observation element from each set. 

• For the case of even observations, select the n/2th element with the smallest ranked from the first 

n/2 sets, and from the unique n/2 groups, select (n + 2)/2th ranked component that results in n units. 

The process carried till m times to obtain m*n observations through m cycles. 

• In the case of an even number of observations, choose the element ranked as n/2th with the smallest 

rank from the first n/2th sets, and from the remaining n/2th sets, select the component ranked as 

(n+2)/2th, resulting in a total of n units. This process is repeated m times to obtain m*n observations 

over m cycles. 

2.3. Extreme ranked set sampling 

Another alternative scheme of RSS is the ERSS [32]. The layout to select samples using ERSS is 

simple and convenient in extreme units located quickly. In ERSS, select the lowermost ranked elements 

from the lower fraction of the n sets and the uppermost rated parts from an upper fraction of n sets. 

ERSS exhibits superior properties in terms of efficiency for estimating the mean when compared to 

both RSS and MRSS. The procedure to select samples using ERSS as follows: 

• From the population under study, select n2 elements and arrange them like RSS and then rank 

concerning auxiliary variable or personal judgment. 

• For the case of even samples, select the most minor ranked units from the first n/2 sets, and select 

the remaining n/2 sets largest ranked units. 

• In the case of an odd sample, the first (n-1)/2th smallest units are selected from the first (n-1)/2th 

elements, and the remaining (n-1)/2th largest units are selected from the remaining elements. The 

median of the sample is then computed from one of the sets. This process is repeated m times to obtain 

a total of n*m units. 

2.4. Neoteric ranked set sampling 

Zamanzade and Al-Omari [17] proposed an alternative to RSS, known as NRSS, in which all 
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collected elements are ranked within a single set instead of being split into n collections of n2 elements. 

The procedure of NRSS can be as follows: 

• Select n2 sampling units randomly from under study population. 

• Using visual assessment or any other method, rank the n2 sampling elements in increasing order 

of magnitude. 

• For odd sample size, the units selected as: [
𝑛+1

2
+ (𝑗 − 1)𝑛], i=1, 2, …, n and j = 1, 2, …, m. 

• For the case of even samples, select [𝑞 + (𝑗 − 1)𝑛]𝑡ℎ units, where 𝑞 =
𝑛

2
, if j is even and 𝑞 =

𝑛+2

2
, if j is odd, i=1, 2, …, n and j = 1, 2, …, m. 

• Finally, repeat these steps m times to obtain the n*m samples. 

Let 𝑢𝑠 𝑠𝑒𝑙𝑒𝑐𝑡 𝑍
[

𝑛+1

2
]
, 𝑍

[
3𝑛+1

2
]
, 𝑍

[
5𝑛+1

2
]
, …, 𝑍

[
2𝑛2−𝑛+1

2
]
 tangible measurement for odd sample size 

n, and select the case of even sample size 𝑍
[

𝑛+2

2
]
, 𝑍

[
3𝑛

2
]
, 𝑍

[
5𝑛+2

2
]
, …, 𝑍

[
2𝑛2+2

2
]
 units. The estimators of 

population mean and variance as: 

�̅�𝑁𝑅𝑆𝑆 = 
1

𝑛𝑚
∑ ∑ 𝑍[𝑞+(𝑖−1)𝑛]𝑗

𝑚
𝑗

𝑛
𝑖                         (4) 

for i = 1, 2,…,n and j = 1,2,…,m. 

𝑉𝑎𝑟(�̅�𝑁𝑅𝑆𝑆) =  
1

𝑛𝑚2
∑ 𝑉𝑎𝑟(𝑍[𝑞+(𝑖−1)𝑛]) +

2

𝑛𝑚2
∑ 𝐶𝑜𝑣(𝑍[𝑞+(𝑖−1)𝑛], 𝑍[𝑞+(𝑘−1)𝑛]).𝑛

𝑖<𝑘
𝑛
𝑖=1      (5) 

The SPC research community is actively designing charts constructed on ranked set scenarios due 

to its superiority over SRS [17,18,33–35]. 

3. Dispersion statistics 

This section provides a detailed description of different dispersion estimators to measure process 

variation. It is essential to evaluate the degree of variation in the process to know the scatteredness of 

estimated statistics from the center. There are numerous dispersion estimators used to design charting 

structures to evaluate process variability range (R), standard deviation (S), interquartile range (IQR), 

and median absolute deviation (MAD) [36]. The detail of dispersion statistics under the neoteric ranked 

set scheme is as below: 

3.1. Range(R) 

The range is the most straightforward dispersion statistic, computed by subtracting the minimum 

value from the maximum value. This type of dispersion statistic only relies on two extreme values. 

The mathematical expression for the jth observation is as follows: 

𝑅𝑁𝑅𝑆𝑆𝑗 =  𝑍(𝑛:𝑛)𝑗 − 𝑍(1:𝑛)𝑗 ,   𝑖 = 1, 2, … , 𝑛;  𝑗 = 1, 2, … , 𝑚             (6) 

where 𝑍(𝑛:𝑛)𝑗 and 𝑍(1:𝑛)𝑗  represent the nth order statistic for the subgroup of the size n in the jth cycle. 

3.2. Standard deviation (SD) 

The commonly used and widely acknowledged measure of dispersion is the standard deviation. 
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This dispersion estimator has wide applications compared to the range, as it considers all the values of 

the data set rather than the extreme ones. The mathematical form of the estimator is as under: 

𝑆𝑁𝑅𝑆𝑆𝑗 =  √
1

𝑛−1
∑ (𝑍(𝑖:𝑛)𝑗 − �̅�𝑗)2 𝑛

𝑖=1  ,   𝑖 = 1, 2, … , 𝑛;  𝑗 = 1, 2, … , 𝑚,          (7) 

where 𝑍(𝑖:𝑛)𝑗 represents the ith order statistic and �̅�𝑗  is the mean of a sample of size n in the jth cycle. 

3.3. Interquartile range (IQR) 

The IQR dispersion estimator deals with the extent of the middle 50% of the values in the data 

set. The IQR is computed by subtracting the lower quartile from the upper quartile of the desired data 

set. The mathematical form of the estimator is 

𝐼𝑄𝑅𝑁𝑅𝑆𝑆𝑗 =  
𝑍(0.75:𝑛)𝑗− 𝑍(0.25:𝑛)𝑗

1.34898
, 𝑖 = 1, 2, … , 𝑛; 𝑗 = 1, 2, … , 𝑚            (8) 

where 𝑍(0.75:𝑛)𝑗 and 𝑍(0.25:𝑛)𝑗 are the upper and lower quartiles of the ith order statistics in the jth 

cycle. 

3.4. Median absolute deviation (MAD) 

MAD is a type of robust estimator to measure process dispersion. The mathematical formation is 

under: 

𝑀𝐴𝐷𝑁𝑅𝑆𝑆𝑗 =  1.4826 𝑚𝑒𝑑 |𝑍(1;𝑛)𝑗 −  �̃�𝑗|, 𝑖 = 1, 2, … , 𝑛; 𝑗 = 1, 2, … , 𝑚        (9) 

where 𝑍(1;𝑛)𝑗 represents the ith order statistic and �̃�𝑗 as the median of the subgroup of size n in the 

jth cycle, the term “med” stands for the median. 

The dispersion estimators described above are frequently used in literature to design dispersion 

control charts [37]. 

4. Proposed dispersion control charts 

This segment describes the structure of dispersion charts under NRSS. This study's control charts 

for other ranked set schemes are designed on similar lines. Let samples from bivariate normal such as 

pair of observations (Zi, Yi), are obtained from an in-control process where Zi is the primary variable 

and Yi is the auxiliary variable. Dispersion estimators are computed using sample observations under 

NRSS. Suppose Η̂𝑁𝑅𝑆𝑆  is a dispersion statistic obtained using NRSS for Eqs (6)–(9), and then a 

pivotal quantity is defined as Τ𝑁𝑅𝑆𝑆 =
Η̂𝑁𝑅𝑆𝑆

𝜎
, where σ is the process standard deviation. The mean 

value of TNRSS under NRSS as 

𝐸(Τ𝑁𝑅𝑆𝑆) = 1

𝜎
𝐸(Η̂𝑁𝑅𝑆𝑆)                            (10) 

Suppose 𝐸(Τ𝑁𝑅𝑆𝑆) = 𝜐2 is the pre-specified value of a pre-specified sampling distribution; 𝜐2 

entirely depends upon sample size n. Then, the unbiased estimator for process standard deviation is 

defined as �̂� =
𝐸(Η̂𝑁𝑅𝑆𝑆)

𝜐2
. Then, the corresponding probability limits under NRSS are defined as 
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𝐿𝐶𝐿𝑁𝑅𝑆𝑆 = 𝑇𝑁𝑅𝑆𝑆(𝛼 2)⁄
𝐸(Η̂𝑁𝑅𝑆𝑆)

𝜐2
 with Pr(𝑇𝑁𝑅𝑆𝑆 ≤ 𝑇𝑁𝑅𝑆𝑆(𝛼 2)⁄ ) = 𝛼 2⁄           (11) 

𝑈𝐶𝐿𝑁𝑅𝑆𝑆 = 𝑇𝑁𝑅𝑆𝑆[1−𝛼 2]⁄
𝐸(Η̂𝑁𝑅𝑆𝑆)

𝜐2
 with Pr(𝑇𝑁𝑅𝑆𝑆 ≤ 𝑇𝑁𝑅𝑆𝑆[1−𝛼 2]⁄ ) = 1 − 𝛼 2⁄       (12) 

The quantile points (
𝛼

2
) 𝑡ℎ and (1 −

𝛼

2
) 𝑡ℎ depend upon the subgroup sample size for every 

calculated value of Η̂𝑁𝑅𝑆𝑆 [38]. 

5. Performance measures 

The evaluation of proposed dispersion charts is based on evaluation measures named the average 

run length (ARL) and for scatteredness of run length, the standard deviation of run length (SDRL), such 

as [39–42]. The ARL values represent the average number of units that must be observed before an 

out-of-control unit is detected. Two types of ARL values exist: the in-control ARL (ARL0) and the out-

of-control ARL (ARL1). ARL0 is the average number of samples plotted before a control chart signals 

an out-of-control condition under normal operating conditions. For example, if ARL0 = 1/α, where α 

is the false alarm rate (FAR), and α = 0.0027, then ARL0 = 1/0.0027 = 370. This means that an out-of-

control signal is detected after 370 samples, even if the investigation process is operating under normal 

conditions. The ARL1 value is the mean number of samples before out-of-control state detection in a 

process after shift. Let ARL1=
1

1−𝛽
 when 1-β is the probability to signal an out-of-control state, and 

if 1-β = 0.25, then ARL1 will be 1/0.25 = 4.0; this reflects that the designed chart required 4.0 units 

before the identification of shift in the process. The SDRL is the measure of scatteredness of the run 

length and is computed for SDRL0 (in-control situation) and SDRL1 for the unstable process mean, for 

example, [43–45]. 

6. Simulative setting 

A comprehensive simulation study is performed to evaluate the proposed charts under different 

sampling schemes. This study consists of four dispersion (i.e., MAD, IQR, R, S) charts designed and 

assessed based on altered selections of dispersion statistics described in Section 3. The different 

dispersion charts for this study for various sampling schemes as: for SRS as MAD_SRS, IQR_SRS, 

R_SRS, S_SRS charts; for RSS as MAD_RSS, IQR_RSS, R_RSS, S_RSS charts; for MRSS as 

MAD_MRSS, IQR_MRSS, R_MRSS, S_MRSS charts; for ERSS as MAD_ERSS, IQR_ERSS, R_ERSS, 

S_ERSS charts and for NRSS as MAD_NRSS, IQR_NRSS, R_NRSS, S_NRSS charts. For the case of a 

normal process, the corresponding coefficients and quantile points are calculated for the structure of 

control limits of different control charts. The dispersion statistics and corresponding control limits are 

computed independently after simulating the random samples (100,000) of size n=5 and seven from a 

bivariate normal distribution (BVN), i.e., 𝐵𝑉𝑁 [𝜇 = (
𝜇𝑋

𝜇𝑌
) , Σ = (

1 𝜌
𝜌 1

)]. The false alarm rate (α) is 

selected as 0.005 that, which results in an ARL0 of 200. The shifts of different magnitude range 

from 1.1–3.0 (i.e., λ=1.1, 1.2, 1.25, 1.3, 1.4, 1.5, 1.75, 2.0, 2.5, 3.0), and ARL1 values are computed at 

each shift. The manufacturing process is affirmed as the unstable process for the case when process 

standard deviation (σ) diverts from the in-control state, such as σI to σC, i.e., σC= λσI, while λ be the 

shift value arises in process standard deviation. For the in-control state λ=1, that means no shift in σI, 

indicating the stable state of the process dispersion, and whenever λ>1 represents an increase in the 

process dispersion (σI). The recital of the under-study charts is evaluated at various shift (λ) values for 

the case of perfect correlation (ρ=1) and the possibility of the imperfect correlation (ρ≠1) for RSS, 
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MRSS, ERSS and NRSS. We have selected different correlation coefficient values, 

as: ρ=0.0, 0.25, 0.5, 0.75, 1, along with various samples of size n=5 and 7. For the case when ρ=0.0, 

the ranked set samplings are essentially the same as SRS. The simulation results are obtained for every 

combination of n, ρ, and λ. 

7. Performance comparison 

We have performed extensive simulations to compare the performance of proposed and 

competing dispersion charts using different sampling schemes. Tables 1–4 present the ARL1 and SDRL1 

values using different sampling strategies at varying levels of n, ρ, and λ. The graphical representation 

for selected ARL values is also provided in Figures 1–5. The ARL values are plotted against λ for an 

improved pictorial evaluation. The main findings of the simulation study are as follows: 

(1) Let's assume ARL0=200, the ARL1 values decrease with the increase of shift (λ) values for 

sampling schemes used in this study. As the sample size increases, the ARL1 values decrease 

such as: for n=5 and λ=1.1, ARL1=126.8, while for n=7 and λ=1.1, ARL1=120.7 for MAD_SRS, 

for detail see Table 1. 

(2) As the values of correlation coefficient (ρ) increase, the ARL1 values decrease as: for MAD_RSS 

at ρ=0.25, λ=1.1 and n=5, the ARL1 values is 116.2 while at same λ and n, the ARL1 value at 

ρ=0.5 is 110.3, for detail see Table 1. The pattern is the same for other sampling schemes 

(MAD_MRSS, MAD_ERSS, and MAD_NRSS). This pattern is the same for the perfect ranking 

scenario (i.e., ρ=1.0). The simulation results also shows that for the case of ρ=1.0, MAD_RSS, 

MAD_MRSS, MAD_ERSS, and MAD_NRSS) charts show superior performance compared to 

imperfect ranking scenarios (ρ=0.25, 0.5, 0.75) i.e., for MAD_NRSS the ARL1=79.5 when ρ=1.0 

and (ARL1=110.9, ρ=0.25); (ARL1=103.0, ρ=0.5); (ARL1=95.0, ρ=0.75) (for detail see 

Table 1). 

(3) MAD_SRS chart shows inferior results compared to other charts (MAD_RSS, MAD_MRSS, 

MAD_ERSS, and MAD_NRSS) charts such as: MAD_SRS gives ARL1=71.8, while MAD_RSS 

gives ARL1=66.5, MAD_MRSS gives ARL1=70.2, MAD_ERSS gives ARL1=62.3, MAD_NRSS 

gives ARL1=58.4 at λ=1.1, ρ=0.25 and n=5) (for detail see Table 1). 

(4) The increase in n improves the recital of dispersion charts, such as: when n=5 and λ=1.1 

[(MAD_SRS; ARL1=126.8); (MAD_RSS; ARL1=116.2); (MAD_MRSS; ARL1=123.5); 

(MAD_ERSS; ARL1=114.0); (MAD_NRSS; ARL1=110.9)] while at n=7 and λ=1.1 [(MAD_SRS; 

ARL1=120.7); (MAD_RSS; ARL1=107.5); (MAD_MRSS; ARL1=118.7); (MAD_ERSS; 

ARL1=105.2); (MAD_NRSS; ARL1=102.8)] (for detail see Table 1). 

(5) The performance of IQR-Charts is slightly better than MAD-Charts for various ρ and n under 

SRS, RSS, MRSS, ERSS, and NRSS, such as at n=5, ρ=0.5 and λ=1.1 the ARL1 values for 

MAD_NRSS is 103.0 and the ARL1 value for IQR_NRSS is 97.0, which show the slight advantage 

of IQR_NRSS over MAD_NRSS (for detail see Tables 1 and 2).  

(6) The IQR_NRSS chart shows significant improvement as n increases, such as: for the perfect 

ranking scenario under NRSS when λ=1.1 and n=5, ARL1 =68.0, while for n=7, ARL1=59.0, 

indicating a 13.24% decrease in ARL1 value (for detail see Table 1). 

(7) The R-Charts and S-Charts have superior performance over MAD-Charts and IQR-Charts under 

SRS, RSS, MRSS, ERSS, and NRSS at different values of ρ and n (for detail see Tables 1–4). 
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(8) The magnitude of difference in ARL1 values for S-Charts under SRS, RSS, MRSS, ERSS, and NRSS is superior to MAD-Charts, IQR-Charts, and R-

Charts with the increase in sample size. For example, NRSS at ρ=1.0 and λ=1.1, there are 12.96%, 13.24%, 24.46%, and 43.43% decreases in ARL1 

values for MAD_NRSS, IQR_NRSS, R-NRSS, and S_NRSS charts respectively when sample size (n) increased from 5 to 7 (see Tables 1–4). 

Table 1. ARLs and SDRLs values for MAD- chart under different ranked set sampling schemes at ARL0=200. 

n=5 

Sampling 

Schemes 
SRS RSS MRSS 

ρ 0 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL ADRL ARL SDRL ARL SDRL ARL SDRL ARL ADRL 

1.1 126.8 123.2 116.2 113 110.3 107.7 102.8 106.8 95.3 93.9 123.5 122.1 119.8 116.1 115.8 113.4 108.8 104 

1.2 71.8 70.7 66.5 64.1 60.7 56.8 57.8 55.3 51.9 49.4 70.2 69.8 68.2 65.6 66.1 64.8 62.4 60.7 

1.25 57 56.6 50.8 49 46.1 44.7 44.3 42.7 40.3 38.3 54.9 52.3 52.4 50.6 50.1 49 47.8 46.2 

1.3 43.9 42.7 40.5 38.5 37.2 35.7 35.9 34 31.2 30.4 42.3 41 41.8 40.6 40.3 39.6 37.1 36 

1.4 28.2 27.8 26.4 25.7 24.5 23.4 21.7 20.8 19.2 18.1 27.2 26.8 26.6 25 25.2 24.4 22.2 21.3 

1.5 20.2 19.8 18.7 17.6 16.7 15.8 14.7 13.8 12.5 11.6 20.6 19.1 19.5 18.7 18 17.2 16.9 15.3 

1.75 10.2 9.5 9 8.3 8.4 8.1 7.2 7.9 6.5 5.5 10 9.3 9 8.2 8.1 8 7.1 6.4 

2 6.4 5.8 5.6 5.2 5.6 5 5.3 4.7 4.6 4.1 6 5.6 6 5.2 6.1 5.6 5.4 4.9 

2.5 3.5 3 3.1 2.8 3 2.5 3.1 2.5 2.6 2 3.5 3 3.3 2.8 3.3 2.8 3.2 2.7 

3 2.5 2 2.2 2.1 2.2 1.5 2.2 1.6 2 1.4 2.4 1.8 2.4 1.8 2.4 1.8 2.4 1.9 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL ADRL ARL SDRL ARL SDRL ARL SDRL ARL ADRL 

1.1 120.7 116.9 107.5 103.4 103.7 101 95.5 94.4 90.5 88 118.7 117.5 113.1 111.4 103.9 100.2 95.4 92.3 

1.2 66.9 64.1 60.9 58.1 57 55.8 51.6 49.9 40 39.7 65.3 64.4 62.4 60.3 58.9 56.2 50.8 48.3 

1.25 50.6 48.4 43.2 42.4 41 39.4 38.7 36.8 30.5 29.7 46.4 45.4 44.8 42.6 42.9 40.7 36.8 35.9 

1.3 39.8 38.5 31.3 30.5 30.2 29.6 28.1 26.4 23.3 21.1 34.5 33.1 33.8 31.8 32.9 31.8 29.3 27.8 

1.4 25.8 24.1 20 18.5 18.5 17.3 16.6 15.9 14.8 13 22.4 20.7 21.7 19.3 20.5 19.4 18.9 17 

1.5 17.9 16.4 14.4 13.5 13 11.9 12.3 11.7 8.8 8.2 15.3 14.2 14.7 13.7 13.6 12.9 12.7 11.4 

1.75 9.1 8.6 6.4 6 5.6 5 5.1 4.1 4.1 3.4 7.2 6.5 6.6 5.9 5.7 5.1 5.2 4.6 

2 5.6 4.2 4 3.4 3.6 2.9 3.7 3.1 2.7 2.2 4.5 4 4.1 3.6 4 3.8 4 3.4 

2.5 3.1 1.9 2.4 1.9 2.3 2 2.3 1.7 1.7 1.2 2.5 1.8 2.4 1.8 2.4 1.9 2.4 1.8 

3 1.8 1.2 1.7 1.1 1.6 1.1 1.7 1 1.4 0.7 1.9 1.2 1.8 1.2 1.9 1.2 1.8 1.2 

Continued on next page 
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n=5 

Sampling 

Schemes 
ERSS NRSS 

ρ 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL ADRL ARL SDRL ARL SDRL ARL SDRL ARL ADRL 

1.1 114 112.6 106.4 105.8 98.7 95.5 91.8 89.2 110.9 112.8 103 101.8 95 92.8 79.5 74.8 

1.2 62.3 60.6 59.4 58.1 49.6 47.2 42 41.4 58.4 57.8 56.1 54.9 52.6 51.3 35.3 34.2 

1.25 45 43.8 43 41.5 36.3 35.7 30.2 29.2 43 42.1 42.9 41.2 40.4 39.4 24.4 24.6 

1.3 37.2 36.5 35.7 34.2 28.9 27.4 24.5 21.2 36.2 35.7 35.9 33.9 33.6 32.9 17.2 18.7 

1.4 23.7 22.9 22 21.2 19.3 18.1 15.5 12.4 22.1 21.6 20.8 19.2 19.4 18 9.3 8.6 

1.5 16.6 15.1 15.1 13.8 13.2 12.1 10.1 8.9 15.7 14 13.8 11.9 12.8 11.9 6.1 5.2 

1.75 8.7 7.2 7.5 6.1 6.6 5.6 4.6 4 8.1 7.2 7.2 6.8 6.5 5.1 3.1 2.5 

2 6.3 5.1 5.6 4.1 4.3 3.7 2.9 2.3 5.6 4.8 5.4 5 4.9 4.4 1.9 1.3 

2.5 3.5 3 3 2.5 2.6 2 1.8 1.2 3.2 2.6 3.2 2.6 2.9 2.4 1.3 0.6 

3 2.6 2.1 2.4 1.8 2 1.4 1.5 0.8 2.3 1.7 2.4 1.9 2.1 1.6 1.1 0.3 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL ADRL ARL SDRL ARL SDRL ARL SDRL ARL ADRL 

1.1 105.2 104 98.9 95.5 92.5 88.9 82.6 81.4 102.8 104.9 99.5 95.1 91.3 90.7 69.2 67.8 

1.2 55.8 54 55.8 53.7 45.9 43 33.4 32.7 53.6 52.4 53.5 52.6 48.2 46.5 20.3 19.2 

1.25 42.3 41.7 39.7 37.2 33.8 31.8 24.4 22.8 41.8 40 39.1 38 36 35.5 12.6 11 

1.3 30.9 29.2 28.2 26.9 20.9 19.7 18.3 17.8 31.1 29.9 29.6 29.1 27.3 27.7 8.4 7.9 

1.4 19.4 18.1 16.9 14.4 14.7 12 11.2 9.7 19.9 18.8 18 17 16.3 15 4.8 4 

1.5 13.4 12.4 11.8 9 10.9 8.5 7.1 5.5 12.7 11.8 12.7 11.1 11.9 10.8 3.5 3 

1.75 5.5 4.2 4.9 3.5 4.2 3.6 3.1 2.4 6.7 6.4 6.5 5.7 5.7 5 1.4 1.8 

2 3.5 2.8 3.4 2.4 2.8 2.3 2 1.4 4.2 3.6 4.2 3.7 3.6 2.9 1.1 0.7 

2.5 2.1 1.9 2.1 1.9 1.7 1.1 1.4 0.9 2.5 1.9 2.4 1.8 2.2 1.6 1 0.2 

3 1.6 1.1 1.5 1.2 1.4 0.8 1.2 0.6 1.8 1.1 1.8 1.2 1.6 1 1 0.1 
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Table 2. ARLs and SDRLs values for IQR- chart under different ranked set sampling schemes at ARL0=200. 

n=5 

Sampling 

Schemes 
SRS RSS MRSS 

ρ 0 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 120.5 119.1 115 112.5 106.1 105.3 100.2 98 91 89 120.4 120.6 116.5 114.2 109.1 106.6 100 103.1 

1.2 64 62.7 62.5 60.8 57.7 55.4 51.7 50.9 43.6 41.2 62.3 60.8 60.9 60.7 54.4 53.9 50.1 48.3 

1.25 48.6 47.9 47.4 46.9 44.1 43.8 38.5 36.7 33.6 32.2 47.8 46.8 46.8 50.7 46 44.1 39.5 38.8 

1.3 38.6 37.2 36.4 34.8 34.9 33.6 27.1 26.2 25.6 24.8 38.1 37.6 37.6 38.5 34.1 33.6 30.2 29.9 

1.4 24 22.7 23 21.7 22.3 21.2 18.3 17.1 16 15.3 24.3 23.1 23.7 27.1 22.4 20.9 19.2 18.3 

1.5 16.9 15.7 16 15.5 15.8 15.8 13.3 12.5 11.4 10.8 17.6 15.2 17.8 16.8 16.1 15.8 14.2 13.1 

1.75 8.7 8 8.7 8.1 8.7 7.7 7.4 7.1 5.6 5 9.3 7.8 9.2 8.9 8.3 7.5 7.8 7.1 

2 5.6 4.9 5.3 4.8 5 4.5 4.4 3.8 3.6 2.9 5.9 5 5.5 5.2 5.4 4.9 5.8 5.4 

2.5 3.1 2.6 3.2 2.5 3.1 2.6 2.7 2.2 2.3 1.7 3.4 2.5 3.1 2.5 3.1 2.6 3.2 2.5 

3 2.2 1.7 2.3 1.6 2.3 1.7 2.1 1.5 1.7 1 2.3 1.6 2.4 1.8 2.3 1.8 2.3 1.7 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 115.9 113.8 109.5 107 101.6 98 98.3 91.1 84.4 82.9 112 110.4 110.9 107.2 103.1 113.3 93.1 109.4 

1.2 61.3 59.5 58.5 56.5 55.1 53.4 48.6 49.2 37.5 36 61.7 59 58.5 57.7 50.8 48.4 46.1 45.2 

1.25 45.2 42.8 43.2 41.1 37.6 35.4 32.5 33.1 25.6 23.5 44.6 41.1 41.7 40.3 38.9 40.2 37.2 35.8 

1.3 35.6 34.1 33.5 32.8 29.9 26.2 25 23.8 20.6 18.9 34.6 31.4 33.4 30.7 30.2 29.6 27.4 26.5 

1.4 22.6 20.9 20.4 19.9 17.8 15.5 15.6 15 12.9 10.2 20.5 17.3 19.8 17.8 17.9 17 17.8 16.7 

1.5 14.4 13.8 13.5 12.1 11.8 9.9 10 10.8 7.1 5.6 14 11.5 12.8 11.4 12.1 11.8 11.7 10.2 

1.75 7.5 6.9 6.1 5.8 5 4.3 4.6 4 2.8 2.3 6.8 5.1 6.5 5.1 5.6 5 5.6 5.1 

2 4.4 3.9 3.4 2.9 3.2 2.6 3 2.6 1.8 1.2 3.5 2.9 4.3 2.9 3.4 2.9 3.3 2.9 

2.5 2.9 1.6 2.1 1.5 2 1.4 1.8 1.3 1.3 0.6 2 1.4 2.2 1.4 2 1.4 2 1.4 

3 1.8 0.9 1.6 0.9 1.4 0.8 1.4 0.7 1.2 0.4 1.5 0.9 1.5 0.9 1.6 1 1.5 0.8 

Continued on next page 
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n=5 

Sampling 

Schemes 
ERSS NRSS 

ρ 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 113.5 112.5 103.7 101.1 92.6 90.8 83.7 80.2 101.2 101.1 97 96.4 90.6 89.4 68 66.7 

1.2 60.4 58.9 55.1 53.9 43.4 41.5 35.1 33.2 47.2 47.6 46.1 45.7 37.9 36.6 20.8 18.2 

1.25 41.4 40.6 42.9 41.3 35.7 34.9 28.9 27.5 33.2 32 32.2 31.5 26 25.2 14.1 13.5 

1.3 33.6 32.4 33 32 26.7 25 22.5 21.3 25.1 25 24.4 23.2 18.1 17.6 9 7.6 

1.4 21.8 20.5 21.6 20.6 18.3 17.1 14.1 13.5 14.6 14 13.9 12.5 10.7 10.2 5.4 3.8 

1.5 15 13.8 14.8 13.1 11.9 10.7 9 8.3 9.3 8.7 9 8.5 6.9 6.4 3.5 2.6 

1.75 8.4 7.9 8 7.5 6.7 6.1 4.2 3.5 4.5 4 4.3 3.8 3.3 2.7 1.9 1 

2 5.4 5.1 5.1 4.6 4 3.4 2.8 2.3 2.8 2.2 2.7 2.2 2.2 1.6 1.2 0.4 

2.5 3.2 2.7 2.9 2.4 2.5 1.8 1.7 1.1 1.7 1.1 1.7 1 1.4 0.8 1 0.1 

3 2.2 1.8 2.3 1.7 1.9 1.3 1.3 0.7 1.4 0.7 1.3 0.7 1.2 0.5 1 0.1 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 105.1 103.8 94.4 92.1 90.3 89.4 76.6 74.6 100.4 100.8 90.2 89.2 83.2 82.4 59 57.9 

1.2 53.3 51.5 41.7 39.1 41.1 40 30.3 28.9 46.2 45.4 39.9 38.8 34 32.5 16.4 14.1 

1.25 40.7 38.4 29.4 29.2 26.4 25.3 21.2 19.2 32.2 31.2 28.8 27 24.6 23.7 11.3 9.7 

1.3 29.9 28.7 23.4 21.4 19.6 18.5 16.8 14.1 24.2 26 22.6 21.9 18 17.7 7 5.5 

1.4 17.8 16.3 13.6 13.2 11 10.1 9.6 8.9 14.3 14.8 12.6 11.3 10.5 9.1 4.7 3.1 

1.5 12.2 12.1 9.6 8.6 7.6 7.4 5.4 4.8 10.2 9.8 8.7 8.1 7.6 7 2.8 1.6 

1.75 5.7 5.3 4.6 4 3.7 3.1 1.8 1.2 4.7 4.2 4 4 3.7 3.1 1.2 0.8 

2 3.6 2.9 3.1 2.5 2.4 1.8 1.4 0.7 3.1 2.5 2.9 2.3 2.4 1.8 1 0.3 

2.5 2 1.4 1.7 1.1 1.5 0.9 1.1 0.3 1.8 1.2 1.8 1.2 1.6 0.9 1 0.1 

3 1.5 0.8 1.5 0.8 1.2 0.6 1 0.2 1.4 0.8 1.4 0.8 1.3 0.6 1 0.1 
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Table 3. ARLs and SDRLs values for R- chart under different ranked set sampling schemes at ARL0=200. 

n=5 

Sampling 

Schemes 
SRS RSS MRSS 

ρ 0 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 112.4 109.8 106 103.8 97 95.4 93.6 92.7 80.1 78.1 109 105.8 103.3 100.3 101.7 101.1 90.6 93.6 

1.2 51.7 53.6 48.6 49.1 44 43.2 42.6 42.8 35 41.3 50 48.8 48.7 47.6 46.7 44.2 42.1 40.4 

1.25 40.2 38.6 37.5 34.8 32.4 35.4 30.5 30.2 26.7 28.4 39 38.9 36.3 32.3 35.2 34.8 30.9 29.8 

1.3 30.5 29.9 29.5 30.2 24.6 23.2 24 22.8 21.9 22.8 29.1 27.9 28 25.1 25.8 23.5 23.5 22.6 

1.4 19.5 19.2 17.3 16.5 17.2 15.9 17 17.1 15.5 16.9 18.6 16.9 18.5 16 18.5 17.7 17.8 15.4 

1.5 14 13.3 12.5 12.1 11.5 10.5 11.1 10.9 10.5 10.8 12.9 12.2 12.7 11.7 12.8 11.8 11.1 10.9 

1.75 6.8 6.3 6.3 5.8 5.8 5.5 5.7 5.5 5.6 5.2 6.4 6 7.2 6.4 6.8 6.4 5.9 5.1 

2 4.3 3.7 4 3.4 3.8 3.2 4 3.5 3.6 3.5 4 3.4 4.3 3.8 4.1 3.6 3.6 2.1 

2.5 2.5 1.9 2.4 1.7 2.2 1.6 2.3 1.8 2.3 1.6 2.3 1.7 2.5 1.9 2.5 1.9 2.1 1.9 

3 1.9 1.3 1.8 1.2 1.8 1.2 1.8 1.2 1.7 1 1.8 1.2 1.9 1.3 1.9 1.3 1 0.5 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 105.2 109 96.7 96.1 90.1 86.6 85.8 84.8 78.5 68.9 104.4 101.4 96.8 94.1 91.6 81.8 85.1 82.4 

1.2 48.7 47.1 45.3 45.7 42.2 40.2 39.7 37.6 33.9 31.5 48 47.5 45.9 43.9 43.4 39 38 37.9 

1.25 37.9 35.2 36.7 36.8 32 30 29.6 28.3 20.4 22.7 37.9 35.7 35.7 34.7 33.6 29.3 24.9 23.9 

1.3 28.1 26.3 26.9 26.1 24 23.1 21.5 20.8 14.8 17.4 27.1 25.2 27.4 26.9 23.9 21 19 18.9 

1.4 17.5 16.1 16.4 16.2 15.6 15.1 14.6 14.2 9.8 11.4 17.1 15.8 17.2 15.8 16.2 13.7 15.7 14.1 

1.5 12.3 11.7 11.7 11.2 10.7 10.1 9.8 8.6 8.4 7.3 12.3 10.5 11.5 10.8 10.4 9.1 10.7 10.2 

1.75 5.5 5.5 5.4 4.5 5.5 4.9 5.2 4.8 4.4 3.8 6.4 5.3 5.9 5.6 5.9 4.3 5.9 5.3 

2 3.6 3.1 3.4 2.8 3.4 2.7 3.4 2.8 2.9 2.4 3.9 2.8 3.7 3.1 3.9 2.6 3.5 3 

2.5 2.2 1.6 2.1 1.4 2 1.4 1.9 1.4 1.8 1.1 2.4 1.5 2.1 1.5 2.1 1.3 2.1 1.5 

3 1.7 1.1 1.6 0.9 1.5 0.8 1.5 0.8 1.4 0.7 1.8 1 1.6 1 1.5 0.9 1.6 1 

Continued on next page 
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n=5 

Sampling 

Schemes 
ERSS NRSS 

ρ 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 100.7 98.9 94 101.4 90.7 87.7 77.3 75.6 99.3 97.7 91.7 92.1 87.4 86 60.5 60.2 

1.2 44.7 42.5 41.6 51.4 41 40.9 33.2 31.4 42.4 41.9 39.4 38.3 36.3 36.1 17.3 16.6 

1.25 36.3 35.1 30.1 39.2 29.9 28 23.5 22 34.6 32.7 29.1 28.4 25.4 24.9 10.3 9.8 

1.3 27.9 26.5 22.7 28.3 23.2 21.7 18.7 15.6 25 23.5 21.5 20.2 19.8 17.5 7 6.5 

1.4 17.1 16.7 16.5 18.7 16.3 16 13.7 12.2 16.9 15.3 13.7 13.2 13.6 10.3 3.7 3.2 

1.5 11.7 11.5 10.7 13 9.9 9.7 8.3 7.7 10 9.3 8.8 8.2 6.9 6.3 2.4 1.8 

1.75 6.2 5.5 5.5 5.8 5.5 5.2 4.4 4.1 5.3 3.8 4.1 3.7 3.8 2.7 1.4 0.7 

2 4.1 3.7 3.7 3.5 3.5 3.1 2.8 2.2 3.7 2.1 2.6 2 2.2 1.6 1.1 0.3 

2.5 2.4 1.8 2 1.8 2.1 1.5 1.7 1.1 1.9 1.1 1.6 1 1.4 0.8 1 0.1 

3 1.9 1.3 1.7 1.3 1.6 0.9 1.3 0.7 1.4 0.7 1.3 0.7 1.2 0.5 1 0.1 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 93.5 92.2 86 84.6 80.4 78.5 70.2 68.6 88.1 78.7 78.4 73.5 74.1 72.2 45.7 40.1 

1.2 42.1 40.2 39.1 38.1 36.3 34.1 29.6 27.2 37.5 31.1 31.6 34.9 29.7 28 11.8 8.2 

1.25 33.9 31.5 29.2 27.6 27.1 25.6 18.1 17.6 27.6 26.3 25.9 24.3 21.9 19.5 7.1 4.6 

1.3 24.2 23.3 21.1 19.1 19.3 18.4 12.1 11.7 19.6 18.1 18.2 17.6 16.9 14.2 5.4 2.8 

1.4 15.7 15 14.5 13.4 12.4 11.9 8 8.1 11 9.6 10.4 9.9 9.9 7.2 2.9 1.3 

1.5 10.7 9.4 9.6 9.1 8 7.5 6.5 5.9 7.1 6.7 6.6 6.2 6 4.5 2 0.7 

1.75 5.4 5 5 4.5 3.8 3.2 3 2.5 3.3 2.8 3.1 2.6 2.5 1.9 1.1 0.2 

2 3.4 2.7 3 2.6 2.5 2 1.8 1.1 2.1 1.6 2 1.4 1.7 1 1 0.1 

2.5 2 1.4 1.8 1.2 1.5 0.8 1.3 0.6 1.4 0.7 1.3 0.7 1.1 0.5 1 0 

3 1.5 0.9 1.4 0.8 1.3 0.6 1.1 0.3 1.2 0.4 1.1 0.4 1.1 0.3 1 0.1 
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Table 4. ARLs and SDRLs values for S- chart under different ranked set sampling schemes at ARL0=200. 

n=5 

Sampling 

Schemes 
SRS RSS MRSS 

ρ 0 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 109.5 106.6 101.8 100 99.1 99 95.6 91.1 83.3 79.4 112 104.2 106.8 104.9 98.4 96.5 93.4 84.5 

1.2 43.3 42.4 42.8 43.7 42.1 40.7 39.5 40.3 33.5 32.1 44 43.5 45 43.2 41.5 45.9 38.3 40.9 

1.25 30 28.7 29.4 28.8 30.1 29.3 28.5 27.8 24.1 24.4 30.8 30 32.1 33 29.7 30 27.4 26.8 

1.3 22.8 21.9 21.7 20.7 22.1 21 20.7 20 16.8 15.2 23.1 23.8 23.8 23 21.1 22.1 20.6 19.6 

1.4 12.1 11.6 12.2 11.6 12.1 12.9 10.9 10.4 8.6 7.5 13.1 12 12.7 12.2 12.7 11.4 12.7 12.7 

1.5 9 8.6 8.5 7.8 8.3 7.7 7.4 7.5 5.7 5.2 9.1 8.9 8.5 8.8 8.3 7.5 8.2 7.7 

1.75 4.2 3.2 4 3.6 3.7 3.1 3.1 3 2.4 2.1 3.9 3.5 3.7 3.6 4 3.6 4.1 3.5 

2 3 2.1 2.6 2 2.5 2 2 1.8 1.8 1.4 2.6 2.1 2.7 2.1 2.4 1.8 2.5 1.9 

2.5 1.7 1 1.6 1 1.6 1 1.3 0.9 1.2 0.6 1.6 1 1.7 1.1 1.6 0.9 1.6 1 

3 1.4 0.6 1.3 0.6 1.3 0.6 1.1 0.6 1.1 0.4 1.3 0.6 1.3 0.6 1.3 0.6 1.3 0.6 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 98.6 97.5 91.2 90.5 87.2 81.6 82.4 93.7 75.5 75.2 95.8 95.5 90.7 88.5 88.4 90.2 83.5 89.7 

1.2 37.2 35.4 34 32.8 32.9 32.9 30.7 31.5 25.2 24 37.5 38.4 34.5 33.2 34.7 34.1 31.2 37.1 

1.25 26.4 25.8 22.7 22.8 22.1 21.1 20.1 19.4 17.5 15.9 25 24.1 23 23.3 23.7 23.5 22.1 22.9 

1.3 18.8 17.2 16.6 16 15.6 14.6 14 13.8 11.8 10.2 17.8 18.2 15.8 14.5 17 16 16.3 15.7 

1.4 10.9 8.7 9.5 8.2 8.8 8 7.8 7.5 6.1 5.5 9.3 9 9.1 7.7 9.1 8.7 9 9 

1.5 7.2 6.7 5.8 5 5.3 4.9 4.9 4.5 3.8 3.3 6 5.5 5.5 4.8 5.9 5.5 6.1 5.9 

1.75 3.6 3 2.7 2.2 2.7 2.1 2.4 1.9 1.9 1.2 2.8 2.3 2.7 2.1 2.9 2.2 2.9 2.3 

2 2.8 1.4 1.8 1.2 1.8 1.1 1.7 1 1.3 0.6 1.9 1.2 1.8 1.1 1.9 1.3 1.8 1.3 

2.5 1.3 0.6 1.3 0.6 1.3 0.5 1.2 0.4 1.1 0.3 1.3 0.7 1.3 0.6 1.3 0.6 1.3 0.6 

3 1.1 0.3 1.1 0.3 1.1 0.4 1.1 0.3 1 0.1 1.1 0.4 1.1 0.4 1.1 0.4 1.1 0.3 

Continued on next page 
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n=5 

Sampling 

Schemes 
ERSS NRSS 

ρ 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 98.9 97.6 99.3 98.4 85.6 84.4 71.4 68.2 96.9 96.3 90.4 90.3 80.7 80.8 57.1 56.2 

1.2 40.5 45 40.1 40.3 34.5 35.8 27 25.6 39.3 38.4 36.4 35.4 31.7 30.1 15.4 14.8 

1.25 28 31.6 28.4 30 24.3 23.3 18.3 17.6 29.7 28.7 27.3 26.7 23 22.4 9.4 8.9 

1.3 20.4 22.8 20.4 20 17.5 16.7 13.8 12.9 20 18.5 19.5 19 16.4 15.9 6.2 5.7 

1.4 11.6 12.9 12 11.3 9.1 8.9 6.4 6.1 11.2 11.8 11 10.5 9 8.6 3.3 2.8 

1.5 8.2 7.7 7.9 7.7 6.3 5.8 4.2 4 8 7.8 7.7 7.3 6 5.5 2.2 1.6 

1.75 4.1 3.8 3.8 3.1 3.7 2 2.3 1.7 4.1 3.6 3.7 3.2 3 2.4 1.3 0.6 

2 2.6 1.8 2.5 2 2.4 1.3 1.5 0.9 2.6 2 2.4 1.8 2 1.4 1.1 0.3 

2.5 1.6 0.9 1.5 0.9 1.6 0.7 1.2 0.4 1.6 1 1.6 0.9 1.4 0.7 1 0.1 

3 1.3 0.7 1.3 0.6 1.1 0.4 1.1 0.2 1.3 0.6 1.3 0.6 1.2 0.4 1 0 

n=7 

λ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1.1 88.1 85.4 80.4 78.1 70.5 69.3 51.7 50.6 82 80 75.5 74.7 64.3 64.5 32.3 31.6 

1.2 32.8 30.2 30.7 30.3 24.9 22.8 14.4 13.7 30.9 30.5 28.4 27 23 22.6 6.7 6 

1.25 20.8 18.4 19.4 19.8 15.8 14.7 9.4 8.4 19.9 18.1 19.8 18.3 15 14.6 3.9 3.4 

1.3 13.7 12.9 13.9 12.3 11.8 9.3 6.2 5.8 12.9 11.2 13.4 12.9 10.6 10.3 2.7 2.1 

1.4 7.6 7.3 7.7 7.2 6.5 4.9 3.4 2.7 7.4 7.2 7.1 6.5 5.9 5.3 1.6 1 

1.5 5.2 4.6 4.7 4.3 4 3 2.2 1.7 5 5.2 5.2 4.7 3.8 3.3 1.2 0.5 

1.75 2.7 2.1 2.4 1.9 2.4 1.3 1.3 0.6 2.7 2.2 2.6 2.1 2 1.5 1 0.1 

2 1.8 1.1 1.7 1.1 1.4 0.7 1.1 0.3 1.9 1.3 1.8 1.2 1.5 0.8 1 0 

2.5 1.3 0.6 1.2 0.5 1.1 0.3 1 0.1 1.3 0.6 1.7 0.6 1.1 0.4 1 0 

3 1.1 0.4 1.1 0.3 1 0.2 1 0 1.1 0.4 1.1 0.3 1 0.2 1 0 
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The simulation results described above indicate improvement in the performance of different 

dispersion (MAD, IQR, R, and S) charts under NRSS compared to charts designed using existing 

sampling schemes, as seen in detail in Tables 1–4. The outcomes of performance measures reflect that 

the MAD-Charts are inferior compared to other charts, while S-Charts showed superiority over other 

charts under different sampling schemes. The performance of IQR-Charts is slightly better than MAD-

Charts, while S-Charts have an advantage over R-Charts. The rise in sample size (n) impacts the recital 

of different dispersion charts and significantly decreases the ARL1 values significantly, for detail see 

Tables 1–4. The performance of varying dispersion (MAD, IQR, R, S) charts is on the lower side for 

SRS, while their performance is efficient for NRSS. The ranked set scheme of RSS has an advantage 

over MRSS, while NRSS showed better performance than ERSS. Among the ranked set schemes, MRSS 

gives inferior results for different dispersion charts, while ERSS performs better than RSS. In this study, 

among all sampling schemes, NRSS is revealed to be the best for the monitoring of process variation.  

The dispersion charts under a perfect ranking scenario (ρ=1) provide efficient results compared 

to imperfect ranking scenarios (ρ=0.25, 0.5, 0.75). The changes in sample size (n) also have an impact 

on the performance of different dispersion charts under different ranking scenarios 

(ρ=0.25,0.5,0.75,1.0). The simulation results conclude that when n=7, S_NRSS charts have superiority 

over all the other charts for perfect and imperfect ranking scenarios. 

We have also presented the ARL1 values graphically for different dispersion (MAD, IQR, R, and 

S) charts using SRS, RSS, MRSS, ERSS, and NRSS at a fixed ARL0=200, for detail see Figures 1–5. The 

ARL1 values are plotted on the y-axis against different shifts (λ) plotted on the x-axis. Figure 1 presents 

the ARL1 comparison of the MAD-Chart for different sampling structures considered in this study 

under a perfect ranking scenario (ρ=1.0). The curve under NRSS (the green line) is on the lower side, 

indicating the superiority of MAD_NRSS over MAD_SRS, MAD_RSS, MAD_MRSS, and 

MAD_ERSS charts. The magnitude of the difference is small when n=5 (ss Figure 1(a)), while this 

difference is high when n=7 (see Figure 1(b)), particularly when λ=1.2, 1.25, and 1.3. Figure 2 presents 

the ARL1 values for IQR-Charts using different sampling schemes under a perfect ranking scenario. 

The pattern and magnitude of the difference are almost the same with MAD-Charts with a slight 

variation that indicates the superiority of IQR_NRSS chart over IQR_SRS, IQR_RSS, IQR_MRSS, 

and IQR_ERSS charts (see Figures 2). 

 

Figure 1. ARL curves MAD-chart under different sampling schemes for (a) n=5; (b) n=7 

at ARL0=200 and ρ=1.0. 

0
20

40
60

80
10

0
12

0

a

A
R

L

1.1 1.2 1.25 1.3 1.4 1.5 1.75 2

SRS

MRSS
RSS
ERSS

NRSS

0
20

40
60

80
10

0
12

0

b

A
R

L

1.1 1.2 1.25 1.3 1.4 1.5 1.75 2

SRS

MRSS
RSS
ERSS

NRSS



18014 

AIMS Mathematics  Volume 8, Issue 8, 17996–18020. 

 

Figure 2. ARL curves IQR-Chart under different sampling schemes for (a) n=5; (b) n=7 

at ARL0=200 and ρ=1.0. 

Figure 3 displays the ARL1 values for R-Charts using different sampling schemes under a perfect 

ranking scenario; similarly, the performance of the R_NRSS chart is best compared to R_SRS, R_RSS, 

R_MRSS, R_ERSS, and R_NRSS charts. Figure 4 comes up with the same line pattern reflecting the 

best performance of the S_NRSS chart under a perfect ranking scenario. Figure 5 presents the ARL1 

values of different dispersion (MAD_NRSS, IQR_NRSS, R_NRSS and S_NRSS) charts using NRSS 

when (ρ=1.0) and n=5 and 7. Figure 5(a) reflects that the IQR_NRSS has a slight advantage over the 

MAD_NRSS chart, while the R_NRSS and S_NRSS charts show almost equivalent performance. 

Figure 5(b) demonstrates the dominance of the S_NRSS chart above the rest of the charts here with a 

significant magnitude of difference. Figure 6 present the ARL1 comparison of different dispersion 

control charts under RSS at different level of correlation coefficients ((a) ρ=0.25; (b) ρ=0.50; (c) 

ρ=0.75; (d) ρ=1.0). The curves on the lower side indicate the improved detection ability of the control 

chart, such as the green curve representing S_RSS chart is on the lower side among all indicating the 

most efficient chart. The graphical display concludes with the recommendation of the S_NRSS chart 

under a perfect ranking scenario. 

 

Figure 3. ARL curves R-chart under different sampling schemes for (a) n=5; (b) n=7 at 

ARL0=200 and ρ=1.0. 
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Figure 4. ARL curves S-chart under different sampling schemes for (a) n=5; (b) n=7 at 

ARL0=200 and ρ=1.0. 

 

Figure 5. ARL curves of different dispersion charts under NRSS for (a) n=5; (b) n=7 at 

ARL0=200 and ρ=1.0. 

 

Figure 6. ARL curves of different dispersion charts under RSS for (a) ρ=0.25; (b) ρ=0.50; 

(c) ρ=0.75 and (d) ρ=1.0. 
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8. Case study 

To validate the dispersion charts for ranked set schemes [46] dataset of a non-isothermal 

continuous stirred tank chemical reactor (CSTR) process was used. The dataset was comprised of 1024 

observations collected over a period of 30 seconds and contained nine variables, with details available 

in [47]. The CSTR process data is widely employed as a benchmark for fault detection and diagnosis. 

This study focused on Z as the study variable (CAS, inlet concentration of solvent flow in mole/m3) 

and Y as the auxiliary variable (FS, solvent flow rate in m3/min). However, the dataset was insufficient 

to conduct ranked set schemes, so the parameters (mean, standard deviations, and correlation) of the 

two variables were normalized and utilized to generate a similar bivariate dataset, as shown in Table 5. 

First, we generate 100 subsamples of size n2=25 from a bivariate normal distribution using the 

descriptive measures presented in Table 5, when the process is under in-control state. 

The control limits are computed when the process is under an in-control state for the most efficient 

(S_ERSS and S_NRSS) charts as declared in simulation study. The control limits for these charts under 

ERSS and NRSS are shown in Figure 7. Now for the case of a stable process, control limits of S_ERSS 

and S_NRSS charts are computed. These control limits are further used for the next 50 subsamples of 

size n2=25 when a shift of 1.3 is introduced in process standard deviation (i.e., σC= λσI; λ=1.3). The 

dispersion statistics are computed for 150 subsamples (first 100 in-control and last 50 out-of-control) 

under ERSS and NRSS schemes (see Figure 7). The plotted dispersion statistics in Figure 7 indicate 

that S_NRSS chart signals more out-of-control points (i.e., 7 spotted with red dots) than that of 

S_ERSS chart (i.e., 3 spotted with red dots). These findings are the same as we have in simulation 

study defined in Section 5. The simulative and real data case study results revealed that the dispersion 

charts under NRSS are beneficial for the detection of the faults in manufacturing process compared to 

dispersion charts under SRS or other RSS schemes in this study. 

Table 5. Descriptive statistics of CAS (inlet concentration of solvent flow) and FS (flow 

rate of the solvent). 

CAS FS 

Mean 0.9027 Mean 0.1013 

Standard Error 0.0035 Standard 0.0015 

Median 0.9032 Median 0.1042 

Standard deviation 0.1120 Standard 0.0482 

Kurtosis –0.1783 Kurtosis –0.0785 

Skewness –0.0875 Skewness –0.0621 

Range 0.6291 Range 0.2768 

Minimum 0.5710 Minimum –0.0356 

Maximum 1.2002 Maximum 0.2412 

Q1 0.8312 Q1 0.0699 

Q3 0.9745 Q3 0.1336 

W statistic (Shapiro-Wilk normality test) 0.9985 W statistic (Shapiro-Wilk normality test) 0.9975 

p-value 0.1658 p-value 0.1260 
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Figure 7. Dispersion control charts under NRSS using CSTR data. 

9. Conclusions and recommendations 

This study presents different dispersion (MAD, IQR, R, and S) charts using SRS, RSS, MRSS, 

ERSS, and NRSS under perfect (ρ=1.0) and imperfect (ρ=0.25, 0.5 and 0.75) ranking. After these 

settings, sample sizes n=5 and 7 are generated from the bivariate normal process. The performance of 

the proposed dispersion charts is evaluated at different shifts (λ=1.1–3.0) using various sampling 

schemes at a fixed ARL0 of 200. The ARL1 values are obtained at each shift (λ) value under different 

sampling schemes taking ρ=0.0, 0.25, 0.5, 0.75 and 1.0, and the results are presented in tables and 

graphs. 

The ARL1 values decrease with the rise in shift (λ), sample size (n), and correlation coefficient (ρ) 

values for all dispersion charts. The dispersion charts designed for ranked set sampling performed 

efficiently under perfect ranking scenarios compared to imperfect ranking scenarios. Among the 

ranked set sampling schemes in this study, the NRSS is more efficient for both perfect and imperfect 

ranking scenarios. The simulative and case study findings conclude that under NRSS dispersion charts 

performed efficiently at different ρ. 

In contrast, the S_NRSS chart under a perfect ranking scenario (ρ=1.0) outperforms other 

dispersion charts in this study. The designed dispersion estimators under NRSS can be extended for 

the case of different memory-type dispersion charts. The research idea in this study can also be 

prolonged with multivariate charts. 
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