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Abstract: An injective coloring of a graph G is a vertex coloring such that a pair of vertices obtain
distinct colors if there is a path of length two between them. It is proved in this paper that χl

i(G) ≤ ∆+4
if ∆ ≥ 12 when G does not have a 4−-cycle intersecting with a 5−-cycle. Our result improves a previous
result of Cai et al. in 2023, who showed that χl

i(G) ≤ ∆ + 4 when ∆ ≥ 12 and G has disjoint 5−-cycles.
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1. Introduction

Let G be a finite, simple, and planar graphs throughout this paper. A 2-distance k-coloring of G
is a mapping c : V(G) → {1, 2, · · · , k} such that the vertices whose distance is at most two receive
distinct colors. The 2-distance chromatic number is the least integer k such that G has a 2-distance
k-coloring, denoted by χ2(G). In 1977, Wegner [15] first defined the 2-distance coloring and proposed
the following conjecture:

Conjecture 1.1. Let G be a planar graph with maximum degree ∆. Then

χ2(G) ≤


7 i f ∆ = 3;
∆ + 5 i f 4 ≤ ∆ ≤ 7;⌊
3∆
2

⌋
+ 1 i f ∆ ≥ 8.

Recently, Kim and Lian [10] showed that each subcubic planar graph G has χ2(G) ≤ 7 if g(G) ≥ 6.
Then Yu et al. [16] proved that every planar graph G has χ2(G) ≤ 18 if ∆ ≤ 5, and χ2(G) ≤ 4∆ − 3 if
∆ ≥ 6.
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An in jective k-coloring of G is a mapping c : V(G) → {1, 2, · · · , k} such that c(u) , c(v) if there
is a path of length two between u and v. The in jective chromatic number of G is the smallest positive
integer k such that G is injectively k-colorable, denoted by χi(G). So it is clear that χi(G) ≤ χ2(G).
Give a list assignment, L = {L(v) : v ∈ V(G)}. A list injective coloring of G is an injective coloring
of G such that c(v) ∈ L(v) for each vertex v ∈ G. An injective L-coloring is an injective coloring such
that c(v) ∈ L(v) for any vertex v of G. Moreover, G is in jectively k-choosable if G has an injective
L-coloring for any L with |L(v)| ≥ k. The in jective choosability number of G is the smallest positive
integer k such that G is injectively k-choosable, denoted by χl

i(G).
In 2002, Hahn et al. [9] first defined the concept of injective coloring, and they applied it to the

theory of error-correcting codes. If the injective chromatic number of the hypercube Qn had been
shown to be exponential in n, then there would have been consequences for some complexity concerns
on random access machines. They gave a slightly smaller upper bound: χi(G) ≤ ∆2 −∆+ 1. The upper
bound is strengthened to χi(G) ≤ ∆2 − ∆ if ∆ ≥ 3 by Chen et al. [7]. In 2010, Lužar [12] gave the
following conjecture by studying Conjecture 1.1:

Conjecture 1.2. Let G be a planar graph with maximum degree ∆.

χi(G) ≤


5 i f ∆ = 3;
∆ + 5 i f 4 ≤ ∆ ≤ 7;⌊
3∆
2

⌋
+ 1 i f ∆ ≥ 8.

Many researchers have done many studies on this conjecture. For every K4-minor-free graph G,
Chen et al. [7] showed χi(G) ≤

⌈
3
2∆
⌉
. They conjectured χi(G) ≤

⌈
3
2∆
⌉

for every planar graph G, but
Lužar and Škrekovski [13] proved it was wrong.

Also, there are many results about planar graph G with girth restrictions.

Theorem 1.3. (Lužar et al. [14]) Let G be a planar graph and ∆ ≤ 3.
(1) If g(G) ≥ 19, then χi(G) ≤ 3;
(2) If g(G) ≥ 10, then χi(G) ≤ 4;
(3) If g(G) ≥ 7, then χi(G) ≤ 5.

Theorem 1.4. Suppose that planar graph G has g(G) ≥ 6.
(1) [6] χl

i(G) ≤ ∆ + 3;
(2) [3] If ∆ ≥ 8, then χl

i(G) ≤ ∆ + 2;
(3) [1] If ∆ ≥ 24, then χl

i(G) ≤ ∆ + 1.

Theorem 1.5. Suppose that planar graph G has g(G) ≥ 5.
(1) [5] χl

i(G) ≤ ∆ + 6;
(2) [2] If ∆ ≥ 11, then χl

i(G) ≤ ∆ + 4;
(3) [8] If ∆ ≥ 2339, then χi(G) ≤ ∆ + 1.

More recently, Li et al. [11] proved that if G is a planar graph with ∆ ≥ 22 that has no intersecting
4-cycles or triangles, then χl

i(G) ≤ ∆+ 4. Cai et al. [4] showed that χl
i(G) ≤ ∆+ 4 if G is a planar graph

with ∆ ≥ 12 that has disjoint 5−-cycles. We strengthen the result of Cai et al. [4] and allow that G has
5-cycles intersecting 5-cycles by proving Theorem 1.6.

Theorem 1.6. If G is a planar graph with ∆ ≥ 12 that has no 4−-cycles intersecting with 5−-cycles,
then χl

i(G) ≤ ∆ + 4.
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We define N(v) = {v1, v2, · · · , vk} and D(v) =
∑

1≤i≤k d(vi) for a k-vertex v. The number of k-
neighbors of v is denoted by nk(v). For a 2+-vetex v, if D(v) ≥ ∆ + 4 + d(v), then v is called a heavy
vertex; otherwise, v is called a light vertex. A k(l)-vertex is a k-vertex that has l 2-neighbors. For a path
xwy, if d(w) = 2, then we say x and y are f ake-ad jacent. The number of k-faces that are incident with
v, denoted mk(v). We say that 2-vertex v is of Class one(resp., Class two, Class three, Class f our,
Class f ive) if m3(v) = 1(resp., m4(v) = 1, m5(v) = 2, m5(v) = m6+(v) = 1, m6+(v) = 2). If a 3(1)-
vertex w has a Class one 2-neighbor, then w is called a strong 3(1)-vertex; otherwise, w is called a
weak 3(1)-vertex. The number of strong 3(1)-neighbors of w is denoted by nst(w). For k-vertex v, we
define f1, f2, · · · , fk as being incident with v. If two cycles have a common vertex, then we say they are
intersecting with each other.

Observation. If v is a Class one 2-vertex, then m7+(v) = 1; if v is a Class two 2-vertex, then
m6+(v) = 1.

2. Structural properties of critical graphs

With the intention of proving Theorem 1.6, we suppose instead that G is a counterexample with the
fewest edges, which indicates that χl

i(G) > ∆ + 4 and χl
i(H) ≤ ∆ + 4 for any H ⊂ G. For a partial

vertex coloring c of G and each vertex v, the forbidden color set is denoted by F(v), and L denotes an
arbitrary list assignment with |L(v)| ≥ ∆ + 4.

Lemma 2.1. There are no adjacent light vertices.

Proof. Suppose that u and v are distinct light vertices and uv ∈ E(G). By G having the fewest edges,
G − uv is injective L-choosable. Decolor u and v. Clearly, |F(v)| ≤ D(u) − d(u) ≤ ∆ + 3 and |F(u)| ≤
D(u) − d(u) ≤ ∆ + 3. So recolor u and v by c(u) ∈ L(u) − F(u) and c(v) ∈ L(v) − F(v). Then G has an
injective L-coloring, a contradiction. □

It is easy to know the following corollaries from Lemma 2.1.

Corollary 2.2. There are no adjacent 2-vertices, and δ(G) ≥ 2.

Corollary 2.3. Suppose 3 ≤ d(v) ≤ 5. If n2(v) ≥ 1, then v is a heavy vertex and n2(v) ≤ d(v) − 2.

Lemma 2.4. Let v be a 3(1)-vertex and u be a 5-vertex. If n2(u) ≥ 1, then uv < E(G).

Proof. Assume the assertion of the lemma is false that u is adjacent to v. Suppose that v1 is the 2-
neighbor of v and u1 is the 2-neighbor of u. By the choice of G, G − vv1 is injective L-choosable.
Remove the colors of v, u1, and v1. Clearly, |F(v)| ≤ ∆+ 3. Note that v1 and u1 are light vertices, which
indicates that |F(v1)| ≤ D(v1)− d(v1) ≤ ∆+ 3 and |F(u1)| ≤ D(u1)− d(u1) ≤ ∆+ 3. Thereby, we recolor
v, u1, and v1 in sequence, a contradiction. □

Lemma 2.5. Suppose that d(v) = 6 and v1 is a 2-neighbor of v. If m4(v1) = 1, then v is a heavy vertex.

Proof. Assume to the contrary that v is a light vertex. By G having the fewest edges, G − vv1 has an
injective L-coloring. Decolor v and v1. Clearly, |F(v1)| ≤ 5 + ∆ − 2 = ∆ + 3. Since v is a light vertex,
we have |F(v)| ≤ D(v) − d(v) ≤ ∆ + 3. So we can recolor v1 and v in sequence, a contradiction. □

AIMS Mathematics Volume 10, Issue 1, 1814–1825.
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Lemma 2.6. Let f = [v′1v1vv2v′2] be a 5-face with d(v) = 6, d(v1) = d(v′2) = 2, and d(v2) = 3. Then v is
a heavy vertex.

Proof. Assume to the contrary that v is a light vertex. Clearly, G − vv1 has an injective L-coloring.
Decolor v, v1, and v′2. Clearly, |F(v1)| ≤ d(v) − 1 + ∆ − 2 = ∆ + 3. It follows from v and v′2 being light
vertices that we can recolor v1, v, and v′2 in sequence, a contradiction. □

Lemma 2.7. Let v be a 3(1)-vertex. If v1 is a Class one 2-neighbor, then D(v) ≥ ∆ + 8.

Proof. Suppose to the contrary that D(v) ≤ ∆ + 7. By Corollary 2.3, we need to consider that D(v) =
∆ + 7. It follows from G having the fewest edges that G − vv1 has an injective L-coloring. Decolor v
and v1. Obviously, |F(v)| ≤ D(v) − d(v) − 1 ≤ ∆ + 3. Notice that v1 is a light vertex. So, we recolor v
and v1 in sequence, a contradiction. □

3. Proof of Theorem 1.6

Note that G has no 4−-cycles intersect with 5−-cycles. According to Euler’s formula |V(G)|+|F(G)|−
|E(G)| = 2, and

∑
v∈V(G)

d(v) =
∑

f∈F(G)
d( f ) = 2 |E(G)|, we derive the following equation:

∑
v∈V(G)

(d(v) − 6) +
∑

f∈F(G)

(2d( f ) − 6) = −12.

Then we construct the weight function ω(v) = d(v) − 6 for each v ∈ V(G) and ω( f ) = 2d( f ) − 6
for each f ∈ F(G), which means that

∑
x∈V(G)

⋃
F(G) ω(x) = −12. In this section, we get a new weight

function ω′(x) by assigning the weight. Thereby, we have the following contradiction:

0 ≤
∑

x∈V(G)
⋃

F(G)

ω′(x) =
∑

x∈V(G)
⋃

F(G)

ω(x) = −12.

It shows that G does not exist, so Theorem 1.6 is proved. Then τ(u → v) shows the weight that u
transfers to v, and τ(u → f → v) denotes the weight that u transfers to v by f , where u, v ∈ V(G) and
f ∈ F(G). Next, we introduce two face types of con f iguration A and con f iguration B. We define the
number of configuration A-face(resp., B-face) contain v as mA(v)(resp., mB(v)).

con f iguration A-face: Suppose f = [v′1v1vv2v′2] with 6 ≤ d(v) ≤ 8, 2 ≤ d(vi) ≤ 3, and d(v′i) ≥
10(i = 1, 2) (See Figure 1(a)). con f iguration B-face: Suppose f = [v′1v1vv2v′2] with d(v) = 9, d(vi) = 2
and d(v′i) ≥ 9(i = 1, 2) (See Figure 1(b)).

AIMS Mathematics Volume 10, Issue 1, 1814–1825.
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Figure 1. Discharging rule R8.

The discharging rules
R1 Let f be a 4+-face. Then τ( f → incident vertices) = 2 − 6

d( f ) .
R2 Let uv ∈ E(G) and d(u) ≥ 3. If v is a Class one(resp., Class two, Class three, Class four, Class

five) 2-vertex, then τ(u→ v) = 10
7 (resp., 5

4 ,
6
5 ,

11
10 , 1).

R3 Let d(v) = 3 and uv ∈ E(G).
R3.1 Suppose that v is a light 3(0)-vertex and u is a heavy vertex with 3 ≤ d(u) ≤ 7. Then

τ(u→ v) = 1
3 .

R3.2 Suppose that v is a heavy 3(0)-vertex. If d(u) = 4(resp., 5 ≤ d(u) ≤ 7), then τ(u → v) =
1
30 (resp., 1

3 ).
R3.3 Suppose that v is a weak 3(1)-vertex. Assume m3(v) = 1, if d(u) = 5(resp., 6, 7, 8,

9), then τ(u → v) = 7
10 (resp., 3

4 ,
4
5 ,

9
10 ,

11
10 ). Assume m4+(v) = 3, if d(u) = 5(resp., 6, 7, 8, 9), then

τ(u→ v) = 1
2 (resp., 11

20 ,
3
5 ,

9
10 , 1).

R3.4 Suppose that v is a strong 3(1)-vertex. If d(u) = 6(resp., 7, 8, 9), then τ(u → v) =
7
8 (resp., 12

13 , 1,
8
7 ). If d(u) ≥ 10, then τ(u→ v) = 2 − 7

d(u) .
R4 Let d(v) = 4 and uv ∈ E(G). If d(u) = 5(resp., 6 ≤ d(u) ≤ 7), then τ(u→ v) = 1

30 (resp., 2
7 ).

R5 Suppose 8 ≤ d(u) ≤ 9 such that uv ∈ E(G).
R5.1 If d(v) = 3, 4 except for 3(1)-vertex, then τ(u → v) = 9

10 when d(u) = 8 and τ(u → v) = 1
when d(u) = 9.

R5.2 If d(v) = 5, then τ(u→ v) = 3
5 .

R5.3 If d(v) = 6, then τ(u→ v) = 3
5 when d(u) = 9.

R6 Suppose 3 ≤ d(v) ≤ 8 except for strong 3(1)-vertex. If d(u) ≥ 10 such that uv ∈ E(G), then
τ(u→ v) = 9

5 −
6

d(u) ≥
6
5 .

R7 Let d(u) ≥ 10 and 6 ≤ d(v) ≤ 8. If u is fake-adjacent to v by a Class five 2-vertex, then
τ(u→ v) = 4

5 −
6

d(u) .
R8 Suppose f = [v′1v1vv2v′2]. After R1∼R6, the 9-vertex v is called big 9-vertex if ω′(v) < 0.

R8.1 If f is a configuration A-face, then τ(v′i → f ) = 9
10 −

3
d(v′i )

(i = 1, 2) through v′1v′2 and

τ( f → v) ≥ 9
5 −

6
min{d(v′1),d(v′2)} (See Figure 1(a)).

R8.2 If v is a big vertex and f is a configuration B-face, then τ(v′i → f ) = 3
10 through v′1v′2 and f

transfers 3
5 to each big 9-vertex equally (See Figure 1(b)).

Firstly, we check ω′(v) for each v ∈ V(G).
Case 1. d(v) = 2 and then ω(v) = −4.

AIMS Mathematics Volume 10, Issue 1, 1814–1825.
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If v is a Class one 2-vertex, then m3(v) = m7+(v) = 1, which means that
2∑

i=1
τ( fi → v) ≥ 8

7 by R1.

Hence, ω′(v) ≥ −4+ 8
7 +

10
7 × 2 = 0 by R2. If v is a Class two 2-vertex, then m4(v) = m6+(v) = 1, which

indicates that
2∑

i=1
τ( fi → v) ≥ 1

2 + 1 = 3
2 by R1. So ω′(v) ≥ −4 + 3

2 +
5
4 × 2 = 0 by R2. Next, consider

that v is a Class three, Class four, or Class five 2-vertex. It resembles the above arguments that can be
obtained that ω′(v) ≥ −4 +min{ 65 × 2 + 4

5 × 2, 11
10 × 2 + 4

5 + 1, 2 + 2} = 0 by R1, R2.
Case 2. d(v) = 3 and then ω(v) = −3. Let N(v) = {v1, v2, v3} with d(v1) ≤ d(v2) ≤ d(v3).
Subcase 2.1. Suppose n2(v) = 0. If m4−(v) = 1, then m6+(v) = 2; otherwise, m5+(v) = 3. Then

3∑
i=1
τ( fi → v) ≥ min{2, 4

5×3} = 2 by R1. Consider that v is a light vertex, which means that vi(i = 1, 2, 3)

are heavy vertices by Lemma 2.1. According to R3.1, R5.1, R6,
3∑

i=1
τ(vi → v) ≥ 1

3×3 = 1. Then ω′(v) ≥

−3 + 2 + 1 = 0. Otherwise, consider that v is a heavy vertex. Suppose n3(v) = 0. If n4(v) = 0, then

n5+(v) = 3; if n4(v) ≥ 1, then either n9+(v) ≥ 1 or n7(v) = n8(v) = 1, which means that
3∑

i=1
τ(vi → v) ≥

min{ 13 ×3, 1
30 +1, 1

30 +
1
3 +

9
10 } = 1 by R3.2, R5.1, R6. Hence, ω′(v) ≥ −3+2+1 = 0. Suppose d(v1) = 3,

which indicates that τ(v → v1) ≤ 1
3 by R3.1. If d(v2) = 4, then d(v3) ≥ 12; if 5 ≤ d(v2) ≤ 7, then

d(v3) ≥ 9; otherwise, d(v2), d(v3) ≥ 8. So
3∑

i=2
τ(vi → v) ≥ min{ 1

30 + (9
5 −

6
12 ), 1

3 + 1, 9
10 × 2} = 4

3 by R3.2,

R5.1, R6. Furthermore, ω′(v) ≥ −3 + 2 − 1
3 +

4
3 = 0.

Subcase 2.2. Suppose d(v1) = 2. By Corollary 2.3, d(v2) + d(v3) ≥ ∆ + 5. Consider that v is a
weak 3(1)-vertex. Suppose m3(v) = 1. If d(v2) = 5, then d(v3) ≥ 12; if d(v2) = 6, then d(v3) ≥ 11; if

d(v2) = 7, then d(v3) ≥ 10; otherwise, d(v2) ≥ 8 and d(v3) ≥ 9. Therefore,
3∑

i=2
τ(vi → v) ≥ min{ 7

10 +

( 9
5 −

6
12 ), 3

4 + (9
5 −

6
11 ), 4

5 + (9
5 −

6
10 ), 9

10 +
11
10 } = 2 by R3.3, R5, R6. Thereby, ω′(v) ≥ −3+ 2− 1+ 2 = 0 by

R1, R2. If m4+(v) = 3, then −τ(v→ v1)+
3∑

i=1
τ( fi → v) ≥ min{− 5

4 +
1
2 +2,−6

5 +
4
5 ×3} = 6

5 by R1, R2. So

ω′(v) ≥ −3+ 6
5 +min{ 12 + (9

5 −
6

12 ), 11
20 + ( 9

5 −
6

11 ), 3
5 + ( 9

5 −
6
10 ), 9

10 +1} = 0 by R3.3, R6. Next, consider that

v is a strong 3(1)-vertex. By Lemma 2.7, d(v2)+d(v3) ≥ ∆+6. Moreover, −τ(v→ v1)+
3∑

i=1
τ( fi → v) ≥

−10
7 +

8
7 +1 = 5

7 by R1, R2. Thus, ω′(v) ≥ −3+ 5
7 +min{ 78 + (2− 7

12 ), 12
13 + (2− 7

11 ), 1+ (2− 7
10 ), 8

7 +
8
7 } = 0

by R3.4.
Case 3. d(v) = 4 and then ω(v) = −2. Let N(v) = {v1, v2, v3, v4} with d(v1) ≤ d(v2) ≤ d(v3) ≤ d(v4).
Subcase 3.1. Suppose n2(v) = 0. If m4−(v) = 1, then m6+(v) = 3; otherwise, m5+(v) = 4. So

4∑
i=1
τ( fi → v) ≥ min{3, 4

5 × 4} = 3 by R1. If v is a heavy vertex, then n3(v) ≤ 3. Note that n11+(v) ≥ 1 if

n3(v) = 3. Therefore, −τ(v→ 3-neighbors)+τ(11+-neighbor → v) ≥ min{−1
3×3+( 9

5−
6
11 ),−1

3×2} = −2
3

by R3.1, R6. Hence, ω′(v) ≥ −2+ 3− 2
3 =

1
3 . Otherwise, suppose that v is a light vertex, which implies

that vi(1 ≤ i ≤ 4) are not light 3-vertices by Lemma 2.1. Clearly, ω′(v) ≥ −2+ 3− 1
30 × 4 = 13

15 by R3.2.
Subcase 3.2. Suppose d(v1) = 2. By Corollary 2.3, d(v2) + d(v3) + d(v4) ≥ ∆ + 6. According

to R1, R2, if v1 is a Class one 2-vertex, then −τ(v → v1) +
4∑

i=1
τ( fi → v) ≥ − 10

7 +
8
7 + 2 = 12

7 ; if

v1 is a Class two 2-vertex, then −τ(v → v1) +
4∑

i=1
τ( fi → v) ≥ −5

4 +
1
2 + 3 = 9

4 ; if m5+(v) = 4, then

AIMS Mathematics Volume 10, Issue 1, 1814–1825.
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−τ(v → v1) +
4∑

i=1
τ( fi → v) ≥ −6

5 +
4
5 × 4 = 2; otherwise m6+(v1) = 2 and m4−(v) = 1, then −τ(v →

v1) +
4∑

i=1
τ( fi → v) ≥ −1 + 3 = 2. Therefore, −τ(v → v1) +

4∑
i=1
τ( fi → v) ≥ min{ 12

7 ,
9
4 , 2, 2} =

12
7 . If

n3(v) = 0, then n6+(v) ≥ 1; if n3(v) = 1, then n8+(v) ≥ 1; if n3(v) = 2, then n12+(v) = 1. This implies
that −τ(v → 3-neighbors) + τ(6+-neighbors → v) ≥ min{ 27 ,−

1
3 +

9
10 ,−

1
3 × 2 + (9

5 −
6
12 )} = 2

7 by R3.1,
R4, R5.1, R6. Moreover, ω′(v) ≥ −2 + 12

7 +
2
7 = 0.

Subcase 3.3. Suppose d(v1) = d(v2) = 2, which means that d(v3) + d(v4) ≥ ∆ + 4 by Corollary 2.3.

According to R1, R2, −τ(v → v1) − τ(v → v2) +
4∑

i=1
τ( fi → v) ≥ min{−10

7 − 1 + 8
7 + 2,−5

4 × 2 +
1
2 + 3,−6

5 × 2 + 4
5 × 4,−2 + 3} = 5

7 . If d(v3) = 4, then d(v4) ≥ 12; if d(v3) = 5, then d(v4) ≥ 11;

if 6 ≤ d(v3) ≤ 7, then d(v4) ≥ 9; otherwise, d(v3), d(v4) ≥ 8. This indicates that
4∑

i=3
τ(vi → v) ≥

min{ 95 −
6

12 ,
1

30 + (9
5 −

6
11 ), 2

7 + 1, 9
10 × 2} = 9

7 by R4, R5.1, R6. So ω′(v) ≥ −2 + 5
7 +

9
7 = 0.

Claim 3.1. Let 5 ≤ d(v) ≤ 7. Note that v is adjacent to at most one weak 3(1)-vertex that is incident
with a 3-face.

Case 4. d(v) = 5 and then ω(v) = −1.

Subcase 4.1. Suppose n2(v) = 0. According to R1,
5∑

i=1
τ( fi → v) ≥ min{4, 4 + 1

2 ,
4
5 × 5} = 4.

Therefore, ω′(v) ≥ −1+4− 7
10−

1
2×4 = 3

10 by R3.3 and Claim 3.1. Suppose n2(v) = 1, which implies that
v is a heavy vertex by Corollary 2.3 and n3(1)(v) = 0 by Lemma 2.4. Then n3(v)+ n4(v) ≤ 3. According

to R1, R2, −τ(v→ 2-neighbor)+
5∑

i=1
τ( fi → v) ≥ min{− 10

7 +
8
7 + 3,−5

4 +
1
2 + 4,−6

5 +
4
5 × 5,−1+ 4} = 19

7 .

Note that n10+(v) = 1 if n3(v) = 3. Therefore, −τ(v → 3-neighbors) − τ(v → 4-neighbors) + τ(10+-
neighbors → v) ≥ min{−1

3 × 3 + (9
5 −

6
10 ),−1

3 × 2 − 1
30 × 2} = −11

15 by R3.1, R3.2, R4, R6. Hence,
ω′(v) ≥ −1 + 19

7 −
11
15 =

103
105 .

Subcase 4.2. Suppose n2(v) = 2. This implies that v is a heavy vertex by Corollary 2.3, and
n3(1)(v) = 0 by Lemma 2.4. Then n3(v) + n4(v) ≤ 2. According to R1, R2, −τ(v → 2-neighbors) +
5∑

i=1
τ( fi → v) ≥ min{−10

7 − 1+ 8
7 + 3,−5

4 × 2+ 1
2 + 4,−6

5 × 2+ 4
5 × 5,−2+ 4} = 8

5 . Note that n11+(v) = 1 if

n3(v) = 2. Moreover, −τ(v→ 3-neighbors)− τ(v→ 4-neighbors)+ τ(11+-neighbor → v) ≥ min{−1
3 ×

2+( 9
5 −

6
11 ),−1

3 −
1
30 ×2} = −2

5 by R3.1, R4, R6. Thus, ω′(v) ≥ −1+ 8
5 −

2
5 =

1
5 . Suppose n2(v) = 3, which

means that v is a heavy vertex by Corollary 2.3, and n3(1)(v) = 0 by Lemma 2.4. Then n3(v)+n4(v) ≤ 1.

Clearly, −τ(v→ 2-neighbors)+
5∑

i=1
τ( fi → v) ≥ min{− 10

7 −2+ 8
7+3,−5

4×2−1+ 1
2+4,−6

5×3+ 4
5×5,−3+4} =

2
5 by R1, R2. If n3(v) = n4(v) = 0, then n8+(v) ≥ 1; if n3(v) = 1, then n12+(v) = 1; if n4(v) = 1, then
n11+(v) = 1. Moreover, ω′(v) ≥ −1 + 2

5 +min{ 35 ,−
1
3 + ( 9

5 −
6
12 ),− 1

30 + ( 9
5 −

6
11 )} = 0 by R3.1, R4, R5.2,

R6.

Claim 3.2. Suppose d(v) ≥ 6, m5+(v) = d(v), and nst(v) = t. If 1 ≤ t ≤ d(v) − 1, then m6+(v) ≥ t + 1,
w.l.o.g., m6+(v) ≥ t for t ≥ 0.

Case 5. d(v) = 6 and then ω(v) = 0.

AIMS Mathematics Volume 10, Issue 1, 1814–1825.



1821

Claim 3.3. Consider that v is a light vertex. Suppose that w is a 2-neighbor of v and u is a 3(1)-
neighbor of v. Then m4−(w) = 0 and uv is not incident with 3-face. If v is incident with a configuration
A-face f contains 2-neighbors and 3(1)-neighbor of v, then τ( f → v) ≥ 69

55 .

Proof. By Lemma 2.5, m4(w) = 0. If m3(w) = 1, then there is a ∆-vertex in N(v) by Lemma 2.1, which
means v is a heavy vertex, a contradiction. Suppose that uv is incident with 3-face. Then there is a
(∆− 1)+-vertex in N(v), which implies that v is a heavy vertex, a contradiction. Next, consider that v is
incident with the configuration A-face f and f is incident with a 2-neighbor and a 3(1)-neighbor of v.
By R8.1, it is easy to know that τ( f → v) ≥ 9

5 −
6

11 =
69
55 . □

Subcase 5.1. Suppose n2(v) = 0. If v is a heavy vertex, then n3(v) ≤ 5. According to R1,
6∑

i=1
τ( fi → v) ≥ min{ 45 × 6, 5} = 24

5 . Therefore, ω′(v) ≥ 24
5 − 5 × 7

8 −
2
7 =

39
280 by R3.4, R4.

Otherwise, consider that v is a light vertex. If m4−(v) = 1, then nst(v) ≤ 4 by Claim 3.2. Then
ω′(v) ≥ 5−4× 7

8 −
3
4 −

11
20 =

1
5 by R1, R3.3, R3.4 and Claim 3.1. Consider that m5+(v) = 6. If nst(v) ≤ 4,

then ω′(v) ≥ 4
5 × 6 − 4 × 7

8 −
11
20 × 2 = 1

5 by R1, R3.3, R3.4. If nst(v) ≥ 5, then m6+(v) = 6 by Claim 3.2.
It follows that ω′(v) ≥ 6 − 6 × 7

8 =
3
4 by R1, R3.4.

Subcase 5.2. Suppose n2(v) = 1. If v is a heavy vertex, then either n3(v) + n4(v) ≤ 4 or n4(v) = 5,
which derives that τ(v → 3-neighbors) + τ(v → 4-neighbors) ≤ max{78 × 4, 2

7 × 5} = 7
2 by R3.4, R4.

According to R1, R2, −τ(v → 2-neighbor) +
6∑

i=1
τ( fi → v) ≥ min{−10

7 +
8
7 + 4,−5

4 +
1
2 + 5,−6

5 +
4
5 ×

6,−1 + 5} = 18
5 . Therefore, ω′(v) ≥ 18

5 −
7
2 =

1
10 . Consider that v is a light vertex. If m4−(v) = 1,

then nst(v) ≤ 3 by Claim 3.2 and Claim 3.3, and τ(v → 2-neighbor) = 1 by R2 and Claim 3.3. So
ω′(v) ≥ −1 + 5 − 7

8 × 3 − 3
4 −

11
20 =

3
40 by R1, R3.3, R3.4, and Claim 3.1. Consider that m5+(v) = 6.

Suppose nst(v) = t ≤ 5. Then −τ(v→ 2-neighbor) +
6∑

i=1
τ( fi → v) ≥ − 6

5 + t + 4
5 (6 − t) = 1

5 t + 18
5 by R1,

R2 and Claim 3.2. Thereby, ω′(v) ≥ 1
5 t + 18

5 −
7
8 t − 11

20 (5 − t) = −1
8 t + 17

20 ≥
9

40 by R3.3, R3.4.
Subcase 5.3. Suppose n2(v) = 2. If v is a heavy vertex, then n3(v)+n4(v) ≤ 3. According to R1, R2,

−τ(v→ 2-neighbors)+
6∑

i=1
τ( fi → v) ≥ min{−10

7 −1+ 8
7 +4,−5

4 ×2+ 1
2 +5,−6

5 ×2+ 4
5 ×6,−2+5} = 12

5 .

Note that n9+(v) = 1 if n3(v) = 3. Clearly, ω′(v) ≥ 12
5 + min{−7

8 × 3 + 3
5 ,−

7
8 × 2 − 2

7 } =
51
140 by R3.4,

R4, R5.3. Otherwise, consider that v is a light vertex. By Claim 3.3 and R2, τ(v → 2-neighbors) = 2.
If m3(v) = 1, then n3(1)(v) ≤ 2 by Claim 3.3. Then ω′(v) ≥ 5 − 2 − 7

8 × 2 − 1
3 × 2 = 7

12 by R1,
R2, R3.2, R3.4. If m4(v) = 1, then nst(v) ≤ 2 by Claim 3.2 and Claim 3.3. Obviously, ω′(v) ≥
−2+5+ 1

2 −
7
8 ×2− 11

20 ×2 = 13
20 by R1, R2, R3.3, R3.4, and Claim 3.1. Finally, consider that m5+(v) = 6.

Suppose nst(v) = t ≤ 4. If t = 0, then ω′(v) ≥ −6
5 × 2+ 4

5 × 6− 11
20 × 4 = 1

5 by R1, R2, R3.3; if 1 ≤ t ≤ 3,
then ω′(v) ≥ − 6

5 × 2 + t + 1 + 4
5 (5 − t) − 7

8 t − 11
20 (4 − t) = −1

8 t + 2
5 ≥

1
40 by R1, R2, R3.3, R3.4 and

Claim 3.2; if t = 4, then m6+(v) ≥ 5 and v has two 2-neighbors of Class four or Class five. Moreover,
ω′(v) ≥ min{− 11

10 ,−1} × 2 + 5 + 4
5 −

7
8 × 4 = 1

10 by R1, R2, R3.4.
Subcase 5.4. Suppose n2(v) = 3. If v is a heavy vertex, then n3(v) + n4(v) ≤ 2. Clearly, n10+(v) = 1

if n3(v) = 2. Hence, ω′(v) ≥ − 6
5 × 3 + 4

5 × 6 + min{−7
8 × 2 + ( 9

5 −
6
10 ),−7

8 −
2
7 } =

11
280 by R1, R2, R3.4,

R4, R6. Otherwise, consider that v is a light vertex. If m3(v) = 1, then n3(1)(v) ≤ 1 by Claim 3.3. Then
ω′(v) ≥ 5 − 3 − 7

8 − 2 × 1
3 =

11
24 by R1, R2, R3.2, R3.4 and Claim 3.3. If m4(v) = 1, then nst(v) ≤ 1 by

Claim 3.2 and Claim 3.3. So ω′(v) ≥ 5+ 1
2 − 3− 7

8 −
11
20 × 2 = 21

40 by R1, R2, R3.3, R3.4, and Claim 3.3.
Consider that m5+(v) = 6. Suppose nst(v) = t ≤ 3. If mA(v) ≥ 1, thenω′(v) ≥ −6

5×3+t+ 4
5 (6−t)+ 69

55−
7
8 t−
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11
20 (3 − t) = −1

8 t + 177
220 ≥

189
440 by R1, R2, R3.3, R3.4, Claim 3.2 and Claim 3.3. Consider that mA(v) = 0.

Suppose nst(v) = 0. If n3(1)(v) = 0, thenω′(v) ≥ −6
5×3+ 4

5×6− 1
3×3 = 1

5 by R1, R2, R3.2. If n3(1)(v) ≥ 1,
then m6+(v) ≥ 2 and v has at least two 2-neighbors of Class four or Class five by Lemma 2.6. Hence,
ω′(v) ≥ −6

5 −
11
10 ×2+2+ 4

5 ×4− 11
20 ×3 = 3

20 by R1, R2, R3.3. Consider that nst(v) = 1. Then m6+(v) ≥ 2
by Claim 3.2. Note that m6+(v) ≥ 4 if n3(1)(v) = 2; m6+(v) ≥ 5 if n3(1)(v) = 3 by Lemma 2.6. Therefore,

−τ(v→ 3-neighbors)+
6∑

i=1
τ( fi → v) ≥ −7

8+min{− 11
20−

1
3+4+ 4

5×2,−11
20×2+5+ 4

5 ,−
1
3×2+2+ 4

5×4} = 439
120

by R1, R3.2, R3.3. Hence, ω′(v) ≥ − 6
5 × 3 + 439

120 =
7

120 by R1, R3.4. If nst(v) ≥ 2, then m6+(v) ≥ 4
and v has one Class five 2-neighbor and two 2-neighbors of Class four or Class five. Note that v is
fake-adjacent a ∆-vertex by Class five 2-vertex, which indicates that v receives at least 4

5 −
6

12 =
3

10 by
R7. Moreover, ω′(v) ≥ −1 +min{−11

10 ,−1} × 2 + 4 + 4
5 × 2 − 7

8 × 3 + 3
10 =

3
40 by R1, R2, R3.4.

Subcase 5.5. Suppose n2(v) = 4. If v is a heavy vertex, then n3(v)+ n4(v) ≤ 1. Note that n11+(v) = 1
if n3(v) = 1; n10+(v) = 1 if n4(v) = 1. So ω′(v) ≥ −6

5 ×4+ 4
5 ×6+min{−7

8 + ( 9
5 −

6
11 ),−2

7 + (9
5 −

6
10 ), 0} = 0

by R1, R2, R3.4, R4, R6. Consider that v is a light vertex. If m3(v) = 1, then n3(1)(v) = 0 by Claim 3.3.
So ω′(v) ≥ 5−4− 1

3 ×2 = 1
3 by R1, R2, R3.2. If m4(v) = 1, then nst(v) = 0 by Claim 3.2 and Claim 3.3.

Then ω′(v) ≥ 5 + 1
2 − 4 − 11

20 × 2 = 2
5 by R1, R2, R3.3. Next, consider that m5+(v) = 6. If mA(v) ≥ 2,

then ω′(v) ≥ − 6
5 × 4 + 4

5 × 6 + 69
55 × 2 − 7

8 × 2 = 167
220 by R1, R2, R3.4, and Claim 3.3. Consider that

mA(v) = 1. Note that m6+(v) ≥ 3 if nst(v) ≥ 1. Thus, ω′(v) ≥ −6
5 × 4 + 69

55 +min{ 45 × 3 + 3 − 7
8 × 2, 4

5 ×

6 − 11
20 × 2} = 23

220 by R1, R2, R3.3, R3.4, and Claim 3.3. Finally, suppose mA(v) = 0. If n3(1)(v) = 0,
then m6+(v) ≥ 2 and v has either at least one Class five 2-neighbor or four Class four 2-neighbors.
Hence, ω′(v) ≥ min{−6

5 × 3 − 1 + 2 + 4
5 × 4 − 1

3 × 2 + ( 4
5 −

6
12 ),−11

10 × 4 + 2 + 4
5 × 4 − 1

3 × 2} = 2
15

by R1, R2, R3.2, R7. If n3(1)(v) = 1, then m6+(v) ≥ 4 and v has at least two Class five 2-neighbors by
Lemma 2.6. Thus, ω′(v) ≥ − 6

5 × 2 − 2 + 4 + 4
5 × 2 − 7

8 + ( 4
5 −

6
12 ) × 2 − 1

3 =
71
120 by R1, R2, R3.2,

R3.4, R7. If n3(1)(v) = 2, then m6+(v) ≥ 5 and v has four Class five 2-neighbors by Lemma 2.6. So
ω′(v) ≥ −4 + 5 + 4

5 −
7
8 × 2 + (4

5 −
6

12 ) × 4 = 5
4 by R1, R2, R3.4, R7.

Subcase 5.6. Suppose n2(v) = 5. If v is a heavy vertex, then n12+(v) = 1. This shows that ω′(v) ≥
−6

5×5+ 4
5×6+( 9

5−
6

12 ) = 1
10 by R1, R2, R6. Consider that v is a light vertex, which implies that m5+(v) = 6

by Claim 3.3. If mA(v) ≥ 2, then ω′(v) ≥ −6
5×5+ 4

5×6+ 69
55×2− 7

8 =
191
440 by R1, R2, R3.4, and Claim 3.3.

Consider that mA(v) = 1. This implies that m6+(v) ≥ 3 and v has at least one Class five 2-neighbor. It
follows from R1, R2, R3.4, R7, and Claim 3.3 that ω′(v) ≥ −1−4× 6

5 +3+3× 4
5 −

7
8 + ( 4

5 −
6

12 )+ 69
55 =

123
440 .

Finally, suppose mA(v) = 0, which means that m6+(v) ≥ 4 and v has at least three Class five 2-neighbors.
So ω′(v) ≥ −3 − 6

5 × 2 + 4 + 4
5 × 2 − 7

8 + ( 4
5 −

6
12 ) × 3 = 9

40 by R1, R2, R3.4, R7.
Subcase 5.7. Suppose n2(v) = 6. Obviously, v is a light vertex. Then m5+(v) = 6 by Claim 3.3. If

mA(v) ≥ 2, then ω′(v) ≥ −6
5 × 6 + 4

5 × 6 + 69
55 × 2 = 6

55 by R1, R2 and Claim 3.3. If mA(v) ≤ 1, then
m6+(v) ≥ 5 and v has at least four Class five 2-neighbors. Hence,ω′(v) ≥ −4− 6

5×2+5+ 4
5+( 4

5−
6

12 )×4 = 3
5

by R1, R2, R7.
Case 6. d(v) = 7 and then ω(v) = 1.

Claim 3.4. If light v is incident with a configuration A-face f and f is incident with 2-neighbors
and 3(1)-neighbors of v, then τ( f → v) ≥ 9

5 −
6

10 =
6
5 .

Subcase 6.1. Suppose n2(v) = 0. Clearly, ω′(v) ≥ 1 + min{6, 4
5 × 7} − 12

13 × 7 = 9
65 by R1,

R3.4. Suppose n2(v) = k ≥ 1. If v is a heavy vertex, then n2(v) + n3(v) ≤ 6. If 1 ≤ k ≤ 2, then
ω′(v) ≥ 1+min{−10

7 − (k−1)+ 8
7 +5,−5

4k+ 1
2 +6,−6

5k+ 4
5 ×7,−k+6}− 12

13 (6− k)− 2
7 = −

18
65k+ 353

455 ≥
101
455

by R1, R2, R3.4, R4. Consider that 3 ≤ k ≤ 6. If m4−(v) = 1, then ω′(v) ≥ 1 +min{−10
7 − (k − 1) + 8

7 +
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5,−5
4 × 2− (k − 2)+ 1

2 + 6,−k + 6} − 12
13 (6− k)− 2

7 = −
1
13k + 81

91 ≥
3
7 by R1, R2, R3.4, R4. Next, suppose

m5+(v) = 7. If 3 ≤ k ≤ 4, then ω′(v) ≥ 1 − 6
5k + (6 − k) + 4

5 (k + 1) − 12
13 (6 − k) − 2

7 = −
31
65k + 899

455 ≥
31
455

by R1, R2, R3.4, R4, and Claim 3.2. Assume that k = 5, we have n10+(v) = 1 if n3(v) = 1. Then
ω′(v) ≥ 1 − 6

5 × 5 + 4
5 × 7 + min{− 12

13 + ( 9
5 −

6
10 ),−2

7 } =
11
35 by R1, R2, R3.4, R4, R6. If k = 6, then

n11+(v) = 1. So ω′(v) ≥ 1 − 6
5 × 6 + 4

5 × 7 + ( 9
5 −

6
11 ) = 36

55 by R1, R2, R3.4, R6.
Subcase 6.2. Consider that v is a light vertex. If m3(v) = 1, then n3(1)(v) ≤ 6 − k. Then ω′(v) ≥

1+min{− 10
7 −(k−1)+ 8

7+5,−k+6}− 12
13 (6−k)− 1

3 = −
1

13k+ 230
273 ≥

83
273 by R1, R2, R3.2, R3.4. If m4(v) = 1,

then ω′(v) ≥ 1+min{−5
4 − (k − 1)+ 1

2 + 6,−5
4 × 2− (k − 2)+ 1

2 + 6,−k + 6} − 12
13 (7− k) = − 1

13k + 7
13 ≥ 0

by R1, R2, R3.4. Consider that m5+(v) = 7. If 1 ≤ k ≤ 3, then ω′(v) ≥ 1 − 6
5k + min{ 45 × 7 −

3
5 (7 − k), (7 − k) + 4

5k − 12
13 (7 − k)} = −31

65k + 20
13 ≥

7
65 by R1, R2, R3.4 and Claim 3.2. Suppose

4 ≤ k ≤ 5. If mA(v) ≥ 1, then ω′(v) ≥ − 31
65k + 20

13 +
6
5 ≥

23
65 by Claim 3.4. Suppose mA(v) = 0.

Consider that k = 4. Note that m6+(v) ≥ 2 if nst(v) = 1; m6+(v) ≥ 5 if nst(v) ≥ 2. Therefore, −τ(v → 3-

neighbors) +
7∑

i=1
τ( fi → v) ≥ min{−12

13 −
3
5 × 2 + 2 + 4

5 × 5,−12
13 × 3 + 5 + 4

5 × 2,−3
5 × 3 + 4

5 × 7} = 19
5 by

R1, R3.3, R3.4. So ω′(v) ≥ 1 − 6
5 × 4 + 19

5 = 0 by R2. If k = 5, then m6+(v) ≥ 3 and v has either at least
two Class five 2-neighbors or one Class five 2-neighbor and four Class four 2-neighbors. Therefore,
ω′(v) ≥ 1 + 3 + 4

5 × 4 − 12
13 × 2 + min{−6

5 × 3 − 2 + ( 4
5 −

6
11 ) × 2,−11

10 × 4 − 1 + ( 4
5 −

6
11 )} = 149

715 by
R1, R2, R3.4, R7. Finally, suppose 6 ≤ k ≤ 7. If mA(v) ≥ 2, then ω′(v) ≥ −31

65k + 20
13 +

6
5 × 2 ≥ 3

5 by
Claim 3.4. Next, consider that mA(v) = 1. If k = 6, then m6+(v) ≥ 4 and v has at least two Class five
2-neighbors. Clearly, ω′(v) ≥ 1 − 2 − 6

5 × 4 + 4 + 4
5 × 3 − 12

13 + (4
5 −

6
11 ) × 2 + 6

5 =
991
715 by R1, R2, R3,

R7, and Claim 3.4. If k = 7, then m6+(v) ≥ 6 and v has at least five Class five 2-neighbors. Obviously,
ω′(v) ≥ 1 − 5 − 6

5 × 2 + 6 + 4
5 + ( 4

5 −
6

11 ) × 5 + 6
5 =

158
55 by R1, R2, R3.4, R7, and Claim 3.4. Finally,

consider that mA(v) = 0. If k = 6, then m6+(v) ≥ 5 and v has at least four Class five 2-neighbors. Hence,
ω′(v) ≥ 1−4− 6

5 ×2+ 4
5 ×2+5− 12

13 + ( 4
5 −

6
11 )×4 = 926

715 by R1, R2, R3.4, R7. If k = 7, then m6+(v) = 7.
Then ω′(v) ≥ 1 − 7 + 7 = 1 by R1, R2.

Case 7. d(v) = 8 and then ω(v) = 2.

Claim 3.5. If light v is incident with a configuration A-face f and f is incident with 2-neighbors of
v, then τ( f → v) ≥ 9

5 −
6
10 =

6
5 .

If m4−(v) = 1, then ω′(v) ≥ 2 + min{−10
7 − 7 + 8

7 + 6,−5
4 × 2 − 6 + 1

2 + 7,−8 + 7} = 5
7 by R1, R2.

Consider that m5+(v) = 8. Suppose n2(v) = k ≤ 8. If k ≤ 4, then ω′(v) ≥ 2 − 6
5k + min{ 45 × 8 − 9

10 (8 −
k), (8 − k) + 4

5k − (8 − k)} = − 3
10k + 6

5 ≥ 0 by R1, R2, R3.4, R5.1. Next, consider that k ≥ 5.
Consider that v is a heavy vertex. If k = 5, then either n3(v) + n4(v) + n5(v) ≤ 2 or n4(v) ≤ 1 and

n4(v) + n5(v) = 3. Moreover, ω′(v) ≥ 2 − 6
5 × 5 + 4

5 × 8 + min{−1 × 2,− 9
10 −

3
5 × 2} = 3

10 by R1, R2,
R3.4, R5.1. If k = 6, then n3(v) + n4(v) + n5(v) ≤ 1. So ω′(v) ≥ 2 − 6

5 × 6 + 4
5 × 8 +min{−1,− 9

10 } =
1
5

by R1, R2, R3.4, R5.1. If k = 7, then n10+(v) = 1. Thus, ω′(v) ≥ 2 − 6
5 × 7 + 4

5 × 8 + ( 9
5 −

6
10 ) = 6

5 by
R1, R2, R6. Consider that v is a light vertex. If mA(v) ≥ 1, then ω′(v) ≥ 2 + 4

5 × 8 − 6
5 × 8 + 6

5 = 0
by R1, R2 and Claim 3.5. Next, consider that mA(v) = 0. If k = 5, then m6+(v) ≥ 2 and v has
either at least one Class five 2-vertex or four Class four 2-vertex. It follows from R1, R2, R3.4 that
ω′(v) ≥ 2 +min{−6

5 × 4 − 1,−6
5 −

11
10 × 4} + 2 + 4

5 × 6 − 1 × 3 = 0. If k ≥ 6, then m6+(v) ≥ 4 and v has at
least two Class five 2-neighbors. So ω′(v) ≥ 2− 6

5 × 6− 2+ 4
5 × 4+ 4+ ( 4

5 −
6

10 )× 2 = 2
5 by R1, R2, R7.

Case 8. d(v) = 9 and then ω(v) = 3.
If m4−(v) = 1, then ω′(v) ≥ 3 + min{−10

7 +
8
7 + 7 − 8

7 × 8,−5
4 × 2 + 1

2 + 8 − 8
7 × 7,−8

7 × 9 + 8} = 4
7

by R1, R2, R3.4. Consider that m5+(v) = 9. Suppose n2(v) = k ≤ 8. If k ≤ 6, then ω′(v) ≥
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3 − 6
5k + min

{
4
5 × 9 − (9 − k), (9 − k) + 4

5k − 8
7 (9 − k)

}
= −1

5k + 6
5 ≥ 0 by R1, R2, R3.4, R5.1, and

Claim 3.2. Next, consider 7 ≤ k ≤ 9.
Suppose that v is a heavy vertex. If k = 7, then either n3(v)+n4(v)+n5(v)+n6(v) ≤ 1 or n5(v)+n6(v) =

2. Clearly, ω′(v) ≥ 3 − 6
5 × 7 + 4

5 × 9 + min
{
−8

7 ,−
3
5 × 2

}
= 3

5 by R1, R2, R3.4, R5.2. If k = 8, then
n9+(v) = 1. Thereby, ω′(v) ≥ 3 − 6

5 × 8 + 4
5 × 9 = 3

5 by R1, R2. Consider that v is a light vertex. If v
is not a big vertex, then ω′(v) ≥ 0. Next, suppose that v is a big vertex. For configuration B-face (See
Figure 1(b)), ω′(v′i) ≥ 3 − 6

5 × 8 + 4
5 × 9 = 3

5 (i = 1, 2) by R1∼R7. So configuration B-face has just one
big vertex. If mB(v) ≥ 1, then ω′(v) ≥ 3 + 4

5 × 9 − 6
5 × 9 + 3

5 = 0 by R1, R2, R8.2. Suppose mB(v) = 0.
If k = 7, then m6+(v) ≥ 5. Obviously, ω′(v) ≥ 3 + 4

5 × 4 + 5 − 6
5 × 7 − 8

7 × 2 = 18
35 by R1, R2, R3.4. If

k = 8, then m6+(v) ≥ 7. So ω′(v) ≥ 3 + 4
5 × 2 + 7 − 6

5 × 8 − 8
7 =

6
7 . If k = 9, then m6+(v) = 9, which

indicates that ω′(v) ≥ 3 + 9 − 9 = 3.
Case 9. d(v) = k ≥ 10 and then ω(v) = k − 6. Note that 2 − 7

k >
9
5 −

6
k ≥

6
5 .

If m4−(v) = 1, then ω′(v) ≥ k−6+min{−10
7 +k−2+ 8

7 −(2− 7
k )(k−1),−5

4 +k−1+ 1
2 −(2− 7

k )(k−1), k−
1 − (2 − 7

k )k} = 0 by R1, R2, R3.4. Next, consider that m5+(v) = k. Suppose nst(v) = t ≥ 0. Moreover,
ω′(v) ≥ k− 6+ 4

5 (k− t)+ t− (2− 7
k )t− ( 9

5 −
6
k )(k− t) = 1

k t ≥ 0 by R1, R3.4, R6, and Claim 3.2. From the
above argument, it is clear that ω′(v′i) ≥

9
5 −

6
d(v′i )

(i = 1, 2) for configuration A-face (See Figure 1(a)) by
R1∼R7.

Next, it follows from the above argument that ω′( f ) ≥ 0 if f is a configuration A-face or
configuration B-face, which derives that ω′( f ) ≥ 0 for each f ∈ F(G).

Therefore, Theorem 1.6 is proved.

4. Conclusions

It is difficult to consider χi(G) and χl
i(G) for planar graph G that has g(G) ≥ 4. So we consider the

case of G where it does not have a 4−-cycle intersecting with a 5−-cycle. In addition, we will try to
explore whether there exists a constant C such that χl

i(G) ≤ ∆ +C for G has disjoint 4−-cycles.
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