

AIMS Mathematics, 10(1): 1814–1825. DOI: 10.3934/[math.2025083](https://dx.doi.org/ 10.3934/math.2025083) Received: 11 November 2024 Revised: 28 December 2024 Accepted: 17 January 2025 Published: 24 January 2025

https://[www.aimspress.com](https://www.aimspress.com/journal/Math)/journal/Math

Research article

On the list injective coloring of planar graphs without a 4⁻-cycle intersecting with a $5⁻$ -cycle

Yuehua Bu 1,2 , Hongrui Zheng 1 and Hongguo Zhu 1,*

- ¹ Department of Mathematics, Zhejiang Normal University, Zhejiang, China
- ² Department of Basics, Zhejiang Guangsha Vocational and Technical University of Construction, Zhejiang, China
- * Correspondence: Email: zhuhongguo@zjnu.edu.cn.

Abstract: An injective coloring of a graph *G* is a vertex coloring such that a pair of vertices obtain distinct colors if there is a path of length two between them. It is proved in this paper that $\chi_i^l(G) \leq \Delta + 4$
if $\Delta > 12$ when G does not have a 4⁻-cycle intersecting with a 5⁻-cycle. Our result improves a previous if ∆ ≥ 12 when *G* does not have a 4[−] -cycle intersecting with a 5[−] -cycle. Our result improves a previous result of Cai et al. in 2023, who showed that $\chi_i^l(G) \leq \Delta + 4$ when $\Delta \geq 12$ and *G* has disjoint 5⁻-cycles.

Keywords: injective coloring; face; discharging method; planar graph; cycle Mathematics Subject Classification: 05C10, 05C15

1. Introduction

Let *G* be a finite, simple, and planar graphs throughout this paper. A 2-*distance k*-*coloring* of *G* is a mapping $c: V(G) \to \{1, 2, \dots, k\}$ such that the vertices whose distance is at most two receive distinct colors. The 2-*distance chromatic number* is the least integer *k* such that *G* has a 2-distance *k*-coloring, denoted by $\chi_2(G)$. In 1977, Wegner [\[15\]](#page-11-0) first defined the 2-distance coloring and proposed the following conjecture:

Conjecture 1.1. *Let G be a planar graph with maximum degree* ∆*. Then*

$$
\chi_2(G) \le \begin{cases}\n7 & \text{if } \Delta = 3; \\
\Delta + 5 & \text{if } 4 \le \Delta \le 7; \\
\left\lfloor \frac{3\Delta}{2} \right\rfloor + 1 & \text{if } \Delta \ge 8.\n\end{cases}
$$

Recently, Kim and Lian [\[10\]](#page-11-1) showed that each subcubic planar graph *G* has $\chi_2(G) \le 7$ if $g(G) \ge 6$. Then Yu et al. [\[16\]](#page-11-2) proved that every planar graph *G* has $\chi_2(G) \le 18$ if $\Delta \le 5$, and $\chi_2(G) \le 4\Delta - 3$ if $\Delta \geq 6$.

An *in jective k-coloring* of *G* is a mapping $c: V(G) \rightarrow \{1, 2, \dots, k\}$ such that $c(u) \neq c(v)$ if there is a path of length two between *u* and *v*. The *in jective chromatic number* of *G* is the smallest positive integer *k* such that *G* is injectively *k*-colorable, denoted by $\chi_i(G)$. So it is clear that $\chi_i(G) \leq \chi_2(G)$. Give a list assignment, $L = \{L(v) : v \in V(G)\}\)$. A list injective coloring of G is an injective coloring of *G* such that $c(v) \in L(v)$ for each vertex $v \in G$. An injective *L*-*coloring* is an injective coloring such that $c(v) \in L(v)$ for any vertex *v* of *G*. Moreover, *G* is *in jectively k-choosable* if *G* has an injective *L*-coloring for any *L* with $|L(v)| \geq k$. The *in jective choosability number* of *G* is the smallest positive integer *k* such that *G* is injectively *k*-choosable, denoted by $\chi_i^l(G)$.
In 2002, Habn et al. [0] first defined the concent of injective

In 2002, Hahn et al. [\[9\]](#page-11-3) first defined the concept of injective coloring, and they applied it to the theory of error-correcting codes. If the injective chromatic number of the hypercube Q_n had been shown to be exponential in *n*, then there would have been consequences for some complexity concerns on random access machines. They gave a slightly smaller upper bound: $\chi_i(G) \leq \Delta^2 - \Delta + 1$. The upper
bound is strengthened to $\chi_i(G) \leq \Delta^2 - \Delta$ if $\Delta > 3$ by Chan et al. [7]. In 2010, Lužar [12] gave the bound is strengthened to $\chi_i(G) \leq \Delta^2 - \Delta$ if $\Delta \geq 3$ by Chen et al. [\[7\]](#page-11-4). In 2010, Lužar [[12\]](#page-11-5) gave the following conjecture by studying Conjecture 1.1: following conjecture by studying Conjecture [1.1:](#page-0-0)

Conjecture 1.2. *Let G be a planar graph with maximum degree* ∆*.*

$$
\chi_i(G) \le \begin{cases}\n5 & if \Delta = 3; \\
\Delta + 5 & if 4 \le \Delta \le 7; \\
\frac{3\Delta}{2} + 1 & if \Delta \ge 8.\n\end{cases}
$$

Many researchers have done many studies on this conjecture. For every K_4 -minor-free graph G , Chen et al. [\[7\]](#page-11-4) showed $\chi_i(G) \leq \left[\frac{3}{2}\right]$ $\frac{3}{2}\Delta$. They conjectured $\chi_i(G) \leq \left[\frac{3}{2}\right]$ $\frac{3}{2}\Delta$ for every planar graph *G*, but Lužar and Škrekovski [[13\]](#page-11-6) proved it was wrong.

Also, there are many results about planar graph *G* with girth restrictions.

Theorem 1.3. *(Lužar et al.* [*[14](#page-11-7)*]*) Let G be a planar graph and* $\Delta \leq 3$ *.*

(1) *If* $g(G)$ ≥ 19*, then* χ _{*i*}(*G*) ≤ 3; (2) *If* $g(G) \ge 10$ *, then* $\chi_i(G) \le 4$;

 (3) *If* $g(G) \geq 7$ *, then* $\chi_i(G) \leq 5$ *.*

Theorem 1.4. *Suppose that planar graph G has* $g(G) \geq 6$ *.*

(1) $[6] \chi_i^l(G) \leq \Delta + 3;$ $[6] \chi_i^l(G) \leq \Delta + 3;$
(2) $[3] \text{ If } \Delta > 8 \text{ then } i$ (2) [\[3\]](#page-11-9) If Δ ≥ 8*, then* $\chi_i^l(G)$ ≤ Δ + 2;
(3) *[1]* If Δ > 24, then $\chi_i^l(G)$ < Δ + 1]

(3) *[\[1\]](#page-11-10) If* $\Delta \ge 24$ *, then* $\chi_i^l(G) \le \Delta + 1$ *.*

Theorem 1.5. *Suppose that planar graph G has* $g(G) \geq 5$ *.*

(1) $[5] \chi_i^l(G) \leq \Delta + 6;$ $[5] \chi_i^l(G) \leq \Delta + 6;$ $[5] \chi_i^l(G) \leq \Delta + 6;$
(2) [2] If $\Delta > 11$, then ([2](#page-11-12)) [2] *If* ∆ ≥ 11*, then* $\chi_i^l(G)$ ≤ ∆ + 4;
(3) [8] *If* $\Lambda > 2339$ *then* $\chi_i(G) < \Lambda$ +

(3) $[8]$ $[8]$ $[8]$ *If* ∆ ≥ 2339*, then* $\chi_i(G)$ ≤ ∆ + 1.

More recently, Li et al. [\[11\]](#page-11-14) proved that if *G* is a planar graph with $\Delta \geq 22$ that has no intersecting 4-cycles or triangles, then $\chi_i^l(G)$ ≤ ∆ + 4. Cai et al. [\[4\]](#page-11-15) showed that $\chi_i^l(G)$ ≤ ∆ + 4 if *G* is a planar graph
with $\Lambda > 12$ that has disjoint 5⁻ eveles. We strengthen the result of Cai et al. [4] and allow that with ∆ ≥ 12 that has disjoint 5[−] -cycles. We strengthen the result of Cai et al. [\[4\]](#page-11-15) and allow that *G* has 5-cycles intersecting 5-cycles by proving Theorem [1.6.](#page-1-0)

Theorem 1.6. *If G is a planar graph with* $\Delta \ge 12$ *that has no* 4⁻-cycles intersecting with 5⁻-cycles, *then* $\chi_i^l(G) \leq \Delta + 4$ *.*

We define $N(v) = \{v_1, v_2, \dots, v_k\}$ and $D(v) = \sum_{1 \le i \le k} d(v_i)$ for a *k*-vertex *v*. The number of *k*-
others of *v* is denoted by $v_i(v)$. For a 2⁺-vetex *v* if $D(v) > \Delta + 4 + d(v)$ then *v* is called a *heavy* neighbors of *v* is denoted by $n_k(v)$. For a 2⁺-vetex *v*, if $D(v) \geq \Delta + 4 + d(v)$, then *v* is called a *heavy* vertex; otherwise, *v* is called a *light* vertex. A *k*(*l*)-vertex is a *k*-vertex that has *l* 2-neighbors. For a path *xwy*, if $d(w) = 2$, then we say *x* and *y* are *fake-ad jacent*. The number of *k*-faces that are incident with *v*, denoted $m_k(v)$. We say that 2-vertex *v* is of *Class one*(*resp.*, *Class two*, *Class three*, *Class four*, *Class five*) if $m_3(v) = 1(resp., m_4(v) = 1, m_5(v) = 2, m_5(v) = m_{6^+}(v) = 1, m_{6^+}(v) = 2)$. If a 3(1)vertex *w* has a Class one 2-neighbor, then *w* is called a *strong* 3(1)-vertex; otherwise, *w* is called a *weak* 3(1)-vertex. The number of strong 3(1)-neighbors of *w* is denoted by $n_{\rm s}(w)$. For *k*-vertex *v*, we define f_1, f_2, \dots, f_k as being incident with *v*. If two cycles have a common vertex, then we say they are intersecting with each other.

Observation. If *v* is a Class one 2-vertex, then $m_{7}(v) = 1$; if *v* is a Class two 2-vertex, then $m_{6^+} (v) = 1.$

2. Structural properties of critical graphs

With the intention of proving Theorem [1.6,](#page-1-0) we suppose instead that *G* is a counterexample with the fewest edges, which indicates that $\chi_i^l(G) > \Delta + 4$ and $\chi_i^l(H) \leq \Delta + 4$ for any $H \subset G$. For a partial vertex coloring ϵ of G and each vertex v, the forbidden color set is denoted by $F(x)$ and *L* denotes an vertex coloring *c* of *G* and each vertex *v*, the forbidden color set is denoted by $F(v)$, and *L* denotes an arbitrary list assignment with $|L(v)| \geq \Delta + 4$.

Lemma 2.1. *There are no adjacent light vertices.*

Proof. Suppose that *u* and *v* are distinct light vertices and $uv \in E(G)$. By *G* having the fewest edges, *G* − *uv* is injective *L*-choosable. Decolor *u* and *v*. Clearly, $|F(v)| \le D(u) - d(u) \le \Delta + 3$ and $|F(u)| \le$ $D(u) - d(u) \leq \Delta + 3$. So recolor u and v by $c(u) \in L(u) - F(u)$ and $c(v) \in L(v) - F(v)$. Then G has an injective *L*-coloring, a contradiction. □

It is easy to know the following corollaries from Lemma [2.1.](#page-2-0)

Corollary 2.2. *There are no adjacent* 2-vertices, and $\delta(G) \geq 2$.

Corollary 2.3. *Suppose* $3 ≤ d(v) ≤ 5$ *. If* $n_2(v) ≥ 1$ *, then v is a heavy vertex and* $n_2(v) ≤ d(v) - 2$ *.*

Lemma 2.4. *Let v be a 3(1)-vertex and u be a 5-vertex. If* $n_2(u) \geq 1$ *, then* $uv \notin E(G)$ *.*

Proof. Assume the assertion of the lemma is false that *u* is adjacent to *v*. Suppose that v_1 is the 2neighbor of *v* and u_1 is the 2-neighbor of *u*. By the choice of *G*, $G - v v_1$ is injective *L*-choosable. Remove the colors of *v*, *u*₁, and *v*₁. Clearly, $|F(v)| \leq \Delta + 3$. Note that *v*₁ and *u*₁ are light vertices, which indicates that $|F(v_1)| \le D(v_1) - d(v_1) \le \Delta + 3$ and $|F(u_1)| \le D(u_1) - d(u_1) \le \Delta + 3$. Thereby, we recolor *v*, u_1 , and v_1 in sequence, a contradiction. \Box

Lemma 2.5. *Suppose that* $d(v) = 6$ *and* v_1 *is a 2-neighbor of v. If* $m_4(v_1) = 1$ *, then v is a heavy vertex.*

Proof. Assume to the contrary that *v* is a light vertex. By *G* having the fewest edges, $G - v v_1$ has an injective *L*-coloring. Decolor *v* and *v*₁. Clearly, $|F(v_1)| \le 5 + \Delta - 2 = \Delta + 3$. Since *v* is a light vertex, we have $|F(v)| \le D(v) - d(v) \le \Delta + 3$. So we can recolor v_1 and v in sequence, a contradiction. □

Lemma 2.6. *Let* $f = [v_1]$ $v_1'v_1vv_2v_2'$ Z_2] *be a 5-face with* $d(v) = 6$ *,* $d(v_1) = d(v_2')$ y'_2) = 2*, and d*(v_2) = 3*. Then v is a heavy vertex.*

Proof. Assume to the contrary that *v* is a light vertex. Clearly, $G - v v_1$ has an injective *L*-coloring. Decolor v , v_1 , and v'_2 2. Clearly, $|F(v_1)| \le d(v) - 1 + Δ - 2 = Δ + 3$. It follows from *v* and *v*₂ v_2' being light vertices that we can recolor v_1 , *v*, and v'_2 $\frac{1}{2}$ in sequence, a contradiction. \Box

Lemma 2.7. Let v be a 3(1)-vertex. If v_1 is a Class one 2-neighbor, then $D(v) \geq \Delta + 8$.

Proof. Suppose to the contrary that $D(v) \leq \Delta + 7$. By Corollary [2.3,](#page-2-1) we need to consider that $D(v) =$ ∆ + 7. It follows from *G* having the fewest edges that *G* − *vv*¹ has an injective *L*-coloring. Decolor *v* and *v*₁. Obviously, $|F(v)| \le D(v) - d(v) - 1 \le \Delta + 3$. Notice that *v*₁ is a light vertex. So, we recolor *v* and v_1 in sequence, a contradiction. \Box

3. Proof of Theorem [1.6](#page-1-0)

Note that *G* has no 4⁻-cycles intersect with 5⁻-cycles. According to Euler's formula $|V(G)|+|F(G)| |E(G)| = 2$, and Σ *v*∈*V*(*G*) $d(v) = \sum$ *f* ∈*F*(*G*) $d(f) = 2 |E(G)|$, we derive the following equation:

$$
\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2d(f) - 6) = -12.
$$

Then we construct the weight function $\omega(v) = d(v) - 6$ for each $v \in V(G)$ and $\omega(f) = 2d(f) - 6$ for each *f* ∈ *F*(*G*), which means that $\sum_{x \in V(G) \cup F(G)} \omega(x) = -12$. In this section, we get a new weight function $\omega'(x)$ by assigning the weight. Thereby, we have the following contradiction: function $\omega'(x)$ by assigning the weight. Thereby, we have the following contradiction:

$$
0 \leq \sum_{x \in V(G) \cup F(G)} \omega'(x) = \sum_{x \in V(G) \cup F(G)} \omega(x) = -12.
$$

It shows that *G* does not exist, so Theorem [1.6](#page-1-0) is proved. Then $\tau(u \to v)$ shows the weight that *u* transfers to *v*, and $\tau(u \to f \to v)$ denotes the weight that *u* transfers to *v* by *f*, where $u, v \in V(G)$ and $f \in F(G)$. Next, we introduce two face types of *configuration A* and *configuration B*. We define the number of configuration A-face(*resp.*, B-face) contain *v* as $m_A(v)(resp., m_B(v))$.

configuration A-face: Suppose $f = [v_1]$ $v'_1v_1vv_2v'_2$ 2^{\prime}] with $6 \leq d(v) \leq 8$, $2 \leq d(v_i) \leq 3$, and $d(v_i')$ *i*) ≥ 10($i = 1, 2$) (See Figure 1(a)). *configuration B*-face: Suppose $f = [v_1^{\prime}]$
and $d(v_1^{\prime}) > 9(i - 1, 2)$ (See Figure 1(b)) $v'_1 v_1 v v_2 v'_2$ 2^{2}] with $d(v) = 9$, $d(v_i) = 2$ and $d(v_i)$ y' _{*i*}</sub> ≥ 9(*i* = 1, 2) (See Figure 1(b)).

Figure 1. Discharging rule R8.

The discharging rules

R1 Let *f* be a 4⁺-face. Then $\tau(f \to incident \ vertices) = 2 - \frac{6}{d}$
 R2 Let $g(x) \in E(G)$ and $d(u) > 3$. If y is a Class one(rasp. Class $\frac{6}{d(f)}$.

R2 Let $uv \in E(G)$ and $d(u) ≥ 3$. If *v* is a Class one(*resp.*, Class two, Class three, Class four, Class five) 2-vertex, then $\tau(u \to v) = \frac{10}{7}$
D3 Let $d(v) = 3$ and $uv \in E(G)$ 7 (*resp*., 5 4 , 6 5 , $\frac{11}{10}$, 1).

R3 Let $d(v) = 3$ and $uv \in E(G)$.

R3.1 Suppose that *v* is a light 3(0)-vertex and *u* is a heavy vertex with $3 \le d(u) \le 7$. Then $\tau(u \to v) = \frac{1}{3}$
 1232

Su $\frac{1}{3}$.

R3.2 Suppose that *v* is a heavy 3(0)-vertex. If $d(u) = 4(resp, 5 \le d(u) \le 7)$, then $\tau(u \to v) =$ $\frac{1}{30}$ (resp., $\frac{1}{3}$ $\frac{1}{3}$).

R3.3 Suppose that *v* is a weak 3(1)-vertex. Assume $m_3(v) = 1$, if $d(u) = 5(resp, 6, 7, 8,$
nen $\tau(u \to v) = \frac{7}{3}(resp)^{-3/4} \frac{9}{7}$, 11). Assume $m_3(v) = 3$, if $d(u) = 5(resp, 6, 7, 8, 0)$, then 9), then $\tau(u \to v) = \frac{7}{10} (resp., \frac{3}{4})$ 4 , 4 5 , 9 10 ² $\frac{11}{10}$). Assume $m_{4+}(v) = 3$, if $d(u) = 5$ (*resp.*, 6, 7, 8, 9), then $\tau(u \rightarrow v) = \frac{1}{2}$
D3 A $\frac{1}{2}(resp., \frac{11}{20}, \frac{3}{5})$
Suppose the 5 $\frac{9}{10}$, 1).

 $R3.4$ Suppose that *v* is a strong 3(1)-vertex. If *d*(*u*) = 6(*resp.*, 7, 8, 9), then τ(*u* → *v*) = $\frac{12}{5}$ 1 §) If *d*(*u*) > 10 then τ(*u* → *v*) = $2 - \frac{7}{5}$ 7 $\frac{7}{8}$ (resp., $\frac{12}{13}$, 1, $\frac{8}{7}$ $\frac{8}{7}$). If $d(u) \ge 10$, then $\tau(u \to v) = 2 - \frac{7}{d(u)}$ $\frac{7}{d(u)}$.

R4 Let *d*(*v*) = 4 and *uv* ∈ *E*(*G*). If *d*(*u*) = 5(*resp*., 6 ≤ *d*(*u*) ≤ 7), then $\tau(u \to v) = \frac{1}{30}(resp., \frac{2}{7})$
R5 Suppose 8 ≤ *d*(*u*) ≤ 0 such that *uv* ∈ *E*(*G*) $\frac{2}{7}$). **R5** Suppose 8 ≤ $d(u)$ ≤ 9 such that uv ∈ $E(G)$.

R5.1 If $d(v) = 3, 4$ except for 3(1)-vertex, then $\tau(u \to v) = \frac{9}{10}$ when $d(u) = 8$ and $\tau(u \to v) = 1$ when $d(u) = 9$.

R5.2 If $d(v) = 5$, then $\tau(u \to v) = \frac{3}{5}$
R5.3 If $d(v) = 6$, then $\tau(u \to v) = \frac{3}{5}$ $\frac{3}{5}$.

R5.3 If $d(v) = 6$, then $\tau(u \to v) = \frac{3}{5}$ when $d(u) = 9$.
 16. Suppose $3 \le d(v) \le 8$ except for strong $3(1)$ -ve

R6 Suppose 3 ≤ $d(v)$ ≤ 8 except for strong 3(1)-vertex. If $d(u)$ ≥ 10 such that $uv \in E(G)$, then $\tau(u \to v) = \frac{9}{5}$
P7 Let of $rac{9}{5} - \frac{6}{d(u)}$ $\frac{6}{d(u)} \geq \frac{6}{5}$ $\frac{6}{5}$.

R7 Let $d(u) \ge 10$ and $6 \le d(v) \le 8$. If *u* is fake-adjacent to *v* by a Class five 2-vertex, then $\tau(u \to v) = \frac{4}{5}$
D.8 Supper $rac{4}{5} - \frac{6}{d(u)}$ $\frac{6}{d(u)}$.

R8 Suppose $f = [v_1]$ $v_1v_1v_2v_2'$ 2². After R1∼R6, the 9-vertex *v* is called *big* 9-vertex if $\omega'(v) < 0$.

R8.1 If *f* is a configuration A-face, then $\tau(v'_i \to f) = \frac{9}{10} - \frac{3}{d(v_i)}$ $\frac{3}{d(v_i')}$ (*i* = 1, 2) through *v*¹ $'_{1}v'_{2}$ $\frac{1}{2}$ and $\tau(f \to v) \geq \frac{9}{5}$ $rac{9}{5} - \frac{6}{\min\{d(v_1)\}}$ $\frac{6}{\min\{d(v_1'),d(v_2')\}}$ (See Figure 1(a)).

R8.2 If *v* is a big vertex and *f* is a configuration B-face, then $\tau(v_i' \to f) = \frac{3}{10}$ through v_i' of the second big 9-vertex equally (See Figure 1(b)) $'_{1}v'_{2}$ y'_2 and f transfers $\frac{3}{5}$ to each big 9-vertex equally (See Figure 1(b)).

Firstly, we check $\omega'(v)$ for each $v \in V(G)$.
Case 1 $d(v) = 2$ and then $\omega(v) = -4$

Case 1. $d(v) = 2$ and then $\omega(v) = -4$.

If *v* is a Class one 2-vertex, then $m_3(v) = m_{7^+}(v) = 1$, which means that $\sum_{i=1}^{2} \tau(f_i \to v) \ge \frac{8}{7}$ *i*=1 $\frac{8}{7}$ by R1. Hence, $\omega'(v) \ge -4 + \frac{8}{7}$ $\frac{8}{7} + \frac{10}{7}$ $\frac{10}{7}$ × 2 = 0 by R2. If *v* is a Class two 2-vertex, then $m_4(v) = m_{6^+}(v) = 1$, which indicates that $\sum_{i=1}^{2} \tau(f_i \to v) \ge \frac{1}{2}$ that *v* is a Class three, Class four, or Class five 2-vertex. It resembles the above arguments that can be $\frac{1}{2} + 1 = \frac{3}{2}$ $\frac{3}{2}$ by R1. So $\omega'(v) \ge -4 + \frac{3}{2}$ $\frac{3}{2} + \frac{5}{4}$ $\frac{5}{4} \times 2 = 0$ by R2. Next, consider obtained that $\omega'(v) \ge -4 + \min\{\frac{6}{5}\}$
Case 2, $d(v) = 3$ and then $\omega'(v)$ $\frac{6}{5} \times 2 + \frac{4}{5}$ $\frac{4}{5} \times 2$, $\frac{11}{10} \times 2 + \frac{4}{5}$

Let $N(v) = 4v$ $\frac{4}{5} + 1$, 2 + 2} = 0 by R1, R2.

Case 2. *d*(*v*) = 3 and then $ω(v) = -3$. Let $N(v) = {v_1, v_2, v_3}$ with $d(v_1) ≤ d(v_2) ≤ d(v_3)$.

Subcase 2.1. Suppose $n_2(v) = 0$. If $m_{4}(v) = 1$, then $m_{6}(v) = 2$; otherwise, $m_{5}(v) = 3$. Then $\sum_{ }^{3}$ $\sum_{i=1}^{5} \tau(f_i \to v) \ge \min\{2, \frac{4}{5}\}$ $\frac{4}{5} \times 3$ } = 2 by R1. Consider that *v* is a light vertex, which means that *v*_{*i*}(*i* = 1, 2, 3) are heavy vertices by Lemma [2.1.](#page-2-0) According to R3.1, R5.1, R6, $\sum_{i=1}^{3} \tau(v_i \to v) \ge \frac{1}{3}$ $-3 + 2 + 1 = 0$. Otherwise, consider that *v* is a heavy vertex. Suppose $n_3(v) = 0$. If $n_4(v) = 0$, then $\frac{1}{3} \times 3 = 1$. Then $\omega'(v) \ge$

 $n_{5}(v) = 3$; if $n_4(v) \ge 1$, then either $n_{9}(v) \ge 1$ or $n_7(v) = n_8(v) = 1$, which means that $\sum_{i=1}^{3} \tau(v_i \to v) \ge 1$ *i*=1 $\min\{\frac{1}{3}$ $\frac{1}{3} \times 3, \frac{1}{30} + 1, \frac{1}{30} + \frac{1}{3}$
b indicates that τ $\frac{1}{3} + \frac{9}{10}$ = 1 by R3.2, R5.1, R6. Hence, $\omega'(v) \ge -3 + 2 + 1 = 0$. Suppose $d(v_1) = 3$,
 $f(v_1 \to v_1) \le \frac{1}{2}$ by R3.1. If $d(v_1) = 4$, then $d(v_1) \ge 12$; if $5 \le d(v_2) \le 7$, then which indicates that $\tau(v \to v_1) \leq \frac{1}{3}$ $\frac{1}{3}$ by R3.1. If $d(v_2) = 4$, then $d(v_3) \ge 12$; if $5 \le d(v_2) \le 7$, then *d*(*v*₃) ≥ 9; otherwise, *d*(*v*₂), *d*(*v*₃) ≥ 8. So $\sum_{i=2}^{3}$ $\sum_{i=2}^{5} \tau(v_i \to v) \ge \min\{\frac{1}{30} + (\frac{9}{5})\}$ $\frac{9}{5} - \frac{6}{12}$, $\frac{1}{3}$ $\frac{1}{3} + 1$, $\frac{9}{10} \times 2$ = $\frac{4}{3}$ $\frac{4}{3}$ by R3.2, R5.1, R6. Furthermore, $\omega'(v) \ge -3 + 2 - \frac{1}{3}$
Subcase 2.2. Suppose $d(v_1) = 2$. By $rac{1}{3} + \frac{4}{3}$ $\frac{4}{3} = 0.$

Subcase 2.2. Suppose $d(v_1) = 2$. By Corollary [2.3,](#page-2-1) $d(v_2) + d(v_3) \ge \Delta + 5$. Consider that *v* is a weak 3(1)-vertex. Suppose $m_3(v) = 1$. If $d(v_2) = 5$, then $d(v_3) \ge 12$; if $d(v_2) = 6$, then $d(v_3) \ge 11$; if $d(v_2) = 7$, then $d(v_3) \ge 10$; otherwise, $d(v_2) \ge 8$ and $d(v_3) \ge 9$. Therefore, $\sum_{i=2}^{3} \tau(v_i \to v) \ge \min\{\frac{7}{10} + \frac{1}{2}\}$ *i*=2 $(\frac{9}{5})$ $\frac{9}{5} - \frac{6}{12}$, $\frac{3}{4}$ $\frac{3}{4} + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{11}$, $\frac{4}{5}$ $\frac{4}{5} + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{10}$, $\frac{9}{10} + \frac{11}{10}$ = 2 by R3.3, R5, R6. Thereby, $\omega'(v) \ge -3 + 2 - 1 + 2 = 0$ by R1, R2. If $m_{4+}(v) = 3$, then $-\tau(v \to v_1) + \sum_{i=1}^{3} \tau(f_i \to v) \ge \min\{-\frac{5}{4} + \frac{1}{2}\}$ $f'(v) \ge -3 + \frac{6}{5} + \min\{\frac{1}{2} + (\frac{9}{5} - \frac{6}{12}), \frac{11}{20} + (\frac{9}{5} - \frac{6}{12})\}$ $\frac{1}{2}+2,-\frac{6}{5}$ $\frac{6}{5} + \frac{4}{5}$ $\frac{4}{5} \times 3 = \frac{6}{5}$ $\frac{6}{5}$ by R1, R2. So $\frac{6}{5} + \min\{\frac{1}{2}$ $rac{1}{2} + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{12}$), $\frac{11}{20} + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{11}$, $\frac{3}{5}$ $rac{3}{5} + (\frac{9}{5})$ $(\frac{9}{5} - \frac{6}{10}), \frac{9}{10} + 1$ = 0 by R3.3, R6. Next, consider that *v* is a strong 3(1)-vertex. By Lemma [2.7,](#page-3-0) $d(v_2) + d(v_3) \ge \Delta + 6$. Moreover, $-\tau(v \to v_1) + \sum_{i=1}^{3} \tau(f_i \to v) \ge$ *i*=1 $-\frac{10}{7}$ $\frac{10}{7} + \frac{8}{7}$ $\frac{8}{7}+1=\frac{5}{7}$ $\frac{5}{7}$ by R1, R2. Thus, $\omega'(v) \ge -3 + \frac{5}{7}$ $\frac{5}{7} + \min\{\frac{7}{8}$ $\frac{7}{8} + (2 - \frac{7}{12}), \frac{12}{13} + (2 - \frac{7}{11}), 1 + (2 - \frac{7}{10}), \frac{8}{7}$ $\frac{8}{7} + \frac{8}{7}$ $\frac{8}{7}$ } = 0 by R3.4.

Case 3. *d*(*v*) = 4 and then $ω(v) = -2$. Let $N(v) = {v_1, v_2, v_3, v_4}$ with $d(v_1) ≤ d(v_2) ≤ d(v_3) ≤ d(v_4)$. **Subcase 3.1.** Suppose $n_2(v) = 0$. If $m_{4}(v) = 1$, then $m_{6}(v) = 3$; otherwise, $m_{5}(v) = 4$. So $\sum_{ }^{ 4}$ $\sum_{i=1}^{5} \tau(f_i \to v) \ge \min\{3, \frac{4}{5}\}$ $\frac{4}{5} \times 4$ = 3 by R1. If *v* is a heavy vertex, then $n_3(v) \le 3$. Note that $n_{11^+}(v) \ge 1$ if $n_3(v) = 3$. Therefore, $-\tau(v \to 3\text{-}neighbors) + \tau(11^+\text{-}neighbour \to v) \ge \min\{-\frac{1}{3} \times 3 + (\frac{9}{5})\}$ $(\frac{9}{5} - \frac{6}{11}), -\frac{1}{3}$
exter which $\frac{1}{3} \times 2$ } = $-\frac{2}{3}$ 3 by R3.1, R6. Hence, $\omega'(v) \ge -2 + 3 - \frac{2}{3} = \frac{1}{3}$. Otherwise, suppose that *v* is a light vertex, which implies that *v*. (1 < *i* < *A*) are not light 3-vertices by Lemma 2.1. Clearly $\omega'(v) \ge -2 + 3 - \frac{1}{2} \times 4 - \frac{13}{2}$ that *v*_{*i*}(1 ≤ *i* ≤ 4) are not light 3-vertices by Lemma [2.1.](#page-2-0) Clearly, ω'(*v*) ≥ −2 + 3 − $\frac{1}{30}$ × 4 = $\frac{13}{15}$ by R3.2.
Subcess 3.2. Suppose $d(y) = 2$. By Corollary 2.3. $d(y) + d(y)$ > Δ + 6. Δecording Subcase 3.2. Suppose $d(v_1) = 2$. By Corollary [2.3,](#page-2-1) $d(v_2) + d(v_3) + d(v_4) \ge \Delta + 6$. According

to R1, R2, if v_1 is a Class one 2-vertex, then $-\tau(v \rightarrow v_1) + \sum_{i=1}^{4}$ $\sum_{i=1}^{5} \tau(f_i \to v) \geq -\frac{10}{7} + \frac{8}{7}$ $\frac{8}{7} + 2 = \frac{12}{7}$ $rac{12}{7}$; if *v*₁ is a Class two 2-vertex, then $-\tau(v \rightarrow v_1) + \sum_{i=1}^{4}$ $\sum_{i=1}^{5} \tau(f_i \to v) \geq -\frac{5}{4} + \frac{1}{2}$ $\frac{1}{2} + 3 = \frac{9}{4}$ $\frac{9}{4}$; if $m_{5}(v) = 4$, then

 $-\tau(v \rightarrow v_1) + \sum_{i=1}^{4}$ $\sum_{i=1}^{5} \tau(f_i \to v) \geq -\frac{6}{5} + \frac{4}{5}$ $\frac{4}{5} \times 4 = 2$; otherwise $m_{6} (v_1) = 2$ and $m_{4} (v) = 1$, then $-\tau (v \rightarrow$ v_1) + \sum^4 $\sum_{i=1}^{4} \tau(f_i \to v) \ge -1 + 3 = 2$. Therefore, $-\tau(v \to v_1) + \sum_{i=1}^{4}$ $\sum_{i=1}$ $\tau(f_i \to v) \ge \min\{\frac{12}{7}\}$ 7 , 9 $\frac{9}{4}$, 2, 2} = $\frac{12}{7}$ $rac{12}{7}$. If $n_3(v) = 0$, then $n_{6^+}(v) \ge 1$; if $n_3(v) = 1$, then $n_{8^+}(v) \ge 1$; if $n_3(v) = 2$, then $n_{12^+}(v) = 1$. This implies that $-\tau(v \to 3\text{-}neighbors) + \tau(6^+\text{-}neighbors \to v) \ge \min\{\frac{2}{7}$
 $\mu(A, B5, 1, B6, Moreover, \psi'(v) \ge -2 + \frac{12}{5} + \frac{2}{5} = 0$ $\frac{2}{7}, -\frac{1}{3}$ $\frac{1}{3} + \frac{9}{10}, -\frac{1}{3}$ $\frac{1}{3} \times 2 + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{12}$ } = $\frac{2}{7}$ $\frac{2}{7}$ by R3.1, R4, R5.1, R6. Moreover, $\omega'(v) \ge -2 + \frac{12}{7}$
Systems 2.2. Suppose $d(v_1) = d(v_2)$ $rac{12}{7} + \frac{2}{7}$ $\frac{2}{7} = 0.$

Subcase 3.3. Suppose $d(v_1) = d(v_2) = 2$, which means that $d(v_3) + d(v_4) \ge \Delta + 4$ by Corollary [2.3.](#page-2-1) According to R1, R2, $-\tau(v \to v_1) - \tau(v \to v_2) + \sum_{i=1}^{4} \tau(f_i \to v) \ge \min\{-\frac{10}{7} - 1 + \frac{8}{7}$ $\frac{1}{2} + 3 = 6 \times 2 + 4 \times 4 = 2 + 31 = \frac{5}{2}$ If $d(v_1) = 4$ the $\frac{8}{7}$ + 2, $-\frac{5}{4}$ $\frac{5}{4} \times 2 +$ $\frac{1}{2}+3,-\frac{6}{5}$ $\frac{6}{5} \times 2 + \frac{4}{5}$ $\frac{4}{5} \times 4, -2 + 3$ } = $\frac{5}{7}$ $\frac{5}{7}$. If $d(v_3) = 4$, then $d(v_4) \ge 12$; if $d(v_3) = 5$, then $d(v_4) \ge 11$; if $6 \le d(v_3) \le 7$, then $d(v_4) \ge 9$; otherwise, $d(v_3)$, $d(v_4) \ge 8$. This indicates that $\sum_{i=3}^{4} \tau(v_i \to v) \ge$ *i*=3 $\min\{\frac{9}{5}\}$ $\frac{9}{5} - \frac{6}{12}$ $12,$ $rac{1}{30} + \left(\frac{9}{5}\right)$ $\frac{9}{5} - \frac{6}{11}$, $\frac{2}{7}$ $\frac{2}{7} + 1$, $\frac{9}{10} \times 2$ = $\frac{9}{7}$ $\frac{9}{7}$ by R4, R5.1, R6. So ω'(*v*) ≥ −2 + $\frac{5}{7}$ $\frac{5}{7} + \frac{9}{7}$ $\frac{9}{7} = 0.$

Claim 3.1. *Let* $5 \leq d(v) \leq 7$ *. Note that v is adjacent to at most one weak 3(1)-vertex that is incident with a 3-face.*

Case 4. $d(v) = 5$ and then $\omega(v) = -1$.

Subcase 4.1. Suppose $n_2(v) = 0$. According to R1, $\sum_{n=1}^{5}$ $\sum_{i=1}^{6} \tau(f_i \to v) \geq \min\{4, 4 + \frac{1}{2}\}$ ² 4 $\frac{4}{5} \times 5$ = 4. Therefore, $\omega'(v) \ge -1+4-\frac{7}{10}-\frac{1}{2}$
wis a heavy vertex by Corollary $\frac{1}{2} \times 4 = \frac{3}{10}$ by R3.3 and Claim [3.1.](#page-6-0) Suppose $n_2(v) = 1$, which implies that *v* is a heavy vertex by Corollary [2.3](#page-2-1) and $n_{3(1)}(v) = 0$ by Lemma [2.4.](#page-2-2) Then $n_3(v) + n_4(v) \le 3$. According to R1, R2, $-\tau(v \to 2\text{-}neighbor) + \sum_{i=1}^{5} \tau(f_i \to v) \ge \min\{-\frac{10}{7} + \frac{8}{7}$ Note that $n_{10^+}(v) = 1$ if $n_3(v) = 3$. Therefore, $-\tau(v \to 3$ -*neighbors*) – $\tau(v \to 4$ -*neighbors*) + $\tau(10^+$ -
neighbors –> v) > $\min(-\frac{1}{2} \times 3 + (\frac{9}{2} - \frac{6}{2}) - \frac{1}{2} \times 2 - \frac{1}{2} \times 2) = -\frac{11}{2}$ by P3.1, P3.2, P4, $\frac{8}{7}+3,-\frac{5}{4}$ $\frac{5}{4} + \frac{1}{2}$ $\frac{1}{2} + 4, -\frac{6}{5}$ $\frac{6}{5} + \frac{4}{5}$ $\frac{4}{5} \times 5, -1 + 4$ = $\frac{19}{7}$ $\frac{19}{7}$. $neighbours \rightarrow y) \ge \min\{-\frac{1}{3} \times 3 + (\frac{9}{5})\}$ $\frac{9}{5} - \frac{6}{10}, -\frac{1}{3}$ $\frac{1}{3} \times 2 - \frac{1}{30} \times 2$ } = $-\frac{11}{15}$ by R3.1, R3.2, R4, R6. Hence, $'(v) \ge -1 + \frac{19}{7}$ $\frac{19}{7} - \frac{11}{15} = \frac{103}{105}.$

Subcase 4.2. Suppose $n_2(v) = 2$. This implies that *v* is a heavy vertex by Corollary [2.3,](#page-2-1) and *n*₃₍₁₎(*v*) = 0 by Lemma [2.4.](#page-2-2) Then $n_3(v) + n_4(v)$ ≤ 2. According to R1, R2, −τ(*v* → 2-*neighbors*) + $\sum_{i=1}^{5} \tau(f_i \to v) \ge \min\{-\frac{10}{7} - 1 + \frac{8}{7}\}$ *i*=1 $\frac{8}{7}+3,-\frac{5}{4}$ $\frac{5}{4} \times 2 + \frac{1}{2}$ $\frac{1}{2}+4,-\frac{6}{5}$ $\frac{6}{5} \times 2 + \frac{4}{5}$ $\frac{4}{5} \times 5, -2 + 4$ = $\frac{8}{5}$ $\frac{8}{5}$. Note that $n_{11^+}(v) = 1$ if $n_3(v) = 2$. Moreover, $-\tau(v \rightarrow 3$ -*neighbors*) – $\tau(v \rightarrow 4$ -*neighbors*) + $\tau(11^+$ -*neighbor* $\rightarrow v) \ge \min\{-\frac{1}{3} \times 2 + (\frac{9}{2} - \frac{6}{2}) - 1 - \frac{1}{2} \times 2 = 2\}$ which $2+(\frac{9}{5})$ $\frac{9}{5} - \frac{6}{11}$), $-\frac{1}{3}$
no that y is $\frac{1}{3} - \frac{1}{30} \times 2$ } = $-\frac{2}{5}$ $\frac{2}{5}$ by R3.1, R4, R6. Thus, $\omega'(v) \ge -1 + \frac{8}{5}$
ex by Corollary 2.3, and $n_{av}(v) = 0$ by l $\frac{8}{5} - \frac{2}{5}$ $\frac{2}{5} = \frac{1}{5}$ $\frac{1}{5}$. Suppose $n_2(v) = 3$, which means that *v* is a heavy vertex by Corollary [2.3,](#page-2-1) and $n_{3(1)}(v) = 0$ by Lemma [2.4.](#page-2-2) Then $n_3(v) + n_4(v) \le 1$. Clearly, $-\tau(v \rightarrow 2\text{-}neighbors) + \sum_{i=1}^{5}$ $\sum_{i=1}^{5} \tau(f_i \to v) \ge \min\{-\frac{10}{7} - 2 + \frac{8}{7}\}$ $\frac{8}{7}+3, -\frac{5}{4}$ $\frac{5}{4}$ ×2−1+ $\frac{1}{2}$ $\frac{1}{2}+4, -\frac{6}{5}$ $\frac{6}{5} \times 3 + \frac{4}{5}$ $\frac{4}{5} \times 5, -3 + 4$ } = 2 $\frac{2}{5}$ by R1, R2. If $n_3(v) = n_4(v) = 0$, then $n_{8^+}(v) \ge 1$; if $n_3(v) = 1$, then $n_{12^+}(v) = 1$; if $n_4(v) = 1$, then $n_{11^+}(v) = 1$. Moreover, $\omega'(v) \ge -1 + \frac{2}{5}$
R6 $\frac{2}{5} + \min\{\frac{3}{5}$ $\frac{3}{5}, -\frac{1}{3}$ $rac{1}{3} + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{12}$), $-\frac{1}{30} + (\frac{9}{5})$ $(\frac{9}{5} - \frac{6}{11})$ } = 0 by R3.1, R4, R5.2, R6.

Claim 3.2. *Suppose d*(*v*) ≥ 6*,* $m_{5^+}(v) = d(v)$ *, and* $n_{st}(v) = t$ *. If* $1 \le t \le d(v) - 1$ *, then* $m_{6^+}(v) \ge t + 1$ *,* $w.l.o.g., m_{6^+}(v) \geq t \text{ for } t \geq 0.$

Case 5. $d(v) = 6$ and then $\omega(v) = 0$.

Claim 3.3. *Consider that v is a light vertex. Suppose that w is a 2-neighbor of v and u is a 3(1) neighbor of v. Then m*₄-(*w*) = 0 *and uv is not incident with 3-face. If v is incident with a configuration A-face f contains 2-neighbors and 3(1)-neighbor of v, then* $\tau(f \to v) \ge \frac{69}{55}$.

Proof. By Lemma [2.5,](#page-2-3) $m_4(w) = 0$. If $m_3(w) = 1$, then there is a Δ -vertex in $N(v)$ by Lemma [2.1,](#page-2-0) which means *v* is a heavy vertex, a contradiction. Suppose that *uv* is incident with 3-face. Then there is a $(Δ – 1)⁺$ -vertex in $N(v)$, which implies that *v* is a heavy vertex, a contradiction. Next, consider that *v* is incident with the configuration A-face *f* and *f* is incident with a 2-neighbor and a 3(1)-neighbor of *v*. By R8.1, it is easy to know that $\tau(f \to v) \ge \frac{9}{5}$ $\frac{9}{5} - \frac{6}{11} = \frac{69}{55}$ $\frac{69}{55}$.

Subcase 5.1. Suppose $n_2(v) = 0$. If *v* is a heavy vertex, then $n_3(v) \le 5$. According to R1, $\sum_{ }^{6}$ $\sum_{i=1}^{\infty} \tau(f_i \to v) \geq \min\{\frac{4}{5}\}$ $\frac{4}{5} \times 6, 5$ = $\frac{24}{5}$ $\frac{24}{5}$. Therefore, $\omega'(v) \geq \frac{24}{5}$ $\frac{24}{5}$ – 5 $\times \frac{7}{8}$ $\frac{7}{8} - \frac{2}{7}$ $\frac{2}{7}$ = $\frac{39}{280}$ by R3.4, R4. Otherwise, consider that *v* is a light vertex. If $m_{4}(v) = 1$, then $n_{st}(v) \le 4$ by Claim [3.2.](#page-6-1) Then ..
th $'(v) \ge 5 - 4 \times \frac{7}{8}$ $\frac{7}{8} - \frac{3}{4}$ $rac{3}{4} - \frac{11}{20} = \frac{1}{5}$ $\frac{1}{5}$ by R1, R3.3, R3.4 and Claim [3.1.](#page-6-0) Consider that $m_{5^+}(v) = 6$. If $n_{st}(v) \le 4$, then $\omega'(v) \geq \frac{4}{5}$
It follows that $\frac{4}{5} \times 6 - 4 \times \frac{7}{8}$ $\frac{7}{8} - \frac{11}{20} \times 2 = \frac{1}{5}$ $\frac{1}{5}$ by R1, R3.3, R3.4. If $n_{st}(v) \ge 5$, then $m_{6^+}(v) = 6$ by Claim [3.2.](#page-6-1) It follows that $\omega'(v) \ge 6 - 6 \times \frac{7}{8}$
Subcase 5.2 Suppose $n_2(v)$ $\frac{7}{8} = \frac{3}{4}$ $\frac{3}{4}$ by R1, R3.4.

Subcase 5.2. Suppose $n_2(v) = 1$. If *v* is a heavy vertex, then either $n_3(v) + n_4(v) \le 4$ or $n_4(v) = 5$, which derives that $\tau(v \to 3\text{-}neighbours) + \tau(v \to 4\text{-}neighbors) \le \max\{\frac{7}{8}\}$ $\frac{7}{8} \times 4, \frac{2}{7}$ $\frac{2}{7} \times 5$ } = $\frac{7}{2}$ $\frac{7}{2}$ by R3.4, R4. According to R1, R2, $-\tau(v \rightarrow 2\text{-neighbor}) + \sum_{i=1}^{6}$ $\sum_{i=1}^{5} \tau(f_i \to v) \ge \min\{-\frac{10}{7} + \frac{8}{7}\}$ $\frac{8}{7}+4,-\frac{5}{4}$ $\frac{5}{4} + \frac{1}{2}$ $\frac{1}{2} + 5, -\frac{6}{5}$ $\frac{6}{5} + \frac{4}{5}$ $\frac{4}{5}$ \times $6, -1 + 5$ } = $\frac{18}{5}$
then $n_y(y) < 3$ $\frac{18}{5}$. Therefore, $\omega'(v) \ge \frac{18}{5}$
3 by Claim 3.2 and Claim $\frac{18}{5} - \frac{7}{2}$ $\frac{7}{2} = \frac{1}{10}$. Consider that *v* is a light vertex. If m_{4} -(*v*) = 1, then $n_{st}(v) \le 3$ by Claim [3.2](#page-6-1) and Claim [3.3,](#page-7-0) and $\tau(v \to 2\text{-neighbor}) = 1$ by R2 and Claim [3.3.](#page-7-0) So $\omega'(v) \ge -1 + 5 = \frac{7}{6} \times 3 = \frac{3}{2} - \frac{11}{2} = \frac{3}{2}$ by R1 R3.3, R3.4, and Claim 3.1. Consider that $m_{st}(v) = 6$ $'(v) \ge -1 + 5 - \frac{7}{8}$ $\frac{7}{8} \times 3 - \frac{3}{4}$ $\frac{3}{4} - \frac{11}{20} = \frac{3}{40}$ by R1, R3.3, R3.4, and Claim [3.1.](#page-6-0) Consider that $m_{5^+}(v) = 6$. Suppose $n_{st}(v) = t \le 5$. Then $-\tau(v \to 2\text{-neighbor}) + \sum_{i=1}^{6} \tau(f_i \to v) \ge -\frac{6}{5} + t + \frac{4}{5}$ *i*=1 $\frac{4}{5}(6-t)=\frac{1}{5}$ $rac{1}{5}t + \frac{18}{5}$ $\frac{18}{5}$ by R1, R2 and Claim [3.2.](#page-6-1) Thereby, $\omega'(v) \ge \frac{1}{5}$
Subcase 5.3. Suppose $n_v(v) = 2$ It $rac{1}{5}t + \frac{18}{5}$ $\frac{18}{5} - \frac{7}{8}$ $\frac{7}{8}t - \frac{11}{20}(5-t) = -\frac{1}{8}$ $\frac{1}{8}t + \frac{17}{20} \ge \frac{9}{40}$ by R3.3, R3.4. **Subcase 5.3.** Suppose $n_2(v) = 2$. If *v* is a heavy vertex, then $n_3(v) + n_4(v) \le 3$. According to R1, R2, $-\tau(v \to 2\text{-}neighbours) + \sum_{i=1}^{6}$ $\sum_{i=1}^{5} \tau(f_i \to v) \ge \min\{-\frac{10}{7} - 1 + \frac{8}{7}\}$ $\frac{8}{7}+4,-\frac{5}{4}$ $\frac{5}{4} \times 2 + \frac{1}{2}$ $\frac{1}{2} + 5, -\frac{6}{5}$ $\frac{6}{5} \times 2 + \frac{4}{5}$ $\frac{4}{5} \times 6, -2 + 5$ } = $\frac{12}{5}$ $rac{12}{5}$. Note that $n_{9^+}(v) = 1$ if $n_3(v) = 3$. Clearly, $\omega'(v) \ge \frac{12}{5}$
P4. P5.3. Otherwise, consider that u is a light vertex $\frac{12}{5}$ + min{ $-\frac{7}{8}$ × 3 + $\frac{3}{5}$ $\frac{3}{5}, -\frac{7}{8}$ $\frac{7}{8} \times 2 - \frac{2}{7}$ $\frac{2}{7}$ } = $\frac{51}{140}$ by R3.4, R4, R5.3. Otherwise, consider that *v* is a light vertex. By Claim [3.3](#page-7-0) and R2, $\tau(v \rightarrow 2$ -*neighbors*) = 2. If $m_3(v) = 1$, then $n_{3(1)}(v) \le 2$ by Claim [3.3.](#page-7-0) Then $\omega'(v) \ge 5 - 2 - \frac{7}{8}$
 P2. P3.2. P3.4. If $m_3(v) = 1$, then $n_3(v) \le 2$ by Claim 3.2 and Clair $\frac{7}{8} \times 2 - \frac{1}{3}$ $\frac{1}{3} \times 2 = \frac{7}{12}$ by R1, R2, R[3.2](#page-6-1), R3.4. If $m_4(v) = 1$, then $n_{st}(v) \le 2$ by Claim 3.2 and Claim [3.3.](#page-7-0) Obviously, $\omega'(v) \ge -2 + 5 + 1 - 7 \times 2 - 11 \times 2 = 13$ by R1, R2, R3.3, R3.4, and Claim 3.1. Finally consider that $m_4(v) = 6$. $-2+5+\frac{1}{2}-\frac{7}{8}\times2-\frac{11}{20}\times2=\frac{13}{20}$ by R1, R2, R3.3, R3.4, and Claim [3.1.](#page-6-0) Finally, consider that $m_{5+}(v)=6$. Suppose $n_{st}(v) = t \le 4$. If $t = 0$, then $\omega'(v) \ge -\frac{6}{5} \times 2 + \frac{4}{5}$
then $\omega'(v) \ge -\frac{6}{5} \times 2 + t + 1 + \frac{4}{5} (5 - t) - \frac{7}{5} t - \frac{11}{14} (4 - t)$ $\frac{4}{5} \times 6 - \frac{11}{20} \times 4 = \frac{1}{5}$ $\frac{1}{5}$ by R1, R2, R3.3; if $1 \le t \le 3$, then $\omega'(v) \ge -\frac{6}{5} \times 2 + t + 1 + \frac{4}{5}$
Claim 3.2: if $t - 4$, then $m_{\infty}(v)$. $rac{4}{5}(5-t)-\frac{7}{8}$ $\frac{7}{8}t - \frac{11}{20}(4-t) = -\frac{1}{8}$ $\frac{1}{8}t + \frac{2}{5}$ $\frac{2}{5} \geq \frac{1}{40}$ by R1, R2, R3.3, R3.4 and Claim [3.2;](#page-6-1) if $t = 4$, then $m_{6}(v) \ge 5$ and v has two 2-neighbors of Class four or Class five. Moreover, $y'(v) \ge \min\{-\frac{11}{10}, -1\} \times 2 + 5 + \frac{4}{5}$
Subcase 5.4. Suppose $y_1(v)$ – $rac{4}{5} - \frac{7}{8}$ $\frac{7}{8} \times 4 = \frac{1}{10}$ by R1, R2, R3.4.

Subcase 5.4. Suppose $n_2(v) = 3$. If *v* is a heavy vertex, then $n_3(v) + n_4(v) \le 2$. Clearly, $n_{10^+}(v) = 1$ if $n_3(v) = 2$. Hence, $\omega'(v) \ge -\frac{6}{5} \times 3 + \frac{4}{5}$
P4 P6 Otherwise consider that y is a 1 $\frac{4}{5} \times 6 + \min\{-\frac{7}{8} \times 2 + (\frac{9}{5})\}$ $(\frac{9}{5} - \frac{6}{10}), -\frac{7}{8}$
1 then *n*₁ $rac{7}{8} - \frac{2}{7}$ $\left(\frac{2}{7}\right) = \frac{11}{280}$ by R1, R2, R3.4, R4, R6. Otherwise, consider that *v* is a light vertex. If $m_3(v) = 1$, then $n_{3(1)}(v) \le 1$ by Claim [3.3.](#page-7-0) Then Claim [3.2](#page-6-1) and Claim [3.3.](#page-7-0) So $\omega'(v) \ge 5 + \frac{1}{2}$
Consider that $m_v(v) = 6$. Suppose $v_v(v) =$ $'(v) \geq 5 - 3 - \frac{7}{8}$ $\frac{7}{8} - 2 \times \frac{1}{3}$ $\frac{1}{3} = \frac{11}{24}$ by R1, R2, R3.2, R3.4 and Claim [3.3.](#page-7-0) If $m_4(v) = 1$, then $n_{st}(v) \le 1$ by $\frac{1}{2}$ – 3 – $\frac{7}{8}$ $\frac{7}{8} - \frac{11}{20} \times 2 = \frac{21}{40}$ by R1, R2, R3.3, R3.4, and Claim [3.3.](#page-7-0) Consider that *m*₅⁺(*v*) = 6. Suppose *n_{st}*(*v*) = *t* ≤ 3. If *m_A*(*v*) ≥ 1, then ω'(*v*) ≥ $-\frac{6}{5}$ × 3+*t* + $\frac{4}{5}$ $\frac{4}{5}(6-t)+\frac{69}{55}-\frac{7}{8}$ $\frac{7}{8}t-$

 $\frac{11}{20}(3-t) = -\frac{1}{8}$ $\frac{1}{8}t + \frac{177}{220} \ge \frac{189}{440}$ by R1, R2, R3.3, R3.4, Claim [3.2](#page-6-1) and Claim [3.3.](#page-7-0) Consider that $m_A(v) = 0$. Suppose $n_{st}(v) = 0$. If $n_{3(1)}(v) = 0$, then $\omega'(v) \ge -\frac{6}{5} \times 3 + \frac{4}{5}$
then $m_{st}(v) > 2$ and v has at least two 2-peighbors of C $\frac{4}{5} \times 6 - \frac{1}{3}$ $\frac{1}{3} \times 3 = \frac{1}{5}$ $\frac{1}{5}$ by R1, R2, R3.2. If $n_{3(1)}(v) \ge 1$, then $m_{6^+}(v) \ge 2$ and *v* has at least two 2-neighbors of Class four or Class five by Lemma [2.6.](#page-3-1) Hence, ້
h $y'(v) \geq -\frac{6}{5} - \frac{11}{10} \times 2 + 2 + \frac{4}{5}$ $\frac{4}{5} \times 4 - \frac{11}{20} \times 3 = \frac{3}{20}$ by R1, R2, R3.3. Consider that $n_{st}(v) = 1$. Then $m_{6^+}(v) \ge 2$ by Claim [3.2.](#page-6-1) Note that $m_{6^+}(v) \ge 4$ if $n_{3(1)}(v) = 2$; $m_{6^+}(v) \ge 5$ if $n_{3(1)}(v) = 3$ by Lemma [2.6.](#page-3-1) Therefore, $-\tau(v \to 3\text{-}neighbors) + \sum_{i=1}^{6}$ $\sum_{i=1}^{5} \tau(f_i \to v) \ge -\frac{7}{8} + \min\{-\frac{11}{20} - \frac{1}{3}\}$ $\frac{1}{3}+4+\frac{4}{5}$ $\frac{4}{5} \times 2, -\frac{11}{20} \times 2 + 5 + \frac{4}{5}$ $\frac{4}{5}, -\frac{1}{3}$ $\frac{1}{3} \times 2 + 2 + \frac{4}{5}$ $\frac{4}{5} \times 4$ = $\frac{439}{120}$ 120 by R1, R3.2, R3.3. Hence, $\omega'(v) \ge -\frac{6}{5} \times 3 + \frac{439}{120} = \frac{7}{120}$ by R1, R3.4. If $n_{st}(v) \ge 2$, then $m_{6^+}(v) \ge 4$
and *y* has one Class five 2-neighbor and two 2-neighbors of Class four or Class five. Note that *y* and *v* has one Class five 2-neighbor and two 2-neighbors of Class four or Class five. Note that *v* is fake-adjacent a \triangle -vertex by Class five 2-vertex, which indicates that *v* receives at least $\frac{4}{5} - \frac{6}{12} = \frac{3}{10}$ by R7. Moreover, $\omega'(v) \ge -1 + \min\{-\frac{11}{10}, -1\} \times 2 + 4 + \frac{4}{5}$
Subcase 5.5. Suppose $n_2(v) = 4$. If y is a beavy yet $\frac{4}{5} \times 2 - \frac{7}{8}$ $\frac{7}{8} \times 3 + \frac{3}{10} = \frac{3}{40}$ by R1, R2, R3.4.

Subcase 5.5. Suppose $n_2(v) = 4$. If *v* is a heavy vertex, then $n_3(v) + n_4(v) \le 1$. Note that $n_{11^+}(v) = 1$ if $n_3(v) = 1$; $n_{10^+}(v) = 1$ if $n_4(v) = 1$. So $\omega'(v) \ge -\frac{6}{5} \times 4 + \frac{4}{5}$
by R1, R2, R3, A, R4, R6. Consider that *v* is a light vertex $\frac{4}{5} \times 6 + \min\{-\frac{7}{8} + (\frac{9}{5})\}$ $\frac{9}{5} - \frac{6}{11}$), $-\frac{2}{7}$ $\frac{2}{7} + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{10}$, 0} = 0
by Claim 3.3 by R1, R2, R3.4, R4, R6. Consider that *v* is a light vertex. If $m_3(v) = 1$, then $n_{3(1)}(v) = 0$ by Claim [3.3.](#page-7-0) So $\omega'(v) \ge 5-4-\frac{1}{3}$
Then $\omega'(v) > 5+\frac{1}{3}$ $\frac{1}{3} \times 2 = \frac{1}{3}$ $\frac{1}{3}$ by R1, R2, R[3.2](#page-6-1). If $m_4(v) = 1$, then $n_{st}(v) = 0$ by Claim 3.2 and Claim [3.3.](#page-7-0) Then $\omega'(v) \ge 5 + \frac{1}{2}$
then $\omega'(v) \ge -\frac{6}{5} \times$ $\frac{1}{2}$ – 4 – $\frac{11}{20}$ × 2 = $\frac{2}{5}$ $\frac{2}{5}$ by R1, R2, R3.3. Next, consider that $m_{5^+}(v) = 6$. If $m_A(v) \ge 2$, then $\omega'(v) \ge -\frac{6}{5} \times 4 + \frac{4}{5}$
m. (*v*) = 1. Note that m. $\frac{4}{5} \times 6 + \frac{69}{55} \times 2 - \frac{7}{8}$ $\frac{7}{8} \times 2 = \frac{167}{220}$ by R1, R2, R3.4, and Claim [3.3.](#page-7-0) Consider that $m_A(v) = 1$. Note that $m_{6^+}(v) \ge 3$ if $n_{st}(v) \ge 1$. Thus, $\omega'(v) \ge -\frac{6}{5} \times 4 + \frac{69}{55} + \min\{\frac{4}{55} - \frac{11}{55} \times 21 - \frac{23}{55} \text{ by } R1$. P2. P3.3. P3.4. and Claim 3.3. Finally suppose $m_A(v)$. $\frac{4}{5} \times 3 + 3 - \frac{7}{8}$ $\frac{7}{8} \times 2, \frac{4}{5}$ $\frac{4}{5}$ \times $6 - \frac{11}{20} \times 2$ = $\frac{23}{220}$ by R1, R2, R3.3, R3.4, and Claim [3.3.](#page-7-0) Finally, suppose $m_A(v) = 0$. If $n_{3(1)}(v) = 0$, then $m_{6}(v) \ge 2$ and *v* has either at least one Class five 2-neighbor or four Class four 2-neighbors. Hence, $\omega'(v) \ge \min\{-\frac{6}{5} \times 3 - 1 + 2 + \frac{4}{5}\}\$ $\frac{4}{5} \times 4 - \frac{1}{3}$ $\frac{1}{3} \times 2 + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{12}$, $-\frac{11}{10} \times 4 + 2 + \frac{4}{5}$

1) has at least two Class $\frac{4}{5} \times 4 - \frac{1}{3}$ $\frac{1}{3} \times 2$ = $\frac{2}{15}$ 15 by R1, R2, R3.2, R7. If $n_{3(1)}(v) = 1$, then $m_{6}(v) \ge 4$ and *v* has at least two Class five 2-neighbors by Lemma [2.6.](#page-3-1) Thus, $\omega'(v) \ge -\frac{6}{5} \times 2 - 2 + 4 + \frac{4}{5}$
R3.4, R7. If $n_{\text{max}}(v) = 2$, then $m_{\text{max}}(v) \ge 5$ and $\frac{4}{5} \times 2 - \frac{7}{8}$ $\frac{7}{8} + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{12}$) × 2 – $\frac{1}{3}$ $\frac{1}{3} = \frac{71}{120}$ by R1, R2, R3.2, R3.4, R7. If $n_{3(1)}(v) = 2$, then $m_{6^+}(v) \ge 5$ and *v* has four Class five 2-neighbors by Lemma [2.6.](#page-3-1) So $'(v)$ ≥ −4 + 5 + $\frac{4}{5}$ $rac{4}{5} - \frac{7}{8}$ $\frac{7}{8} \times 2 + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{12}$) × 4 = $\frac{5}{4}$ $\frac{5}{4}$ by R1, R2, R3.4, R7.

Subcase 5.6. Suppose $n_2(v) = 5$. If *v* is a heavy vertex, then $n_{12^+}(v) = 1$. This shows that $\omega'(v) \ge$
 $\le 5 + \frac{4}{3} \times 6 + (\frac{9}{2} - 6) = \frac{1}{2}$ by P1 P2 P6. Consider that y is a light vertex, which implies that $m_2(v) = 6$ $-\frac{6}{5}$ $\frac{6}{5} \times 5 + \frac{4}{5}$ $\frac{4}{5} \times 6 + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{12}$) = $\frac{1}{10}$ by R1, R2, R6. Consider that *v* is a light vertex, which implies that m_{5} +(*v*) = 6 by Claim [3.3.](#page-7-0) If $m_A(v) \ge 2$, then $\omega'(v) \ge -\frac{6}{5} \times 5 + \frac{4}{5}$
Consider that $m_A(v) = 1$. This implies that $m_A(v)$ $\frac{4}{5} \times 6 + \frac{69}{55} \times 2 - \frac{7}{8}$ $\frac{7}{8} = \frac{191}{440}$ by R1, R2, R3.4, and Claim [3.3.](#page-7-0) Consider that $m_A(v) = 1$. This implies that $m_{6^+}(v) \geq 3$ and *v* has at least one Class five 2-neighbor. It follows from R1, R2, R3.4, R7, and Claim [3.3](#page-7-0) that $\omega'(v) \ge -1-4 \times \frac{6}{5}$
Finally, suppose $m_v(v) = 0$, which means that $m_v(v) \ge 4$ and y has at $\frac{6}{5}$ + 3 + 3 $\times \frac{4}{5}$ $rac{4}{5} - \frac{7}{8}$ $\frac{7}{8} + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{12}$) + $\frac{69}{55} = \frac{123}{440}$. Finally, suppose $m_A(v) = 0$, which means that $m_{6^+}(v) \ge 4$ and *v* has at least three Class five 2-neighbors. So $\omega'(v) \ge -3 - \frac{6}{5}$
Subcase 5.7 $\frac{6}{5} \times 2 + 4 + \frac{4}{5}$ $\frac{4}{5} \times 2 - \frac{7}{8}$ $\frac{7}{8} + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{12}$ \times 3 = $\frac{9}{40}$ by R1, R2, R3.4, R7.

Subcase 5.7. Suppose $n_2(v) = 6$. Obviously, *v* is a light vertex. Then $m_{5^+}(v) = 6$ by Claim [3.3.](#page-7-0) If $m_A(v) \ge 2$, then $\omega'(v) \ge -\frac{6}{5} \times 6 + \frac{4}{5}$
 $m_A(v) > 5$ and whose at least four Class $\frac{4}{5} \times 6 + \frac{69}{55} \times 2 = \frac{6}{55}$ by R1, R2 and Claim [3.3.](#page-7-0) If $m_A(v) \le 1$, then $m_{6+}(v) \ge 5$ and *v* has at least four Class five 2-neighbors. Hence, $\omega'(v) \ge -4-\frac{6}{5}$
by **P1 P2 P7** $\frac{6}{5}$ \times 2+5+ $\frac{4}{5}$ $rac{4}{5} + (\frac{4}{5}$ $\frac{4}{5} - \frac{6}{12}$)×4 = $\frac{3}{5}$ 5 by R1, R2, R7.

Case 6. $d(v) = 7$ and then $\omega(v) = 1$.

Claim 3.4. *If light v is incident with a configuration A-face f and f is incident with 2-neighbors and 3(1)-neighbors of v, then* $\tau(f \to v) \ge \frac{9}{5}$ $\frac{9}{5} - \frac{6}{10} = \frac{6}{5}$ $\frac{6}{5}$.

Subcase 6.1. Suppose $n_2(v) = 0$. Clearly, $\omega'(v) \ge 1 + \min\{6, \frac{4}{5}\}$
A Suppose $n_2(v) = k > 1$. If y is a beavy vertex, then $n_2(v) + n_3$ $\frac{4}{5} \times 7$ – $\frac{12}{13} \times 7 = \frac{9}{65}$ by R1, R3.4. Suppose $n_2(v) = k \ge 1$. If *v* is a heavy vertex, then $n_2(v) + n_3(v) \le 6$. If $1 \le k \le 2$, then ້
h $y'(v) \ge 1 + \min\{-\frac{10}{7} - (k-1) + \frac{8}{7}\}$ $\frac{8}{7} + 5, -\frac{5}{4}$
that 3 $\frac{5}{4}k + \frac{1}{2}$ $\frac{1}{2} + 6, -\frac{6}{5}$ $\frac{6}{5}k + \frac{4}{5}$ $\frac{4}{5} \times 7, -k+6$ } – $\frac{12}{13} (6-k) - \frac{2}{7}$
- 1 then $\omega'(y) > 1 + \min$ $\frac{2}{7} = -\frac{18}{65}k + \frac{353}{455} \ge \frac{101}{455}$ by R1, R2, R3.4, R4. Consider that $3 \le k \le 6$. If m_4 -(*v*) = 1, then $\omega'(v) \ge 1 + \min\{-\frac{10}{7} - (k-1) + \frac{8}{7} + \frac{1}{2}$ $\frac{8}{7}$ +

 $5, -\frac{5}{4}$ $\frac{5}{4} \times 2 - (k - 2) + \frac{1}{2}$ $\frac{1}{2}$ + 6, -*k* + 6} – $\frac{12}{13}$ (6 – *k*) – $\frac{2}{7}$ $\frac{2}{7} = -\frac{1}{13}k + \frac{81}{91} \ge \frac{3}{7}$ $\frac{3}{7}$ by R1, R2, R3.4, R4. Next, suppose $m_{5+}(v) = 7$. If $3 \le k \le 4$, then $\omega'(v) \ge 1 - \frac{6}{5}$
by **P1**, **P2**, **P3** 4, **P4**, and Claim 3.2. Assumed $\frac{6}{5}k + (6 - k) + \frac{4}{5}$ $\frac{4}{5}(k+1) - \frac{12}{13}(6-k) - \frac{2}{7}$ $\frac{2}{7} = -\frac{31}{65}k + \frac{899}{455} \ge \frac{31}{455}$ 455 by R1, R2, R3.4, R4, and Claim [3.2.](#page-6-1) Assume that $k = 5$, we have $n_{10^{+}}(v) = 1$ if $n_3(v) = 1$. Then $n_{11^+}(v) = 1.$ So $\omega'(v) \ge 1 - \frac{6}{5}$
 Subcase 6.2 Consider the $'(v) \geq 1 - \frac{6}{5}$ $\frac{6}{5} \times 5 + \frac{4}{5}$ $\frac{4}{5} \times 7 + \min\{-\frac{12}{13} + (\frac{9}{5})\}$ $\frac{9}{5} - \frac{6}{10}$, $-\frac{2}{7}$
+ $\left(\frac{9}{5} - \frac{6}{10}\right)$ - $(\frac{2}{7}) = \frac{11}{35}$ by R1, R2, R3.4, R4, R6. If $k = 6$, then $\frac{6}{5} \times 6 + \frac{4}{5}$ $\frac{4}{5} \times 7 + (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{11}$) = $\frac{36}{55}$ by R1, R2, R3.4, R6.

Subcase 6.2. Consider that *v* is a light vertex. If *m*₃(*v*) = 1, then *n*₃₍₁₎(*v*) ≤ 6 − *k*. Then ω'(*v*) ≥ min⁽⁻¹⁰ − (*k*-1)+⁸ + 5 − *k*+6)- $\frac{12}{5}(6-k)-\frac{1}{2} = -\frac{1}{2}k+2^{30}$ ≥ $\frac{83}{2}$ by R1 R2 R3 2 R3 $1 + \min\{-\frac{10}{7} - (k-1) + \frac{8}{7}$ $\frac{8}{7}$ + 5, -*k* + 6} - $\frac{12}{13}$ (6 - *k*) - $\frac{1}{3}$
 $\frac{5}{7}$ (*k* - 1) + $\frac{1}{1}$ + 6 $\frac{1}{3} = -\frac{1}{13}k + \frac{230}{273} \ge \frac{83}{273}$ by R1, R2, R3.2, R3.4. If $m_4(v) = 1$, then $\omega'(v) \ge 1 + \min\{-\frac{5}{4} - (k-1) + \frac{1}{2}\}$ $\frac{1}{2} + 6, -\frac{5}{4}$ $\frac{5}{4} \times 2 - (k - 2) + \frac{1}{2}$ $\frac{1}{2} + 6, -k + 6$ - $\frac{12}{13}(7 - k) = -\frac{1}{13}k + \frac{7}{13} \ge 0$

3 then $\omega'(y) > 1 - \frac{6}{5}k + \min\{\frac{4}{5} \times 7\}$ by R1, R2, R3.4. Consider that $m_5+(v) = 7$. If $1 \le k \le 3$, then $\omega'(v) \ge 1 - \frac{6}{5}$
 $\frac{3}{2}(7 - k)(7 - k) + \frac{4}{5}k - \frac{12}{7} (7 - k) = -\frac{31}{5}k + \frac{20}{5} > \frac{7}{5}$ by R1, R2, R3.4 and Cla $\frac{6}{5}k + \min\{\frac{4}{5}\}$ $\frac{4}{5} \times 7 -$ 3 $\frac{3}{5}(7-k)$, $(7-k)+\frac{4}{5}$
4 < k < 5 If m, (y $\frac{4}{5}k - \frac{12}{13}(7 - k) = -\frac{31}{65}k + \frac{20}{13} \ge \frac{7}{65}$ by R1, R2, R3.4 and Claim [3.2.](#page-6-1) Suppose $4 \le k \le 5$. If $m_A(v) \ge 1$, then $\omega'(v) \ge -\frac{31}{65}k + \frac{20}{13} + \frac{6}{5}$
Consider that $k - 4$. Note that $m_B(v) > 2$ if $n_B(v) = 1$; m. $\frac{6}{5} \geq \frac{23}{65}$ by Claim [3.4.](#page-8-0) Suppose $m_A(v) = 0$. Consider that $k = 4$. Note that $m_{6^+}(v) \ge 2$ if $n_{st}(v) = 1$; $m_{6^+}(v) \ge 5$ if $n_{st}(v) \ge 2$. Therefore, −τ(*v* → 3 $neighbors) + \sum_{i=1}^{7} \tau(f_i \to v) \ge \min\{-\frac{12}{13} - \frac{3}{5}\}$ *i*=1 $\frac{3}{5} \times 2 + 2 + \frac{4}{5}$ $\frac{4}{5} \times 5, -\frac{12}{13} \times 3 + 5 + \frac{4}{5}$ $\frac{4}{5} \times 2, -\frac{3}{5}$ $\frac{3}{5} \times 3 + \frac{4}{5}$ $\frac{4}{5} \times 7$ } = $\frac{19}{5}$ $\frac{19}{5}$ by R1, R3.3, R3.4. So $\omega'(v) \geq 1 - \frac{6}{5}$
two Class five 2-peigbbors or on $\frac{6}{5} \times 4 + \frac{19}{5}$ $\frac{19}{5}$ = 0 by R2. If $k = 5$, then $m_{6^+}(v) \ge 3$ and *v* has either at least two Class five 2-neighbors or one Class five 2-neighbor and four Class four 2-neighbors. Therefore, ።
ג $'(v) \geq 1 + 3 + \frac{4}{5}$ $\frac{4}{5} \times 4 - \frac{12}{13} \times 2 + \min\{-\frac{6}{5} \times 3 - 2 + (\frac{4}{5})\}$ $\frac{4}{5} - \frac{6}{11}$ \times 2, $-\frac{11}{10}$ \times 4 -1 + $(\frac{4}{5})$
 \geq 2 then $\omega'(y)$ $> -\frac{31}{5}$ $k + \frac{2}{5}$ $\left(\frac{4}{5} - \frac{6}{11}\right)$ = $\frac{149}{715}$ by R1, R2, R3.4, R7. Finally, suppose $6 \le k \le 7$. If $m_A(v) \ge 2$, then $\omega'(v) \ge -\frac{31}{65}k + \frac{20}{13} + \frac{6}{5}$
Claim 3.4. Next, consider that $m_A(v) = 1$. If $k = 6$, then $m_B(v) \ge 4$ and y has at least two $\frac{6}{5} \times 2 \geq \frac{3}{5}$ $rac{3}{5}$ by Claim [3.4.](#page-8-0) Next, consider that $m_A(v) = 1$. If $k = 6$, then $m_{6^+}(v) \ge 4$ and *v* has at least two Class five 2-neighbors. Clearly, $\omega'(v) \ge 1 - 2 - \frac{6}{5}$
P.7, and Claim 3.4. If $k = 7$, then $m_{\text{C}}(v)$ $\frac{6}{5} \times 4 + 4 + \frac{4}{5}$ $\frac{4}{5} \times 3 - \frac{12}{13} + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{11}$) × 2 + $\frac{6}{5}$ $\frac{6}{5} = \frac{991}{715}$ by R1, R2, R3, R7, and Claim [3.4.](#page-8-0) If $k = 7$, then $m_{6}(v) \ge 6$ and v has at least five Class five 2-neighbors. Obviously, consider that $m_A(v) = 0$. If $k = 6$, then $m_{6^+}(v) \ge 5$ and v has at least four Class five 2-neighbors. Hence, $'(v) \ge 1 - 5 - \frac{6}{5}$ $\frac{6}{5} \times 2 + 6 + \frac{4}{5}$ $\frac{4}{5} + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{11}$) × 5 + $\frac{6}{5}$ $\frac{6}{5} = \frac{158}{55}$ by R1, R2, R3.4, R7, and Claim [3.4.](#page-8-0) Finally, Then $\omega'(v) \ge 1 - 7 + 7 = 1$ by R1, R2. $'(v) \geq 1-4-\frac{6}{5}$ $\frac{6}{5} \times 2 + \frac{4}{5}$ $\frac{4}{5} \times 2 + 5 - \frac{12}{13} + (\frac{4}{5})$ $\frac{4}{5} - \frac{6}{11}$) × 4 = $\frac{926}{715}$ by R1, R2, R3.4, R7. If $k = 7$, then $m_{6^+}(v) = 7$.

Case 7. $d(v) = 8$ and then $\omega(v) = 2$.

Claim 3.5. *If light v is incident with a configuration A-face f and f is incident with 2-neighbors of v, then* $\tau(f \to v) \geq \frac{9}{5}$ $\frac{9}{5} - \frac{6}{10} = \frac{6}{5}$ $\frac{6}{5}$.

If $m_{4}-(v) = 1$, then $\omega'(v) \ge 2 + \min\{-\frac{10}{7} - 7 + \frac{8}{7}\}$ $\frac{8}{7} + 6, -\frac{5}{4}$

If $k < 1$ $\frac{5}{4} \times 2 - 6 + \frac{1}{2}$ $\frac{1}{2} + 7, -8 + 7$ } = $\frac{5}{7}$
> 2 - $\frac{6}{5}k$ + min($\frac{4}{5}$) $\frac{5}{7}$ by R1, R2. Consider that $m_{5^+}(v) = 8$. Suppose $n_2(v) = k \le 8$. If $k \le 4$, then $\omega'(v) \ge 2 - \frac{6}{5}$
 $k(x) = k(x + \frac{4}{5}k - (8 - k)) = -\frac{3}{5}k + \frac{6}{5} > 0$ by P1, P2, P3, 4, P5, 1. Next, consider $\frac{6}{5}k + \min\{\frac{4}{5}\}$ $\frac{4}{5} \times 8 - \frac{9}{10} (8$ *k*), $(8 - k) + \frac{4}{5}$
Consider t $\frac{4}{5}k - (8 - k) = -\frac{3}{10}k + \frac{6}{5}$ $\frac{6}{5}$ ≥ 0 by R1, R2, R3.4, R5.1. Next, consider that *k* ≥ 5.

Consider that *v* is a heavy vertex. If $k = 5$, then either $n_3(v) + n_4(v) + n_5(v) \le 2$ or $n_4(v) \le 1$ and $n_4(v) + n_5(v) = 3$. Moreover, $\omega'(v) \ge 2 - \frac{6}{5}$
P3 A **P5** 1 **If** $k - 6$ then $n_2(v) + n_4(v) + n_5(v)$ $\frac{6}{5} \times 5 + \frac{4}{5}$ $\frac{4}{5} \times 8 + \min\{-1 \times 2, -\frac{9}{10} - \frac{3}{5} \}$
So $\omega'(y) > 2 - \frac{6}{5} \times 6 + \frac{4}{5} \times$ $\frac{3}{5} \times 2$ = $\frac{3}{10}$ by R1, R2, R3.4, R5.1. If $k = 6$, then $n_3(v) + n_4(v) + n_5(v) \le 1$. So $\omega'(v) \ge 2 - \frac{6}{5}$
by R1, R2, R3.4, R5.1. If $k = 7$, then $n_{12}(v) = 1$. Thus, $\omega'(v) \ge 2 - \frac{6}{5}$ $\frac{6}{5} \times 6 + \frac{4}{5}$ $\frac{4}{5} \times 8 + \min\{-1, -\frac{9}{10}\} = \frac{1}{5}$
+ $\frac{4}{5} \times 8 + (2 - 6) - 9$ 5 by R1, R2, R3.4, R5.1. If $k = 7$, then $n_{10^+}(v) = 1$. Thus, $\omega'(v) \ge 2 - \frac{6}{5}$
R1, R2, R6. Consider that *y* is a light vertex. If $m_v(v) > 1$, then $\omega'(v)$ $\frac{6}{5} \times 7 + \frac{4}{5}$ $\frac{4}{5} \times 8 + (\frac{9}{5})$ $(\frac{9}{5} - \frac{6}{10}) = \frac{6}{5}$ $\frac{6}{5}$ by R1, R2, R6. Consider that *v* is a light vertex. If $m_A(v) \ge 1$, then $\omega'(v) \ge 2 + \frac{4}{5}$
by R1, R2 and Claim 3.5. Next, consider that $m_A(v) = 0$. If $k = 5$, then n $\frac{4}{5} \times 8 - \frac{6}{5}$ $\frac{6}{5} \times 8 + \frac{6}{5}$ $\frac{6}{5} = 0$ by R1, R2 and Claim [3.5.](#page-9-0) Next, consider that $m_A(v) = 0$. If $k = 5$, then $m_{6^+}(v) \ge 2$ and *v* has either at least one Class five 2-vertex or four Class four 2-vertex. It follows from R1, R2, R3.4 that ت
م1 $y'(v) \ge 2 + \min\{-\frac{6}{5} \times 4 - 1, -\frac{6}{5}\}$
2 ast two Class five 2 peigbbors $\frac{6}{5} - \frac{11}{10} \times 4$ + 2 + $\frac{4}{5}$ $\frac{4}{5} \times 6 - 1 \times 3 = 0$. If $k \ge 6$, then $m_{6}(v) \ge 4$ and *v* has at least two Class five 2-neighbors. So $\omega'(v) \ge 2 - \frac{6}{5}$
Case 8. $d(v) = 9$ and then $\omega(v) = 3$ $\frac{6}{5}$ × 6 – 2 + $\frac{4}{5}$ $\frac{4}{5} \times 4 + 4 + (\frac{4}{5}$ $\frac{4}{5} - \frac{6}{10}$) × 2 = $\frac{2}{5}$ $\frac{2}{5}$ by R1, R2, R7. **Case 8.** $d(v) = 9$ and then $\omega(v) = 3$.

If m_{4} -(*v*) = 1, then $\omega'(v) \ge 3 + \min\{-\frac{10}{7} + \frac{8}{7}$
R1 R2 R3 4. Consider that $m_{\omega}(v) = 9$ $\frac{8}{7}$ + 7 – $\frac{8}{7}$ $\frac{8}{7} \times 8, -\frac{5}{4}$ $\frac{5}{4} \times 2 + \frac{1}{2}$ $rac{1}{2}+8-\frac{8}{7}$ $\frac{8}{7} \times 7, -\frac{8}{7}$ $\frac{8}{7} \times 9 + 8$ } = $\frac{4}{7}$ 7 by R1, R2, R3.4. Consider that $m_{5^+}(v) = 9$. Suppose $n_2(v) = k \le 8$. If $k \le 6$, then $\omega'(v) \ge$

 $3-\frac{6}{5}$ $\frac{6}{5}k + \min\left\{\frac{4}{5}\right\}$ $\frac{4}{5} \times 9 - (9 - k), (9 - k) + \frac{4}{5}$
t. consider 7 < k < 9 $rac{4}{5}k - \frac{8}{7}$ $\frac{8}{7}(9-k)\Big\} = -\frac{1}{5}$ $\frac{1}{5}k + \frac{6}{5}$ $\frac{6}{5} \ge 0$ by R1, R2, R3.4, R5.1, and Claim [3.2.](#page-6-1) Next, consider $7 \le k \le 9$.

Suppose that *v* is a heavy vertex. If $k = 7$, then either $n_3(v) + n_4(v) + n_5(v) + n_6(v) \le 1$ or $n_5(v) + n_6(v) =$ 2. Clearly, $\omega'(v) \geq 3 - \frac{6}{5}$ $\frac{6}{5} \times 7 + \frac{4}{5}$ $\frac{4}{5} \times 9 + \min \left\{-\frac{8}{7}\right\}$ $\frac{8}{7}, -\frac{3}{5}$ $\frac{3}{5} \times 2$ = $\frac{3}{5}$ $\frac{3}{5}$ by R1, R2, R3.4, R5.2. If $k = 8$, then $n_{9^+}(v) = 1$. Thereby, $\omega'(v) \geq 3 - \frac{6}{5}$
is not a big vertex then $\omega'(v) > 0$ $\frac{6}{5} \times 8 + \frac{4}{5}$ $\frac{4}{5} \times 9 = \frac{3}{5}$ $\frac{3}{5}$ by R1, R2. Consider that *v* is a light vertex. If *v* is not a big vertex, then $\omega'(v) \ge 0$. Next, suppose that *v* is a big vertex. For configuration B-face (See
Figure 1(b)) $\omega'(v') > 3 - \frac{6}{5} \times 8 + \frac{4}{5} \times 0 - \frac{3}{5}$ (i = 1.2) by P1. P7. So configuration B face has just on Figure 1(b)), $\omega'(v'_i)$
big vertex If $m_2(v'_i)$ $'_{i}$) ≥ 3 – $\frac{6}{5}$ $\frac{6}{5} \times 8 + \frac{4}{5}$ $\frac{4}{5} \times 9 = \frac{3}{5}$ $\frac{3}{5}$ (*i* = 1, 2) by R1∼R7. So configuration B-face has just one
 $\frac{1}{5}$ \times 0 – $\frac{6}{5}$ \times 0 + $\frac{3}{5}$ = 0 by P1_P2_P8_2_Suppose m=(y) = 0 big vertex. If $m_B(v) \ge 1$, then $\omega'(v) \ge 3 + \frac{4}{5}$
If $k = 7$, then $m_D(v) > 5$. Obviously, $\omega'(v)$ $\frac{4}{5} \times 9 - \frac{6}{5}$ $\frac{6}{5} \times 9 + \frac{3}{5}$ $\frac{3}{5}$ = 0 by R1, R2, R8.2. Suppose $m_B(v) = 0$. If $k = 7$, then $m_{6+}(v) \ge 5$. Obviously, $\omega'(v) \ge 3 + \frac{4}{5}$
 $k = 8$ then $m_{6+}(v) > 7$. So $\omega'(v) > 3 + \frac{4}{5} \times 2 + 7$. $\frac{4}{5} \times 4 + 5 - \frac{6}{5}$ $rac{6}{5} \times 7 - \frac{8}{7}$ $\frac{8}{7} \times 2 = \frac{18}{35}$ by R1, R2, R3.4. If $k = 8$, then $m_{6^{+}}(v) \ge 7$. So $\omega'(v) \ge 3 + \frac{4}{5}$
indicates that $\omega'(v) > 3 + 9 - 9 - 3$ $\frac{4}{5} \times 2 + 7 - \frac{6}{5}$ $\frac{6}{5} \times 8 - \frac{8}{7}$ $\frac{8}{7} = \frac{6}{7}$ $\frac{6}{7}$. If $k = 9$, then $m_{6^+}(v) = 9$, which indicates that $\omega'(v) \ge 3 + 9 - 9 = 3$.

Case 9. *d*(*v*) = *k* ≥ 10 and then $\omega(v) = k - 6$. Note that $2 - \frac{7}{k}$ *k* 9 $rac{9}{5} - \frac{6}{k}$ $\frac{6}{k} \geq \frac{6}{5}$ $\frac{6}{5}$.

If m_4 -(*v*) = 1, then $\omega'(v) \ge k - 6 + \min\{-\frac{10}{7} + k - 2 + \frac{8}{7} - (2 - \frac{7}{k})(k - 1) + (2 - \frac{7}{5}) + (k - 1) + (k -$ $\frac{8}{7}$ – (2 – $\frac{7}{k}$ $\frac{7}{k}$)(*k*−1), − $\frac{5}{4}$ $\frac{5}{4} + k - 1 + \frac{1}{2}$ $rac{1}{2} - (2 - \frac{7}{k})$ *k*)(*k*−1), *^k*[−] $1 - (2 - \frac{7}{k})$ $\frac{7}{k}$ (k) = 0 by R1, R2, R3.4. Next, consider that $m_{5}(v) = k$. Suppose $n_{st}(v) = t \ge 0$. Moreover, .
م $y'(v) \geq k - 6 + \frac{4}{5}$ $\frac{4}{5}(k-t)+t-(2-\frac{7}{k})$ $(\frac{7}{k})t - (\frac{9}{5})$ $\frac{9}{5} - \frac{6}{k}$ $\frac{6}{k}$)($k - t$) = $\frac{1}{k}$ $\frac{1}{k}$ *t* ≥ 0 by R1, R3.4, R6, and Claim [3.2.](#page-6-1) From the above argument, it is clear that $\omega'(\nu'_i)$ $'_{i}$) $\geq \frac{9}{5}$ $\frac{9}{5} - \frac{6}{d}$ $\frac{6}{d(v_i)}$ (*i* = 1, 2) for configuration A-face (See Figure 1(a)) by R1∼R7.

Next, it follows from the above argument that $\omega'(f) \ge 0$ if *f* is a configuration A-face or
of guestion B-face which derives that $\omega'(f) > 0$ for each $f \in E(G)$ configuration B-face, which derives that $\omega'(f) \ge 0$ for each $f \in F(G)$.
Therefore Theorem 1.6 is ground

Therefore, Theorem [1.6](#page-1-0) is proved.

4. Conclusions

It is difficult to consider $\chi_i(G)$ and $\chi_i^l(G)$ for planar graph *G* that has $g(G) \geq 4$. So we consider the case of *G* where it does not have a 4⁻-cycle intersecting with a 5⁻-cycle. In addition, we will try to explore whether there exists a constant *C* such that $\chi_i^l(G) \leq \Delta + C$ for *G* has disjoint 4⁻-cycles.

Author contributions

Yuehua Bu: Conceptualization; Hongrui Zheng: Writing-original & draft; Hongrui Zheng and Hongguo Zhu: Writing-review & editing. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12031018, 12201569).

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

- 1. O. V. Borodin, A. O. Ivanova, List injective coloring of planar graphs, *Discrete Math.*, 311 (2011), 154–165. https://doi.org/10.1016/[j.disc.2010.10.008](https://dx.doi.org/https://doi.org/10.1016/j.disc.2010.10.008)
- 2. Y. Bu, C. Huang, List injective coloring of a class of planar graphs without short cycles, *Discrete Math. Algorithms Appl.*, 10 (2018), 663–672. https://doi.org/10.1142/[S1793830918500684](https://dx.doi.org/https://doi.org/10.1142/S1793830918500684)
- 3. Y. Bu, K. Lu, List injective coloring of planar graphs with girth 5, 6, 8, *Discrete Appl. Math.*, 161 (2013), 1367–1377. https://doi.org/10.1016/[j.dam.2012.12.017](https://dx.doi.org/https://doi.org/10.1016/j.dam.2012.12.017)
- 4. J. Cai, W. Li, W. Cai, M. Dehmer, List injective coloring of planar graphs, *Appl. Math. Comput.*, 439 (2023), 127631. https://doi.org/10.1016/[j.amc.2022.127631](https://dx.doi.org/https://doi.org/10.1016/j.amc.2022.127631)
- 5. H. Chen, List injective coloring of planar graphs with girth at least five, *Bull. Korean Math. Soc.*, 61 (2024), 263–271. https://doi.org/10.4134/[BKMS.b230097](https://dx.doi.org/https://doi.org/10.4134/BKMS.b230097)
- 6. H. Chen, J. Wu, List injective coloring of planar graphs with girth g≥6, *Discrete Math.*, 339 (2016), 3043–3051. https://doi.org/10.1016/[j.disc.2016.06.017](https://dx.doi.org/https://doi.org/10.1016/j.disc.2016.06.017)
- 7. M. Chen, G. Hahn, A. Raspaud, W. Wang, Some results on the injective chromatic number of graphs, *J. Comb. Optim.*, 24 (2012), 299–318. https://doi.org/10.1007/[s10878-011-9386-2](https://dx.doi.org/https://doi.org/10.1007/s10878-011-9386-2)
- 8. Q. Fang, L. Zhang, Sharp upper bound of injective coloring of planar graphs with girth at least 5, *J. Comb. Optim.*, 44 (2022), 1161–1198. https://doi.org/10.1007/[s10878-022-00880-z](https://dx.doi.org/https://doi.org/10.1007/s10878-022-00880-z)
- 9. G. Hahn, J. Kratochvíl, J. Širáň, D. Sotteau, On the injective chromatic number of graphs, *Discrete Math.*, 256 (2002), 179–192. https://doi.org/10.1016/[S0012-365X\(01\)00466-6](https://dx.doi.org/https://doi.org/10.1016/S0012-365X(01)00466-6)
- 10. S. J. Kim, X. Lian, The square of every subcubic planar graph of girth at least 6 is 7-choosable, *Discrete Math.*, 347 (2024), 113963. https://doi.org/10.1016/[j.disc.2024.113963](https://dx.doi.org/https://doi.org/10.1016/j.disc.2024.113963)
- 11. W. Li, J. Cai, G. Yan, List injective coloring of planar graphs, *Acta Math. Appl. Sin. Engl. Ser.*, 38 (2022), 614–626. https://doi.org/10.1007/[s10255-022-1103-7](https://dx.doi.org/https://doi.org/10.1007/s10255-022-1103-7)
- 12. B. Lužar, Planar graphs with largest injective chromatic number, *IMFM Preprint series*, 48 (2010), $1-6.$
- 13. B. Lužar, R. Škrekovski, Counterexamples to a conjecture on injective colorings, Ars Math. *Contemp.*, 8 (2015), 291–295. https://doi.org/10.26493/[1855-3974.516.ada](https://dx.doi.org/https://doi.org/10.26493/1855-3974.516.ada)
- 14. B. Lužar, R. Škrekovski, M. Tancer, Injective coloring of planar graphs with few colors, *Discrete Math.*, 309 (2009), 5636–5649. https://doi.org/10.1016/[j.disc.2008.04.005](https://dx.doi.org/https://doi.org/10.1016/j.disc.2008.04.005)
- 15. G. Wegner, *Graphs with given diameter and a coloring problem*, Germany: University of Dortmund, 1977.
- 16. J. Yu, M. Chen, W. Wang, 2-Distance choosability of planar graphs with a restriction for maximum degree, *Appl. Math. Comput.*, 448 (2023), 127949. https://doi.org/10.1016/[j.amc.2023.127949](https://dx.doi.org/https://doi.org/10.1016/j.amc.2023.127949)

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)