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1. Introduction

The choice of certain fractional operator in modeling real world problems is always of interest
to many authors working the filed of fractional calculus and its applications. The authors in [1],
have shown how suitable fractional formulations are really extensions of the integer order definitions
currently used in signal processing. The recent works [2-9] reflect several theoretical aspects and
applications about types of fractional operators and their possible applying. For example, the
reference [5] deals with the W-Hilfer case and the articles [7, 8] deal with the ¥-Caputo and Caputo
operators, respectively.

The investigation of positive solutions of differential equations is vital due to their presence
naturally when we model some real applications appearing in economics, physics, engineering and
biology. As a generalization to the ordinary derivative calculus, the theory of fractional calculus
appeared and started to develop since 1695 (see [10-12]). Since that date, many authors have
authored several works to investigate qualitatively the positive attributes of FDE solutions [13, 14].
Part of the studies have been conducted exclusively on investigating the existence of solutions
of problems using Caputo and generalized Caputo fractional derivatives (CFD). Indeed, Y-Caputo
derivatives (W-CFD) have been considered. Of special interest is the logarithmic case kernel which is
called Hadamard (see [15, 16, 20,25, 33]).

A pantograph is a mechanical linkage system consisting of four bars of equal length hinged at their
ends. The equations that describe the motion of a pantograph are based on the principle of similar
triangles. These equations determine the scaling factor or the relationship between the lengths of the
bars and the size of the image produced. The equations are usually derived using trigonometry and
vector algebra and they take into account the angles formed between the bars and the lengths of the
individual bars. The goal of the equations is to determine the path of the stylus (or the end of the
fourth bar) given the movement of the original object being traced, see for instance [17-19,21-23] and
the references therein.

Exclusively, the authors in [24], for 1 < @ < 2, and €D is the usual CFD, examine the uniqueness
and existence of the PS of the following FDE

Dz (1) = f(t,2(1)), 0 <t < 1,
z(0)=0, 7 (0)=6> 0,

where f € C ([0, 1] X [0, 00),[0, 00)). By utilizing ULS technique and FPTs, the authors in [25] got
positive results. The novelty in this work is to generalize the results in [25] by utilizing the so-called
Y-CFD. The Caputo Hadamard fractional derivatives fall within this class of operators by taking ‘¥'(z) =
In ¢. Therefore, the idea of the pantograph is to be considered more generally. In fact, our real concern
in this paper is to deal with the problems of PS to pantograph FDEs. It is worth to mentioning that the
above works have been motivated and inspired by the papers [26-37].

Our main concern in this work is to deal with the PS of the below pantograph FDE:

{ DI o) = F (1, 91, ¢ (€ + 9m) + DTG, ¢ (€ + Om)), n € [6,T1, (1.1)

¢ =1 >0¢" () = >0,
where ¢ € (0,Z), ¢ (L(1+ ) = ¢o > 0, DY is W-CFD of order 1 < @ < 2, G.F : [6,T] X

[0, 0) X [0, 00) — [0, 00) are continuous functions (CFs), G is non-decreasing on ¢ and u, > G(1, ¢y).
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By applying the Riemann-Liouville fractional integral with respect to the function ¥ to (1.1), we
transform it to an equivalent integral equation on which we utilize ULS and SFPT, BFPT to prove the
existence and uniqueness of the PS.

Our manuscript is to be divided as follows. Section 2 includes some key concepts, definitions,
lemmas and theories that will be used in proving the main results. Section 3 will be devoted to our
theoretical main results. Our main results generale those obtained in [24,25]. In Section 4, we shall
give an illustrative example. Section 5 includes our conclusions.

2. Essential preliminaries

The basic tools to be presented in this section can be recalled from [10,12-14,30-33,38,39], where
more details can be found.

Let Y : [¢y,{,] — R be an increasing with ¥'(n7) > 0, Vn. The symbol Y = C ([£, T ], R) represents
the Banach space of CFs ¢ : [£,7 ] — R by norm ||@|| = sup{|¢(n)| : n € [£, T ]}.

We define A={pcY:¢d(n) >0, nel[l, 7]} subset of Y consisting of all positive functions in Y.
Suppose %y, fi, € R* with 7, > #i,. For any ¢, y € [#, h,], we associate the lower-control function

L('], ¢7X) = lnf{T(r” U’/’t) : ¢ Sv< hZ,X Slu < hz},
and the upper-control function
U@, ¢,x) =sup{F (p,v,p) : 1y v <, fy <p<yl.

The function ¥ was defined above in Section 1. On the arguments ¢, y, L and U are monotonous
non-decreasing and

L, x)<F (1,0, x) U@, ¢,x).

Definition 2.1. [10, 12, 39] For a function ¢ : [0,+c0) — R, the Riemann-Liouville fractional
integral (RLFI) of order a > 0 is defined as

1 17
1“¢(n)=m fo (- 9" $(s)ds

where the Euler gamma function I is given by

I'a) = f e dn.
0
Definition 2.2. [10, 12,39] The Y-RLFI of order a > 0 fora CF ¢ : [, T ] — R is defined as

(Y () — P (s)*!
¢ I'(a)

I = W’ () (s)ds.

Definition 2.3. [10, 12,39] The CFD of order a > 0 for a ¢ : [0, +o00) — R is intended by

1

D¢ (n) = o f; (-9 "1™ (s)ds, n—1 <a<n, neN.

I'(n
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Definition 2.4. [10, 12,39] The Y-CFD of order a > 0 for a ¢ : [£,T ] — R is defined by

_ n—a—1

DF o) = €

n o_( 1 4\
whereaq,—(q,,—(md—n) ,neN,

Lemma 2.1. []10] Suppose q,£ > 0 and ¢ € C([{,h],R). Then, Vi € [{,#] and by assuming F,(n) =
Y(n) — Y(£), we have

o DTV o(0) = ¢(0),
o ITYF )™ = iam(Felp)™™,

~ T(t+q)
I'(6)

o DFY(Fm)™" = 75 (Fm)",
o DY (F () =0, ke{0,...,n—1}, neN, ge (n—1,n.

Lemma 2.2. [10,32] Letn—1<a; <n,a, >0, £ >0, ¢ € L(,T), Z)‘;l';\ygb € L(¢,T). Then, the

differential equation
Dy =0

has the unique solution
$() = wo +wi (F () =¥ (D) + wo (P () =¥ (O + -+ wyy (P (1) = ¥ (0)"

and
D e () = ¢ () + wo +wi (P () =P () + w2 (P () = ¥ (0)°

+ot wn (P () =P ()
withw, €R, €=0,1,...,n— 1. Furthermore,

DI o) = ¢(n)

and
I?I;TI?2;T¢(U) — If;z;‘{’]'?1;‘1’¢(n) — I?1+02;T¢(77).
Lemma 2.3. Let ¢ € C' ([£,T]), ¢¥ and % exist. Then, ¢ is a solution of (1.1) if and only if

7
¢ () =1+ (2 = G (L, 00)) (Y () =¥ (O) + fg G(s,0(L+ D)V () ds

1 1
+ f (P () =¥ ()" F (s, 8(5), $(£ + 9)Y' (5) ds. (2.1)
') J,
Proof. Let ¢ be a solution of (1.1). Then, we have
(2.2)

IF*DF e () = 17" (F (. (). (€ + ) + DF G (.6 (L +9m))), L << T

From Lemma 2.2, we got
Volume 8, Issue 10, 23032-23045.
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¢ () — () = §'(0) (¥ () — ¥ (0)
= I3V DG (1, ¢ (€ + 9m) + T3 F (1, $), ¢ (€ + 9m))
= 11y DG (. ¢ (€ + 9m) + I7F (1, $(m), ¢ (£ + )
=Ic(G . ¢ (L+9m) — G (L, ) + IV Fn,¢(n), ¢ (£ + )

7
= fg G (5,0 (C+T9) Y (9)ds — G(L, ¢o) (¥ () — ¥ (0))

1 g - ,
) f (¥ () =¥ ()™ F (s, 8(5), oL + F)Y' (5) ds, (2.3)
¢
The converse can be proven straightforward as well. O

In what follows, we recall the FPTs that will be used to prove the uniqueness and existence of PS
for Eq (1.1).

Definition 2.5. Let (Y, ||.||) be a Banach space. Then, a mapping ® : Y — Y is called contraction. If
there is a l € (0, 1) such that for every ¢,y € Y, ® we have

10¢ — Oxll < Il — xIl -
Theorem 2.1. (BFPT [38]) Let Q+ () be a closed convex subset of a Banach space Y and ® : Q — Q
be a contraction mapping. Then, there is a unique ¢ € Q with O¢ = ¢.

Theorem 2.2. (BFPT [38]) Let Q+ 0 be a closed convex subset of a Banach space Y and ® : Q — Q
be a continuous compact operator. So, ® has a fixed point in Q.

3. Main results

In this section, we present the results of the existence of FDE (1.1). We also provide the necessary
hypotheses for the uniqueness of (1.1).
We set the operator ® : A — Y by inversion Eq (2.1) and then apply SFPT

7
(©¢) (1) = 1 + (2 = G (£, ¢0)) (¥ (i) =¥ (0)) + f[ G (5,0 (L+ D)V (s)ds

1
+ _
I'(e)
where the fixed point is needed to fulfill the identity operator equation ¢ = ¢.

For the next step of our main results, the following forms are adopted.
(Z1) Let ¢, 9" € A, as well as fi; < ¢p.(7) < ¢*(n) < hy,

{ DY ¢ () — DY G (. ¢* (€ + D)) = U, 6" (). 67(€ + D),
Z)?;‘P¢*(n) — Z)?_l;‘yg (n, (€ + Im)) < L(n, ¢.(m), p..(€ + Im)),

7
f W) =¥ () F(s,8(5), p(€ + 9NV (5)ds, n e [6,T]  (3.1)
4

(3.2)

for any n € [£,7T].
(22) Forn € [¢,7 ] and ¢, 2, x1,x2 € Y, there exist 51,5, 53 > 0 such that

1G(1,x1) = G, 0| < Billxr — ¢l (3.3)
IF (. x1.x2) = F (0, 61, 92)| < Ballx1 — il + B3 lya — ¢l
For (1.1), the functions ¢* and ¢, are known as the ULS.
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Theorem 3.1. If (X1) is satisfied, FDE (1.1) posses at least one solution ¢ € Y and fulfills ¢.(n) <
() < ¢"(m,n € [L,T].

Proof. Set Q ={¢p € A: ¢.(n) < ¢p(n) < ¢*(n), n € [(,T]}. If we use the norm [|¢|| = max;erc.7 141,
we see that ||¢]| < #,. So, we deduce that Q is a convex and closed, bounded subset of Y. Moreover,
the functions G and ¥ being CF implies that ®, marked by (3.1), isa CF on Q . If ¢ € Q, there exist
cF,cg > 0 constants as well as

max{¥ (n, (), ¢ (€ + ) :n € [(,T 1, ¢(n), ¢ (€ +In) < hy} < cr 3.4)

and
max{G(n, ¢ (L +9n) :n e[, T], ¢ +In) <hy} <cg. 3.5)

Then,

7
1(©¢) (M < |y + (2 = G (£, ¢0)) (Y () =¥ ()] + f[ |G (s, ¢ (€ + IV (s) ds

1

Jl
+ = f (W () = W ()" IF (5, $(5), (£ + )Y’ (5) d
I'a) J,

cr (W(T) =¥ ()"

S s+ i+ o+ ) (VD) = (0) + T o (3.6)
where |G (¢, ¢o)| = co. Thus,
1061 < 1 + (s + co + cg) (¥ (T) = W (o) + L XD = ¥OF 3.7

INa+1)

From which it follows that ®(Q) is uniformly bounded. The equicontinuity of ®(Q) is then can be
handled. Let ¢ € Qand £ <n; <1, <7 . Then,

(@) (1) = (©¢) (n2)| < (2 = G (£, ¢0)) (¥ (72) =¥ (1))

71 Up

+ G, (L +09) Y (s5)ds — GG, (L +099) Y (5)ds
¢ ¢

+

1 71
= f (¥ (1) = ¥ ()" F (5, 9(5), p(L + D)V’ (5) ds
I'a) J,

172
(W (72) = ¥ ()" F(5,6(5), p(L + )V’ (5)ds

" G(s, (L +9s) VY (5)ds

m

(@ Jy

< (2 +co) (W () =¥ (1)) +

1 " a-1 _ _ a-1
*|r@ fg (o) - ¥ &)™ - () - ¥ ) )
XF (s, d(5), p(€ + 99))V' () ds|

72

—— | (Pn) =Y &) F(s 4(5), oL + I () ds
@) Jy,

+

< (12 + o+ ¢6) (¥ (1) = ¥ (7)) + = [(F (1) = ¥ () = (¥ () — ¥ (0)°].

[Na+1)
(3.8)
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The right-hand side of above inequality approaches to zero as 7, — 1,. As a consequence, ®(£2)
is equicontinuous. Therefore, the compactness of ® : Q — Y follows by Arzele-Ascoli theorem.
Finally, in order to employ SFPT, we need to prove that @(Q2) C Q. Let ¢ € Q. Then,

7]
(©¢) () = 1 + (2 = G (£, 60)) (¥ (1) = ¥ (0)) + f G(s,¢(L+09) Y (s)ds

T f (¥ () =¥ ()" F(5,8(5), (€ + )Y (5) ds

< 1ty + (a2 = G (6, d0)) (P () — W (0)) + f G (5,8 (€ +99) W' () ds
4
1 Ul
L f (¥ () =P ()" U(s, (), (L + DNP (5) ds
') J;
Ui
< i+ (12— G (€, 60)) (¥ () — P (0)) + f G (s, (C+89) W (5)ds

' s f (F () — ¥ ()" Uls, 6°(5), 6°(C + DN (5) ds
< ¢ (), (3.9)

and

Ul
(©¢) () = 1 + (2 = G (£, 40)) (¥ (1) = ¥ (0)) + f G(s,¢(L+T9) Y (s)ds

' f (F () — B ()" F (s, ¢(5), $(C + D)’ () s

> i+ (o — G (6, 60)) (¥ () — B (0)) + f G (s, x, (L+09) W (5)ds

' s f (F () — ¥ ()" L1, $(), (€ + 99’ () ds

> i+ (1o — G (6, 60)) (¥ () — B (0)) + f G (s, x, (L+09) W (5)ds
£

1 n
+ = f (¥ () — W ()" L, ¢.(5), ps (€ + 9)Y (5)ds
I'(a) J,

> ¢.(m). (3.10)

Consequently, ¢.(n7) < (©¢) (n) < ¢*(n7), n € [£,T ], that is, ©(Q) € Q. Hence,SFPT asserts that the
mapping O has at least one fixed point ¢ € Q. This means that FDE (1.1) admits at least one PS ¢ € Y

and ¢.(n) < é(n) < ¢"(n), n € [(,T]. O
Next, we adopt and offer a different set of uses for the above theorem.

Corollary 3.1. Suppose that CFs ¢y, ¢,, @3 and ¢, exist. So,

0<@i(m) <G, ¢(L +1n)) < a(n) < oo, (7,d(€ + 1)) € [£,T] X[0, +00),
M2 = @1(), po = @a(0), (3.11)
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and

0 < @3() < F (1, ¢(m), (£ + ) < @a(m) < 0, (11, 6(n), p(£ + I)) € [£,T1 X ([0, +00))*.  (3.12)
Then, the FDE (1.1) must have at least one PS ¢ € Y. Also,

p+ (2 — o1 (0)) (Y () =P () + fgn @19V (s)ds + I p3() < p()
<+ (2 = @a(0)) (P () — ¥ (0))
+ fg n eV (5)ds + I7 p4(n).
(3.13)

Proof. Starting from formula (3.12) and control function, we reach ¢3(n) < L(n,¢,x) < U, ¢, x) <
ws(m), (m, d(m), x (M) € [£, T ] X [h1, ho] X [fi1, ho]. We consider the equations

{ D) = o3(7) + Dy o1 (), $(0) = 1, ¢'(6) = pa, (3.14)
DFY o) = () + D7 o2 (), (0) = pur, ¢(0) = poo. '

Equation (3.14) is evidently equivalent to
7
¢(m) = 1 + (2 — 1 (0) (¥ (i) =¥ (0) + f (&)Y (5)ds + I77 p3(1p),
¢

7]
) = 1 + (a2 = 2(0) (¥ () =¥ () + f e (5)ds + T 0y().
4

So, the first part of (3.14) involves

7
() — 1 = (2 — 1 (D) ¥ (i =¥ (D)) - fg Q1Y (8)ds = T pa(n) < Ty (L(n, (), $(€ + Im)))
(3.15)

and the second part of (3.14) suggests

77
(D) — 1 = (2 = @2(O) (Y (i) =¥ (0)) - fg )Y (8)ds = Iy @) = Ty (U, ¢, (L + D).
(3.16)

Hence, both equations in (3.14) have ULS. Therefore, the FDE (1.1) has at least one solution ¢ € Y
fulfilling (3.13) when Theorem 3.1 is conducted. O

Corollary 3.2. Assume (3.11) is satisfied and 0 < o < () = limy e F (17, &, x) < 00 forn € [£, T ].
The FDE (1.1) must posses at least one PS ¢,y €Y.

Proof. If ¢,y > p > Othen O < |F(n,0,x) — ()| < o forany n € [£,7]. Hence, 0 < ¢(n) — 0 <
Fn,d,x) <o) +ofornge[f,7]and p < ¢,y < +oo. f max{F(n,¢,x) :n €[, T], oy <p}<v
then p(n) — o < F(m,0,x) < () + o +vforne[£,7]and 0 < ¢,y < +oo. By Corollary 3.1, the
FDE (1.1) has at least one PS ¢ € Y with

o -Y©)"
Ta+1)

7
i+ (2 = @1 () (¥ () = (0) + f[ PIY (s)ds + I () - < o)
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1
S+ =@ @)Y -YO)+ f[ @2(5)¥ (s)ds + T4 o)

(+ ¥ -Y)"
T(a+1) '

(3.17)

O

Corollary 3.3. If we assume that 0 < o < F (7, ¢(n), §(€ + 9n)) < v1d(n) + y20(£ + In) + n < oo for
ne€l,7]and o, n, y, and vy, > 0 constants. Then, FDE (1.1) admits at least one PS ¢ € C ([¢,d])
where & > £.

Proof. Consider the equation

{ Do) = DG (i, (€ + ) = Y1607 + Y29+ I) + 1, £ < < T, G18)
d() =1 >0, ¢'(0) =, >0, '

where ¢ (£ (1 + 1)) = ¢9 > 0. Equation (3.18) has a solution of the form:
U]
¢(m) =+ (w2 — G (€, ¢0)) (Y (n) — ¥ () + f G (5,0 (L+09) V' (s)ds

' s f (¥ (1) = ¥ (9)" (o) +720(C + Om) W () ds

= +(,Uz—Q(f,¢o))(‘1’(n)—‘1’(é’))+f G(5,0(5),0(L+Ts) VYV (s)ds
L@ -FO)"

f () =¥ ()" p()Y (s)ds

INa+1) F( )
F( ) f CHOEREO) S ! O + 9s5)¥Y (s)ds. (3.19)
For w a positive constant, and @ € (0, 1), there exists 6 > £ such that 0 < W <w<1land
Y () -¥Y ()
w>(1-o)! (,11 + (uy + o+ cg) (P () = (0) + n( ;() " 1)( ) . (3.20)
a

Then,if £ <n <9,theset B, ={p Y :|p(n)| < w, € <n < d}isaclosed, convex and bounded subset
of C ([£, 6]). The mapping © : B, — B, reported as
7
(O¢) () = 1 + (2 — G (£, 90)) (¥ (7) =¥ () + f G (5,0 (L +099) V' (5)ds
¢

n(¥ @) - ¥WO)"
T(a+1) T(a)

f (¥ () — ¥ (s)) 1¢(€+ﬁs)‘1” (s)ds, (3.21)

7
(‘I’ () =¥ () gV (5)ds

F()

is compact with the same approach as in the proof of Theorem 3.1. With same way,

n¥ (@) -Y )" . 1 +y2) (P (T) =Y ()
C(a+1) [(a+1)

llgll .
(3.22)

[©¢) ()] < 1 + (2 + co + ) (Y (T) =¥ (0) +

AIMS Mathematics Volume 8, Issue 10, 23032-23045.
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Now, for ¢ € B, we have
(©p) I <1 -w)w+ow=w

and hence ||®¢|| < w. We conclude, the SFPT emphasize that ® posses at least one fixed point in B,
and so Eq (3.18) has at least one PS ¢*(7) where ¢ < n < 8. Hence, if n € [£, 7] one can claim that
n
" (1) = 1 + (U2 = G (L, o)) (¥ (1) =¥ () + f G (5,0 (€ +93) ¥V (5)ds

n(¥ @ —¥©)"
T(a+1) r( )

f (¥ () = ¥ (5)) 97 (L + 95)Y () ds. (3.23)

f(‘P(n) ¥ ()" ¢ ()W (s)ds

F()

The term control function denotes

U@, ¢ (), " (£ +9) < v1¢" () + y20" (£ + ) + 7
= D' () — DG (n, 6°(€ + I)) (3.24)

hence ¢ is an upper PS of FDE (1.1). Secondly, one can take

7
¢() = 1 + (2 = G (£, $0)) (¥ (i) = ¥ () + f G (5,0.(C+09) V¥ (5)ds
t

o (¥ -¥W)"
Ia+1) ’

(3.25)

as a lower PS of (1.1). By Theorem 3.1, the FDE (1.1) has at least one PS ¢ € C ([{, 6]) where 6 > ¢
and ¢.(n) < ¢(n) < ¢"(1). O

The final result is the uniqueness of PS to (1.1) by adopting the Theorem 2.1.

Theorem 3.2. Under the satisfaction of the investigators (X1) and (X2) and that

(Bo + B3) (Y (T) =¥ (0)"
T(a + 1)

LY (T)-Y(©)+ <1, (3.26)

the FDE (1.1) has a unique PS ¢ € Q.
Proof. The FDE (1.1) posses at least one PS in Q by Theorem 3.1. The mapping specified in (3.1) is a
contraction on Y. Indeed, for any ¢, y € Y we get

7
[(@¢) () — (Bx) ()] < f G (5,0 (£ +99)) = G (5, x (€ + D)) V' (9) ds

) f (P (D) =¥ () IF (5, 4(5), (L + 99)) = F (5, (), x(€ + 99)| ¥’ (5) ds

¥ Y (¢
< (ﬁl BT - () + P2 +ﬁ3)r( ) - ¥ llp — xlI. (3.27)
(a+1)

On the light of (3.26), the mapping O is contraction and hence the FDE (1.1) has a unique PS ¢ € Q.
]
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4. Example

Let Y(7) = Innp. We explore the pantograph FDE in this case (Caputo Hadamard
fractional derivative).

D} g(y) - DFF B = L (1 e nsin(@) X)L T<n<e
HO=1 ¢ == 1,
where uyy = 1, € = 1, ¢(1+9) = ¢9 > 0, T = e, G(n,¢) = n + arctan(¢p) and F(n,¢,x) =

1+i+n (1 +e+nsin(¢ + x)). As G is non-decreasing on ¢,

m+arctan(¢) 3w
m — = —
¢p—00 5 10

and

n 3
< -
10 <G, ¢) < 0’

T3 20 <Fmdo,x) <1.

Therefore, we conclude that Eq (4.1) has PS proportional to all the natural results mentioned above.

We have .
5 (¥ () - () + BB EFTI=HOF 66660 <1,
INa+1)

Therefore, by making use of Theorem 3.2, we infer that Eq (4.1) posses a unique PS.

5. Conclusions

We have investigated and verified the existence and uniqueness of positive solutions of the fractional
differential pantograph Eq (1.1) in W-Caputo sense. We have followed the method of upper and lower
solutions by imposing some of the necessary conditions to show the existence and uniqueness of our

positive solution. Further, we have used and applied SFPT and BFPT to gain a positive solution
for (1.1).
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