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Abstract: A recursive filtering problem on minimum variance is investigated for a type of
two-dimensional systems incorporating noise and a random parameter matrix in the measurement
equation, along with random nonlinearity. It methodically describes random variables using statistical
characteristics, placing a strong emphasis on the application of random multivariate analysis and
computational techniques. A bidirectional time-sequence recursive filter is designed to achieve
unbiasedness and reduce error variance effectively. This involves deriving the gain matrix through
a completion of squares method and solving a complex difference equation with two independent
variances. To facilitate the online implementation of this filter, various formulations and an algorithm
are proposed. A numerical study demonstrates the effectiveness of the design in practical applications.
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1. Introduction

During the past decades, two-dimensional (2D) systems have been extensively studied by virtue of
their practical applications in broadcasting signals in two directions, crucial in fields such as image
processing, heat diffusion phenomena and optics, manufacturing, multi-variable network realization,
seismic data detection and analysis, and chemical processes.The applications are successful due to the
existence of an interdependent two dimensional evolution process in the 2D systems. In practical
applications, it is well known that the remote power system, where both voltage and current of the
circuit vary with the time and space variables, can often be described by an approximate 2D system
when taking appropriate sampling periods into account. 2D discrete-time systems are mathematically
represented by difference equations involving two variables, with signals conveying along two
independent directions. Unlike the states of traditional one-dimensional (1D) models that evolve
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along a single direction, the essential characteristic of states in 2D systems evolving along two
independent directions significantly complicates the performance analysis and synthesis of these
systems. Consequently, filter design for both deterministic and stochastic 2D systems has emerged as
a focal point of numerous systematic studies. Building on the foundational concepts of 1D systems,
substantial theoretical advancements have been made in addressing 2D filtering problems, leading to
the development of several effective 2D filter algorithms that meet various practical requirements.

Several techniques have been developed to extend 1D Kalman filtering to two-dimensional case
following its initial development reported by A. Hahibi [1]. For 2D linear systems, fundamental
concepts have been introduced, and the algebraic realization of the spatial filtering problem has been
addressed in references [2] and [3]. It is worth noting that 1D Kalman filtering techniques are no
longer feasible when they are simply extended to the 2D case due to the inherently bidirectional
evolution of 2D systems. The number of state variables for a 2D filter is proportional to an L × L (L is
the duration of the filter) digital image, compared to L for the 1D Kalman filter, which has led to a
limited number of approximate or recursive filter designs and related research outcomes for 2D
systems. Approximate schemes for the 2D Kalman filter have been proposed to reduce the excessive
computational load, providing a theoretical foundation for the 2D Kalman filter [4, 5]. A new
recursively approximate filtering algorithm, paralleling the 1D Kalman filter, has been introduced for
a stationary 2D random field model [6]. A polynomial algorithm of the optimal Kalman-Bucy
filtering for a linear causal scalar system has been adopted [7]. Additionally, a recursive filter
incorporating edge information has been designed for noisy nonhomogeneous images, where the filter
combines a 1D predictor with a 1D fixed-interval smoother [8]. A recursive filter algorithm based on
the 1D variable representation has been proposed, utilizing geometry and crosscut partition methods
in 2D Fornasini-Marchesini II models [9].

The Kalman filtering algorithms for 2D systems described above have certain limitations,
including restrictive assumptions and extensive computational requirements. These algorithms
typically combine various 1D filters, smoothers, or predictors, which do not provide a systematic
filtering framework for 2D scenarios. Consequently, developing a systematic framework for 2D
filtering holds substantial theoretical and practical significance. To this end, a 2D Kalman filter has
been successfully implemented for discrete-time linear systems, with a pioneering algorithm designed
to have a modest computational load, as reported in [10]. Furthermore, to better capture the
complexities of actual 2D systems, it is necessary to consider some factors due to sudden changes in
the external environment and internal structural phenomena. A recursive 2D filter for shift-varying
systems incorporating degraded measurements and stochastic nonlinearity has been developed [11],
and a robust 2D filter has been designed for a class of 2D time-varying finite-horizon systems
incorporating incomplete measurements and norm-bounded parameter uncertainties [12]. More
recently, a recursive filter of locally minimum variance and a robust filter of the recursive structure
have been respectively developed for 2D systems with dynamic quantization effects meeting random
sensor failure and with bound variance noises in [13] and [14]. When 2D communication network
suffers from degraded measurements and other constraints reflecting the real world, a robust filtering
problem has been tackled for 2D amplify-and-forward relay systems [15]. When time-varying 2D
systems with delays undergo hybrid cyberattacks, an ultimately bounded event-triggered 2D filter has
been established with respect to 2D time-varying delays in [16]. Nonetheless, the above relevant
filtering results for 2D systems have been pertained to measurement matrices of degraded
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measurements or known shift-varying constant matrices. The existing research does not adequately
address 2D filtering results for more general 2D systems with measurement matrices covering
degraded measurements and known shift-varying constant matrices, leaving a significant gap in the
field. As such, it is of practical and theoretical significance to design a 2D recursive filter for the
rather general case of measurement matrix: the random parameter matrix. The measurement matrices
of degraded measurement in [11, 13] and [14, 15] or known shift-varying constant matrices
in [10, 12, 16] are the special cases of the proposed measurement matrix. Our attention is to bridge
this research deficit by developing filters for 2D systems that accommodate stochastic parameter
matrices in measurements and incorporate stochastic nonlinearity.

Inspired by the studies mentioned above and the idea of decomposing stochastic parameter
matrices and utilizing stochastic multivariate analysis and calculation for 1D nonlinear systems
in [17], we aim to present a recursive filter minimizing error variance for discrete-time 2D nonlinear
systems, incorporating a random parameter measurement matrix, and to design an algorithm with a
modest computational burden for this filter. The proposed 2D filter, designed to ensure unbiasedness
and minimize error variance, will be derived from the stochastic parameter matrix and stochastic
nonlinearity. The algorithm is to effectively online realize our presented recursive filter, which can be
numerically and iteratively computed by “scanning line by line”. Compared to existing work, the
considered system in the paper is more general and comprehensive, including not only stochastic state
nonlinearity, but also the random matrix in the measurement. We employ the mathematical induction
principle and stochastic analysis method of random variables in the analysis and design processes.
This paper first establishes a systematic framework for a 2D recursive filter and specifically designs
the filter for the state estimation problem of discrete-time 2D nonlinear systems incorporating random
parameter matrices in measurement.

The rest of this paper is arranged as follows: The 2D filtering problem is described in Section 2,
and a recursive 2D filter is designed in Section 3. The availability of the proposed filter is shown via a
numerical example in Section 4. Some conclusions are provided in Section 5. Some used notations in
the paper are listed as Table 1.

Table 1. Notation and its definition.

Notation Definition
Rn The n-dimensional Euclidean space
I The identity matrix carrying appropriate dimensions
0 The zero matrix having appropriate dimensions

X−1 Inverse of matrix X
XT Transpose of matrix X
Er{·} The mathematical expectation of stochastic variables

Co(x, y) The covariance matrix of two random variables x and y
[0 L] {0, 1, 2, · · · , L}
ϕ[0 L] {(q, r)|q, r ∈ [0 L]}
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2. Problem statement

For a given positive integer L, consider a 2D shift-varying system
x(q, r) =A1(q, r − 1)x(q, r − 1) + A2(q − 1, r)x(q − 1, r)

+ g(x(q, r − 1), ξ(q, r − 1)) + g(x(q − 1, r), ξ(q − 1, r))
+ B1(q, r − 1)w(q, r − 1) + B2(q − 1, r)w(q − 1, r),

y(q, r) =C(q, r)x(q, r) + v(q, r), q, r ∈ [1 L]

(2.1)

where x(q, r) ∈ Rn and y(q, r) ∈ Rm are the state and measurement output vectors, v(q, r) ∈ Rm and
w(q, r) ∈ Ra are the measurement and process noises. Matrices Ai(q, r) ∈ Rn×n and Bi(q, r) ∈ Rn×a are
known to be deterministic and time-varying for i = 1, 2, C(q, r) ∈ Rm×n is a random parameter matrix
with known statistical characteristics, which can be split into deterministic and random parts as in the
approach [18] and denoted by C(q, r) = C̄(q, r)+C̃(q, r), Er{C̃(q, r)} = 0. The function g(x(q, r), ξ(q, r))
is nonlinear; it represents the stochastic nonlinearity.

For the system (2.1), we shall make the following assumptions.
Assumption 1. The noises w(q, r) and v(q, r) are mutually independent zero-mean stochastic processes
with positive definite covariance matrices R(q, r) and Q(q, r).
Assumption 2. The random matrices C̃(q, r) and x(q, r) are independent.
Assumption 3. Function g(x(q, r), ξ(q, r)) has the same properties as in [11]:

g(0, ξ(q, r)) = 0, (2.2)
Er{g(x(s, t), ξ(s, t))|x(q, r)} = 0, (s, t) ∈ {(s1, t1)|s1 > q or t1 > r} ∪ (q, r), (2.3)
Er{g(x(q, r), ξ(q, r))gT (x(s, t), ξ(s, t))|x(q, r)}

=

d∑
j=1

Π jxT (q, r)Γ jx(q, r)δ(q, s)δ(r, t) (2.4)

where ξ(q, r) ∈ Rnξ is a random sequence with zero mean and variance σ2I, Π j and Γ j( j ∈ [1 d])
are known matrices, nξ and d are given positive integers. ξ(q, r), x(q, r), and C̃(q, r) are mutually
independent.
Assumption 4. Noises v(q, r),w(q, r), ξ(q, r) and matrix C̃(q, r) are mutually independent.
Assumption 5. x(q, 0) and x(0, r) are set as the initial states and are independent of the above random
variables. For q, i, r, j ∈ [0 L], the statistical traits are given:

Er{x(q, 0)} = u1(q), Er{x(0, r)} = u2(r),
Co{x(q, 0), x(i, 0)} = P(q, 0)δ(q, i),
Co{x(0, r), x(0, j)} = P(0, r)δ(r, j),
Co{x(q, 0), x(0, r)} = P(0, 0)δ(q, 0)δ(0, r)

where u1(q), u2(r), P(q, 0), and P(0, r) are known parameters, and u1(0) = u2(0).
Remark 1. The system (2.1) under investigation is a rather general model that includes stochastic
nonlinearity, noises, and the general case of measurement matrix: random parameter matrix. The
measurement matrices of degraded measurements in [11, 13–15] or known shift-varying constant
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matrices in [10, 12, 16] are the special cases of the proposed measurement. A new model of
measurement incorporating a random parameter matrix is proposed to characterize the phenomenon
of random measurement.

A recursive bidirectional time-sequence filter is designed for (2.1) as follows:x̂p(q, r) =A1(q, r − 1)x̂u(q, r − 1) + A2(q − 1, r)x̂u(q − 1, r),
x̂u(q, r) =x̂p(q, r) + K(q, r)[y(q, r) − C̄(q, r)x̂p(q, r)]

(2.5)

where x̂p(q, r) and x̂u(q, r) are the one-step prediction and the updated estimate of state x(q, r), K(q, r)
is the filter gain matrix to be designed for q, r ∈ [1 L]. The initial values of x̂u(q, r) are x̂u(q, 0) = u1(q)
and x̂u(0, r) = u2(r) for q, r ∈ [0 L].
Remark 2. The recursive bidirectional time-sequence filter satisfies the essential characteristic of
states in 2D systems evolving along two independent directions. This provides a systematic filtering
framework for 2D scenarios.

Let us define x̃p(q, r) = x(q, r)− x̂p(q, r) and x̃u(q, r) = x(q, r)− x̂u(q, r) as the errors of the prediction
and the estimation. Then, we obtain the following error dynamics from (2.1) and (2.5):

x̃p(q, r) =A1(q, r − 1)x̃u(q, r − 1) + A2(q − 1, r)x̃u(q − 1, r)
+ g(x(q, r − 1), ξ(q, r − 1)) + g(x(q − 1, r), ξ(q − 1, r))
+ B1(q, r − 1)w(q, r − 1) + B2(q − 1, r)w(q − 1, r),

x̃u(q, r) =[I − K(q, r)C̄(q, r)]x̃p(q, r) − K(q, r)[C̃(q, r)x(q, r) + v(q, r)].

(2.6)

Our goal is to design the above filter (2.5) so that E{x̃u(q, r)x̃T
u (q, r)}, which is the filter error variance,

is minimized at each pair (q, r), for (q, r) ∈ ϕ[0 L], and to propose an algorithm running in a modest
computational burden for this filter.

3. Main results

Our goal is to be achieved in this section. The gain parameter K(q, r) is solved, and the recursive
filter (2.5) for the 2D system (2.1) is designed to minimize the error variance. Then the online process
of solving the filter is listed. Before obtaining the desired results, we shall introduce the following
lemmas.
Lemma 1 ( [19]). Let A = (ai j)N1×N2 and B = (bi j)M1×M2 be random matrices with Ã = A − Er{A}
and B̃ = B − Er{B}. For any deterministic matrix C = (ci j)N2×M2 , then the (s,t)-th entry of the matrix
Er{ÃCB̃T }, s = 1, · · ·,N1, t = 1, · · ·,M1, is given by

(Er{ÃCB̃T })st =

N1∑
i=1

M2∑
j=1

Co(asi, b jt)ci j.

Lemma 2 ( [20]). Let A be a random matrix and x be a random vector. If they are independent, then

Er{AxxT AT } = Er{AEr{xxT }AT }.

AIMS Mathematics Volume 10, Issue 1, 1741–1756.



1746

3.1. Solving the filter gain

Matrix K(q, r) is to be solved according to the error variance minimized at each step in the
subsection.

In order to facilitate the notation, let us define

Pp(q, r) , Er{x̃p(q, r)x̃T
p (q, r)},

Pu(q, r) , Er{x̃u(q, r)x̃T
u (q, r)},

X(q, r) , Er{x(q, r)xT (q, r)}.

Then several conclusions are obtained based on Lemma 1 and Lemma 2 as below.
Theorem 1. Consider the 2D system (2.1) and the designed 2D filter (2.5) with initial values x̂u(q, 0) =

u1(q), q ∈ [0 L], and x̂u(0, r) = u2(r), r ∈ [0 L]; it is unbiased, that is, E{x̃u(q, r)} = 0 for (q, r) ∈ ϕ[0 L].
Proof. The proof is given in Appendix A.
Theorem 2. Consider the 2D system (2.1); for q, r ∈ [1 L], the second-order moment X(q, r) of state
x(q, r) has the following recursion:

X(q, r) = A1(q, r − 1)X(q, r − 1)AT
1 (q, r − 1) + A2(q − 1, r)X(q − 1, r)AT

2 (q − 1, r)
+A1(q, r − 1)Er{x(q, r − 1)xT (q − 1, r)}AT

2 (q − 1, r)
+A2(q − 1, r)Er{x(q − 1, r)xT (q, r − 1)}AT

1 (q, r − 1)

+

d∑
j=1

Π jtr{(X(q, r − 1) + X(q − 1, r))Γ j}

+B1(q, r − 1)R(q, r − 1)BT
1 (q, r − 1)

+B2(q − 1, r)R(q − 1, r)BT
2 (q − 1, r). (3.1)

Proof. The proof is given in Appendix B.
Theorem 3. The 2D second-order moment Pp(q, r) of the prediction error for (2.1) has the following
recursion:

Pp(q, r) = A1(q, r − 1)Pu(q, r − 1)AT
1 (q, r − 1) + A2(q − 1, r)Pu(q − 1, r)AT

2 (q − 1, r)
+A1(q, r − 1)Er{x̃u(q, r − 1)x̃T

u (q − 1, r)}AT
2 (q − 1, r)

+A2(q − 1, r)Er{x̃u(q − 1, r)x̃T
u (q, r − 1)}AT

1 (q, r − 1)

+

d∑
j=1

Π jtr{(X(q, r − 1) + X(q − 1, r))Γ j}

+B1(q, r − 1)R(q, r − 1)BT
1 (q, r − 1)

+B2(q − 1, r)R(q − 1, r)BT
2 (q − 1, r) (3.2)

for (q, r) ∈ ϕ[1 L].
Proof. The proof is given in Appendix C.
Theorem 4. Consider the system (2.1); the gain of filter (2.5) achieving the minimum error variance
of the estimation x̂u(q, r) is provided with

K(q, r) = Pp(q, r)C̄T (q, r)R−1
e (q, r) (3.3)
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where

Re(q, r) = C̄(q, r)Pp(q, r)C̄T (q, r) + Q(q, r) + Er{C̃(q, r)X(q, r)C̃T (q, r)},
Pp(q, r) = A1(q, r − 1)Pu(q, r − 1)AT

1 (q, r − 1) + A2(q − 1, r)Pu(q − 1, r)AT
2 (q − 1, r)

+A1(q, r − 1)Er{x̃u(q, r − 1)x̃T
u (q − 1, r)}AT

2 (q − 1, r)
+A2(q − 1, r)Er{x̃u(q − 1, r)x̃T

u (q, r − 1)}AT
1 (q, r − 1)

+

d∑
j=1

Π jtr{(X(q, r − 1) + X(q − 1, r))Γ j}

+B1(q, r − 1)R(q, r − 1)BT
1 (q, r − 1) + B2(q − 1, r)R(q − 1, r)BT

2 (q − 1, r),

and

X(q, r) = A1(q, r − 1)X(q, r − 1)AT
1 (q, r − 1) + A2(q − 1, r)X(q − 1, r)AT

2 (q − 1, r)
+A1(q, r − 1)Er{x(q, r − 1)xT (q − 1, r)}AT

2 (q − 1, r)
+A2(q − 1, r)Er{x(q − 1, r)xT (q, r − 1)}AT

1 (q, r − 1)

+

d∑
j=1

Π jtr{(X(q, r − 1) + X(q − 1, r))Γ j}

+B1(q, r − 1)R(q, r − 1)BT
1 (q, r − 1) + B2(q − 1, r)R(q − 1, r)BT

2 (q − 1, r)

for (q, r) ∈ [1 L]. The minimum estimation error variance is presented as

Pu(q, r) = Pp(q, r) − K(q, r)C̄(q, r)Pp(q, r). (3.4)

Proof. Becuse the noise v(q, r) is independent of x̃p(q, r) and x(q, r), it can be obtained that

Pu(q, r) = [I − K(q, r)C̄(q, r)]Pp(q, r)[I − K(q, r)C̄(q, r)]T

−[I − K(q, r)C̄(q, r)]Er{x̃p(q, r)[C̃(q, r)x(q, r) + v(q, r)]T }KT (q, r)
−K(q, r)Er{[C̃(q, r)x(q, r) + v(q, r)]x̃T

p (q, r)}[I − K(q, r)C̄(q, r)]T

+K(q, r)Er{[C̃(q, r)x(q, r) + v(q, r)][C̃(q, r)x(q, r) + v(q, r)]T }KT (q, r)
= [I − K(q, r)C̄(q, r)]Pp(q, r)[I − K(q, r)C̄(q, r)]T

−[I − K(q, r)C̄(q, r)]Er{x̃p(q, r)xT (q, r)C̃T (q, r)}KT (q, r)
−K(q, r)Er{C̃(q, r)x(q, r)x̃T

p (q, r)}[I − K(q, r)C̄(q, r)]T

+K(q, r)Er{C̃(q, r)X(q, r)C̃T (q, r)}KT (q, r) + K(q, r)Q(q, r)KT (q, r).

Taking into account that

Er{x̃p(q, r)xT (q, r)C̃T (q, r)} = 0, Er{C̃(q, r)x(q, r)x̃T
p (q, r)} = 0,

and incorporating Assumption 3, we have

Pu(q, r) = [I − K(q, r)C̄(q, r)]Pp(q, r)[I − K(q, r)C̄(q, r)]T

+K(q, r)Er{C̃(q, r)X(q, r)C̃T (q, r)}KT (q, r) + K(q, r)Q(q, r)KT (q, r)
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= Pp(q, r) − K(q, r)C̄(q, r)Pp(q, r) − Pp(q, r)[K(q, r)C̄(q, r)]T

+K(q, r)
[
C̄(q, r)PpC̄T (q, r) + Er{C̃(q, r)X(q, r)C̃T (q, r)} + Q(q, r)

]
KT (q, r).

Then focus on the above term and perform a completion of squares; we obtain

Pu(q, r)

= [I K(q, r)]
[

Pp(q, r) −Pp(q, r)C̄T (q, r)
−C̄(q, r)Pp(q, r) Re(q, r)

] [
I

KT (q, r)

]
= [I K(q, r)]

[
I −Pp(q, r)C̄T (q, r)R−1

e (q, r)
0 I

] [
∆ 0
0 Re(q, r)

]
×

[
I 0

−R−1
e (q, r)C̄(q, r)Pp(q, r) I

] [
I

KT (q, r)

]
= (K(q, r) − Pp(q, r)C̄T (q, r)R−1

e (q, r))Re(q, r)(K(q, r) − Pp(q, r)C̄T (q, r)R−1
e (q, r))T + ∆ (3.5)

where

Re(q, r) = C̄(q, r)Pp(q, r)C̄T (q, r) + Er{C̃(q, r)X(q, r)C̃T (q, r)} + Q(q, r),

∆ = Pp(q, r) −
(
Pp(q, r)C̄T (q, r)R−1

e (q, r)
)

Re(q, r)
(
Pp(q, r)C̄T (q, r)R−1

e (q, r)
)T
.

Now we need to find the 2D matrix K(q, r) that minimizes Pu(q, r). Then K(q, r) should be chosen
as

K(q, r) = Pp(q, r)C̄T (q, r)R−1
e (q, r).

Meanwhile the 2D filter error variance (3.5) reaches its minimal value

Pu(q, r) = Pp(q, r) − K(q, r)Re(q, r)KT (q, r) = Pp(q, r) − K(q, r)C̄(q, r)Pp(q, r).

The derived 2D filter minimizes its error variance when K(q, r) is chosen as (3.3). The proof is
completed.
Remark 3. The 2D filter has a similar structure to the Kalman filter for 1D systems. It is observed that
the cross-item Er{x(q − 1, r)xT (q, r − 1)} is involved in (3.1) and Er{x̃u(q − 1, r)x̃T

u (q, r − 1)} is involved
in (3.2), which dynamics need further analysis for completing the calculation process.

3.2. Filter calculation

In contrast with the traditional 1D filtering dynamics, whose variables evolve along a single
direction, the information of 2D filtering dynamics transmits along two independent directions and
the system with dynamics relies on two independent variables. It is easily observed that the recursions
of X(q, r) in (3.1) and Pp(q, r) in (3.2) respectively accompany Er{x(q, r − 1)xT (q − 1, r)} and
Er{x̃u(q, r − 1)x̃T

u (q − 1, r)} due to the dynamical and structural complexity of 2D filters, which differs
significantly from the filter of 1D systems. Therefore the two recursions should be further derived to
facilitate the filter gain (3.3). By utilizing random multivariate analysis and calculation, it is obtained
that for q, r ∈ [2 L],

Er{x(q, r − 1)xT (q − 1, r)}
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= A1(q, r − 2)Er{x(q, r − 2)xT (q − 1, r − 1)}AT
1 (q − 1, r − 1)

+A1(q, r − 2)Er{x(q, r − 2)xT (q − 2, r)}AT
2 (q − 2, r)

+A2(q − 1, r − 1)Er{x(q − 1, r − 1)xT (q − 2, r)}AT
2 (q − 2, r)

+A2(q − 1, r − 1)X(q − 1, r − 1)AT
1 (q − 1, r − 1) +

d∑
j=1

Π jtr{X(q − 1, r − 1)Γ j}

+B2(q − 1, r − 1)R(q − 1, r − 1)BT
1 (q − 1, r − 1) (3.6)

and

Er{x̃u(q, r − 1)x̃T
u (q − 1, r)}

= [I − K(q, r − 1)C̄(q, r − 1)
{
A1(q, r − 2)Er{x̃u(q, r − 2)x̃T

u (q − 1, r − 1)}AT
1 (q − 1, r − 1)

+A1(q, r − 2)Er{x̃u(q, r − 2)x̃T
u (q − 2, r)}AT

2 (q − 2, r)

+A2(q − 1, r − 1)Pu(q − 1, r − 1)AT
1 (q − 1, r − 1) +

h∑
s=1

Πstr{X(q − 1, r − 1)Γs}

+A2(q − 1, r − 1)Er{x̃u(q − 1, r − 1)x̃T
u (q − 2, r)}AT

2 (q − 2, r)

+B2(q − 1, r − 1)R(q − 1, r − 1)BT
1 (q − 1, r − 1)

}
[I − K(q − 1, r)C̄(q − 1, r)]T . (3.7)

Repeating the same computation for q, r ∈ [z L] (z ∈ [2 L − 1]), it follows

Er{x(q, r − z)xT (q − z, r)}
= A1(q, r − z − 1)Er{x(q, r − z − 1)xT (q − z, r − 1)}AT

1 (q − z, r − 1)
+A1(q, r − z − 1)Er{x(q, r − z − 1)xT (q − z − 1, r)}AT

2 (q − z − 1, r)
+A2(q − 1, r − z)Er{x(q − 1, r − z)xT (q − z, r − 1)}AT

1 (q − z, r − 1)
+A2(q − 1, r − z)Er{x(q − 1, r − z)xT (q − z − 1, r)}AT

2 (q − z − 1, r) (3.8)

and

Er{x̃u(q, r − z)x̃T
u (q − z, r)}

= [I − K(q, r − z)C̄(q, r − z)]
{
A1(q, r − z − 1)

×Er{x̃u(q, r − z − 1)x̃T
u (q − z, r − 1)}AT

1 (q − z, r − 1)
+A1(q, r − z − 1)Er{x̃u(q, r − z − 1)x̃T

u (q − z − 1, r)}AT
2 (q − z − 1, r)

+A2(q − 1, r − z)Er{x̃u(q − 1, r − z)x̃T
u (q − z, r − 1)}AT

1 (q − z, r − 1)

+A2(q − 1, r − z)Er{x̃u(q − 1, r − z)x̃T
u (q − z − 1, r)}AT

2 (q − z − 1, r)
}

×[I − K(q − z, r)C̄(q − z, r)]T . (3.9)

It is observed from (3.6) and (3.7) that the covariance matrices Er{x(q, r − 1)xT (q − 1, r)} and
Er{x̃u(q, r − 1)x̃T

u (q − 1, r)} at (q, r) can be iteratively computed out by the information of the three
neighbor points (q, r − 2), (q − 1, r − 1), and (q − 2, r) for q, r ∈ [2 L]. From (3.8) and (3.9), it is shown
that Er{x(q, r − z)xT (q − z, r)} and Er{x̃u(q, r − z)x̃T

u (q − z, r)} can be obtained by the information of the
four neighbor points (q, r − z − 1), (q − z, r − 1), (q − z − 1, r), and (q − 1, r − z) for
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q, r ∈ [z L] (z ∈ [2 L − 1]). For each (q, r), it is influenced by two points at a distance of k, one on its
left and one below. These two points, in turn, are influenced by their respective left and below points.
The iterative computation of the covariance matrices is based on the information from these
neighboring points. Especially, x(1, r)x̃u(1, r) and x(q, 1)x̃u(q, 1) are influenced by their respective left
neighboring and below neighboring points with the initial values u1(q) and u2(r).

Then combined with the given initial values, in terms of the established conclusions, the parameter
K(q, r) can be computed by solving recursions (3.1), (3.2), and (3.6)–(3.9). Finally the filter x̂u(q, r)
(2.5) is obtained for q, r ∈ [0 L]. The process of solving the filter is shown as follows.

• Step 1. Give initial values u(q), u(r), and Pu(q, 0), and Pu(0, r) for all (q, r) ∈ ϕ[0 L], and set
i = 1, j = 1.
• Step 2. If i ≤ L and j ≤ L, calculate x̂p(i, j), X(i, j), and Pp(i, j) from the first equation of (2.5),

(3.1) and (3.2), respectively; then compute matrix K(i, j), filter x̂u(i, j), and matrix Pu(i, j) from
(3.3), the second equation of (2.5), and (3.4), respectively; and go to the next step, otherwise step.
• Step 3. If i ≤ L and j ≤ L− 1, compute the items Er{x(i, j)xT (i0, i + j− i0)} and Er{x̃u(i, j)x̃T

u (i0, i +

j − i0)} via the formula (3.6)-(3.9) for (i0 ∈ [i + j − min{i + l, L} i − 1]); set j = j + 1 and return
to Step 2, else go to Step 4.
• Step 4. If i ≤ L and j = L, then set i = i + 1, j = 1 and return to Step 2.
• Step 5. Stop.

Remark 4. It comes down to the fact that the computation of the recursive filter can be implemented
line by line from left to right, and for each line from below to above. It is shown that the process of
solving the filter (2.5) has been operated with a modest computational burden [10].

4. Simulation

In order to illustrate the effectiveness of the proposed filtering strategy, numerical simulations are
performed by one example stemmed from monitoring a long transmission line in circuit systems [11]
below.

Let x(q, r) = (x1(q, r) x2(q, r))T and ξ(q, r) = (ξ1(q, r) ξ2(q, r))T be the state and the noise. v(q, r)
and w(q, r) are zero-mean Gaussian white noises with variance R(q, r) = 0.025 and Q(q, r) = 0.125,
and set the initial value as x(q, 0) = x(0, r) = 0 and x̂u(q, 0) = x̂u(0, r) = 0. Parameters of system (2.1)
are given as follows:

A1(q, r) =

[
−0.4 0.3 sin(3q)
−0.1 0.35

]
, A2(q, r) =

[
0.3 + sin(4q) −0.1

0.2 − 0.1 sin(0.8r) 0.25

]
,

B1(q, r) =

[
0.1

0.1e−r

]
, B2(q, r) =

[
0.18 − 0.1e−4q

0.12

]
, C̄(q, r) = [−0.3, 0.35].

The function

g(x(q, r), ξ(q, r)) =

[
1
1

]
(0.1sign(x1(q, r))x1(q, r)ξ1(q, r)

+0.2sign(x2(q, r))x2(q, r)ξ2(q, r))
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where ξ1(q, r) and ξ2(q, r) are independent white noises with mean 0 and variance 1. d = 1, u1(q) =

u2(r) = 0, Pu(0, 0) = 0.1I2, Pu(q, 0) = Pu(0, r) = 0.1I2 (I2 is a 2 × 2 unit matrix), and

Π j =

[
1 2
3 4

]
,Γ j =

[
1 0
0 4

]
.

The simulations are fulfilled. Figures 1 and 2 show the development of the filter error x̃u(q, r), which
k-th element is denoted as x̃k

u(q, r) (k = 1, 2). It is obvious that the error of our designed filter decreases
when the two independent variables q, r increase, even the error is closer to zero. The example has
been shown that the designed algorithm is effective in dealing with the recursive 2D filtering problem.

Figure 1. Estimation error x̃1
u(q, r) of state element x1

u(q, r).

Figure 2. Estimation error x̃2
u(q, r) of state element x2

u(q, r).
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5. Conclusions

The filtering problem for a 2D discrete-time system incorporating noise and stochastic parameter
matrices in both state and measurement equations is investigated in this paper. It methodically describes
random variables using statistical characteristics. The two-step 2D recursive filter satisfies the essential
characteristic of states in 2D systems evolving along two independent directions. This provides a
systematic filtering framework for 2D scenarios. The techniques used in the paper can solve some
more complicated and generalized filtering or other problems of 2D stochastic systems.
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Appendix A. Proof of Theorem 1

The four steps of the mathematical induction are carried out as follows:
Step 1. In view of the initial conditions x̂u(q, 0) = u1(q), x̂u(0, r) = u2(r), and Assumption 5 for

q, r ∈ [0 L]

x̂u(q, 0) = Er{x(q, 0)} = u1(q), x̂u(0, r) = Er{x(0, r)} = u2(r).

It is clear that

Er{x̃u(q, 0)} = Er{x(q, 0)} − x̂u(q, 0) = 0,
Er{x̃u(0, r)} = Er{x(0, r)} − x̂u(0, r) = 0, q, r ∈ [0 L].

Recalling Assumptions 1 and 5, it follows

Er{x̃p(1, 1)} = A1(1, 0)Er{x̃u(1, 0)} + A2(0, 1)Er{x̃u(0, 1)} = 0.

Since C̃(q, r) is independent of x(q, r) and Er{C̃(q, r)} = 0 based on (A2), and Er{v(q, r)} = 0 based
on (A1), it follows from (2.6) and (2.1) that

Er{x̃u(1, 1)} = [I − K(1, 1)C(1, 1)]Er{x̃p(1, 1)} − K(1, 1)
[
Er{C̃(1, 1)}Er{x(1, 1)} + Er{v(1, 1)}

]
= 0.

Assume that Er{x̃u(k0, 1)} = 0 and Er{x̃u(1, l0)} = 0 are true for given constants k0, l0, 1 < k0 < L, 1 <
l0 < L. Then we have

Er{x̃p(k0 + 1, 1)} = A1(k0 + 1, 0)Er{x̃u(k0 + 1, 0)} + A2(k0, 1)Er{x̃u(k0, 1)} = 0,
Er{x̃p(1, l0 + 1)} = A2(0, l0 + 1)Er{x̃u(0, l0 + 1)} + A1(1, l0)Er{x̃u(1, l0)} = 0,

and
Er{x̃u(k0 + 1, 1)} = Er{x̃u(1, l0 + 1)} = 0.

Thus Er{x̃u(m, 1)} = Er{x̃u(1, n)} = 0 and Er{x̃p(m, 1)} = Er{x̃p(1, n)} = 0 for m, n ∈ [1 L].
Step 2. Assume inductively that Er{x̃u(k1, n)} = 0 and Er{x̃u(m, k2)} = 0,∀m, n ∈ [0 L] is true for

some given constants k1, k2, 1 < k1 < L, 1 < k2 < L.
Step 3. According to Step 2, note that Er{x̃u(k1, n)} = 0 and Er{x̃u(k1 + 1, n − 1)} = 0 is true when

take m = k1 + 1 and k2 = n − 1. It is obtained that

Er{x̃p(k1 + 1, n)} = A1(k1 + 1, n − 1)Er{x̃u(k1 + 1, n − 1)} + A2(k1, n)Er{x̃u(k1, n)} = 0.

From (2.6) we obtain that

Er{x̃u(k1 + 1, n)} = 0.

Similarly, it can be concluded that

Er{x̃u(m, k2 + 1)} = 0.

Step 4. Based on steps 1–3, we obtain Er{x̃u(q, r)} = 0 for (q, r) ∈ ϕ[0 L].
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Appendix B. Proof of Theorem 2

According to Assumptions 1 and 3, as well as the properties of w(q, r), v(q, r) and ξ(q, r), it is
obtained immediately that

Er{x(q, r)wT (s, t)} = 0, Er{g(x(q, r), ξ(q, r))wT (s, t)} = 0,
Er{x(q, r)vT (s, t)} = 0, Er{g(x(q, r), ξ(q, r))vT (s, t)} = 0,

and

Er{x(q, r)gT (x(s, t), ξ(s, t))}
= Er{Er{x(q, r)gT (x(s, t), ξ(s, t))|x(q, r)}}
= Er{x(q, r)Er{gT (x(s, t), ξ(s, t))|x(q, r)}} = 0,

Er{g(x(q, r), ξ(q, r))gT (x(s, t), ξ(s, t))}
= Er{Er{g(x(q, r), ξ(q, r))gT (x(s, t), ξ(s, t))|x(q, r)}}

=

d∑
j=1

Π jEr{xT (q, r)Γ jx(q, r)}δ(q, s)δ(r, t)

=

d∑
j=1

Π jtr{X(q, r)Γ j}δ(q, s)δ(r, t)

for (s, t) ∈ {(s0, t0)|s0 > q, or t0 > r} ∪ (q, r). Then (3.1) can be computed by (2.1).

Appendix C. Proof of Theorem 3

Consider the prediction error x̃p(q, r) in (2.6) together with the following equations

Er[x̃u(q, r)gT (x(s, t), ξ(s, t))]
= Er{x̃u(q, r)Er{gT (x(s, t), ξ(s, t))|x̃u(q, r)}}
= Er{x̃u(q, r)Er{gT (x(s, t), ξ(s, t))|x(q, r)}} = 0,

and

Er{x̃u(q, r)wT (s, t)} = Er{xu(q, r)wT (s, t)} − Er{x̂u(q, r)wT (s, t)} = 0,
Er{x̃u(q, r)vT (s, t)} = Er{xu(q, r)vT (s, t)} − Er{x̂u(q, r)vT (s, t)} = 0

for (s, t) ∈ {(s0, t0)|s0 > q, or t0 > r} ∪ (q, r). Then the second-order moment is given by

Pp(q, r) = A1(q, r − 1)Pu(q, r − 1)AT
1 (q, r − 1) + A2(q − 1, r)Pu(q − 1, r)AT

2 (q − 1, r)
+A1(q, r − 1)Er{x̃u(q, r − 1)x̃T

u (q − 1, r)}AT
2 (q − 1, r)

+A2(q − 1, r)Er{x̃u(q − 1, r)x̃T
u (q, r − 1)}AT

1 (q, r − 1)
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+

d∑
j=1

Π jtr{(X(q, r − 1) + X(q − 1, r))Γs}

+B1(q, r − 1)R(q, r − 1)BT
1 (q, r − 1) + B2(q − 1, r)R(q − 1, r)BT

2 (q − 1, r)

for (q, r) ∈ ϕ[1 L].
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