Mathematics

Research article

Trees with the second-minimal ABC energy

Xiaodi Song ${ }^{1,3,4}$, Jianping Li ${ }^{1, *}$, Jianbin Zhang ${ }^{2}$ and Weihua $\mathbf{H e}^{1}$
${ }^{1}$ School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510090, China
${ }^{2}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
${ }^{3}$ School of Mathematics and Statistics, Northwestern Polytechnical University, Xi' an, Shaanxi 710129, China
${ }^{4}$ Xi'an-Budapest Joint Reserch Center for Combinatories, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
* Correspondence: Email: lijp06@gdut.edu.cn.

Abstract

The atom-bond connectivity energy (ABC energy) of an undirected graph G, denoted by $\mathcal{E}_{A B C}(G)$, is defined as the sum of the absolute values of the ABC eigenvalues of G. Gao and Shao [The minimum ABC energy of trees, Linear Algebra Appl., 577 (2019), 186-203] proved that the star S_{n} is the unique tree with minimum ABC energy among all trees on n vertices. In this paper, we characterize the trees with the minimum ABC energy among all trees on n vertices except the star S_{n}.

Keywords: energy; ABC energy; ABC matrix; ABC eigenvalues; tree
Mathematics Subject Classification: 05C50

1. Introduction

Let G be a simple connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The eigenvalues of adjacency matrix $A(G)$ are called the eigenvalues of G. The energy $\mathcal{E}(G)$ of G is defined as the sum of the absolute values of its eigenvalues of $A(G)$, which is studied in chemistry and used to approximate the total-electron energy of a molecule [3]. The singular values of an $n \times m$ matrix M are the square roots of the eigenvalues of $M M^{*}$ if $n \geq m$ or $M^{*} M$ if $n<m$, where M^{*} is the transpose conjugate of M. Nikiforov [4] extended the concept of energy to all matrices and defined the energy of a matrix M, denoted by $\mathcal{E}(M)$, as the sum of the singular values of M. Clearly, $\mathcal{E}(A(G))=\mathcal{E}(G)$.

Estrada et al. [12] introduced the atom-bond connectivity index as

$$
A B C(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}
$$

Moreover, they introduced the atom-bond connectivity matrix (or ABC matrix for short) $A B C_{G}$ of G, which is correlated with the ABC index of G. The (i, j)-entry of the matrix $A B C_{G}$ is equal to $\sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise. The eigenvalues of the ABC matrix of G, denoted by $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, are said to be the ABC eigenvalues of G. The atom-bond connectivity energy (ABC energy) of a connected graph G is defined in [8] as

$$
\mathcal{E}_{A B C}(G)=\sum_{i=1}^{n}\left|\mu_{i}(G)\right| .
$$

Recently, several theoretical and computational properties of the ABC energy of graphs have been obtained, see e.g., [1,8,13]. Estrada [8] and Chen [13] gave an upper bound and a lower bound for the ABC energy in terms of the general Randić index, respectively. Ghorbani et al. [1] established some new bounds for the ABC energy. Gao and Shao [7] determined the unique tree with the minimum ABC energy. In this paper, we determine the trees with the minimum ABC energy among all trees on n vertices except the star S_{n}.

2. Preliminaries

A matching in a graph is a set of edges without common vertices. A k-matching is a matching consisting of k edges. Let T be a tree, M be a matching of T and $M^{k}(T)$ be the set of all k-matchings of T. We define $m_{M}^{*}(T)$ and $m^{*}(T, k)$ by

$$
m_{M}^{*}(T)=\prod_{v_{i} v_{j} \in M}\left(A B C_{T}\right)_{i j}^{2}
$$

and

$$
m^{*}(T, k)=\sum_{M \in M^{k}(T)} m_{M}^{*}(T),
$$

respectively. By Sachs Theorem [14], the characteristic polynomial $\phi_{A B C}(T, x)$ of the ABC matrix of a tree T can be expressed as

$$
\phi_{A B C}(T, x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} m^{*}(T, k) x^{n-2 k} .
$$

Then by Coulson integral formula, we get

$$
\begin{equation*}
\mathcal{E}_{A B C}(T)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \left[1+\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor} m^{*}(T, k) x^{2 k}\right] d x \tag{2.1}
\end{equation*}
$$

Let T_{1} and T_{2} be two trees on n vertices. If $m^{*}\left(T_{1}, k\right) \geq m^{*}\left(T_{2}, k\right)$ for all k, then by (2.1) we get $\mathcal{E}_{A B C}\left(T_{1}\right) \geq \mathcal{E}_{A B C}\left(T_{2}\right)$. Moreover, if there exists some k such that $m^{*}\left(T_{1}, k\right)>m^{*}\left(T_{2}, k\right)$, then $\mathcal{E}_{A B C}\left(T_{1}\right)>\mathcal{E}_{A B C}\left(T_{2}\right)$.

Let T be a tree on n vertices, $B=\left(b_{i j}\right)$ be an $n \times n$ nonnegative real symmetric matrix and $A B C_{T} \geq B$. Let M be a matching of $T, m_{M}^{*}(B)=\prod_{v_{i} v_{j} \in M} b_{i j}^{2}$ and $m^{*}(B, k)=\sum_{M \in M^{k}(T)} m_{M}^{*}(B)$. Then

$$
\mathcal{E}(B)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \left[1+\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor} m^{*}(B, k) x^{2 k}\right] d x
$$

Clearly, $m^{*}(T, k) \geq m^{*}(B, k)$. Thus $\mathcal{E}_{A B C}(T) \geq \mathcal{E}(B)$. Moreover, if $\left(A B C_{T}\right)_{i j}>b_{i j}$ for some $v_{i} v_{j} \in E(T)$, then $\mathcal{E}_{A B C}(T)>\mathcal{E}(B)$. Thus we can get the following lemma.

Lemma 2.1. Let T be a tree on n vertices and B be an $n \times n$ nonnegative real symmetric matrix. If $A B C_{T} \geq B$, then $\mathcal{E}_{A B C}(T) \geq \mathcal{E}(B)$. Moreover, if $\left(A B C_{T}\right)_{i j}>b_{i j}$ for some $v_{i} v_{j} \in E(T)$, then $\mathcal{E}_{A B C}(T)>$ $\mathcal{E}(B)$.

Let $u v$ be an edge of a tree T and $T-u v=T_{1} \cup T_{2}$, where $T_{1}\left(T_{2}\right)$ is the component of $T-u v$ containing $u\left(v\right.$, respectively). We denote the sub-matrices of $A B C_{T}$ spanned by the vertices of T_{1} and T_{2} by $\left(A B C_{T}\right)_{V\left(T_{1}\right)}$ and $\left(A B C_{T}\right)_{V\left(T_{2}\right)}$, respectively.

By Lemma 2.1, we have the next lemma.
Lemma 2.2. Let uv be an edge of a tree T and $T-u v=T_{1} \cup T_{2}$, where $T_{1}\left(T_{2}\right)$ is the component of $T-u v$ containing $u(v$, respectively). Then

$$
\mathcal{E}_{A B C}(T)>\mathcal{E}\left(\left(A B C_{T}\right)_{V\left(T_{1}\right)}\right)+\mathcal{E}\left(\left(A B C_{T}\right)_{V\left(T_{2}\right)}\right) .
$$

Suppose that $u v$ is not a pendent edge. If $d_{T}(w) \leq 2$ for any $w \in N_{T}(u) \backslash\{v\}$, then

$$
\mathcal{E}\left(\left(A B C_{T}\right)_{V\left(T_{1}\right)}\right) \geq \mathcal{E}_{A B C}\left(T_{1}\right)
$$

Furthermore, if $d(w) \leq 2$ for any $w \in N_{T}(u) \cup N_{T}(v) \backslash\{u, v\}$, then

$$
\mathcal{E}_{A B C}(T)>\mathcal{E}_{A B C}\left(T_{1}\right)+\mathcal{E}_{A B C}\left(T_{2}\right)
$$

Lemma 2.3. ([7]) Let T be a tree of order $n \geq 3$. Then $\mathcal{E}_{A B C}(T) \geq 2 \sqrt{n-2}$, with equality if and only if $T \cong S_{n}$, where S_{n} is the star of order n.
Lemma 2.4. ([7]) Let $t \geq 2, x_{i} \geq 3$ for $i=1, \ldots$, t, and $\sum_{i=1}^{t} x_{i} \geq 8$. Then $\sum_{i=2}^{t} \sqrt{x_{i}-2} \geq$ $\sqrt{\sum_{i=2}^{t} x_{i}+(t-1)-2}$.

3. The minimum ABC energy of trees

For two graphs G and H, we define $G \cup H$ to be their disjoint union. In addition, let $k G$ be the disjoint union of k copies of G. Let S_{n}^{*} be the tree formed by attaching a vertex to a pendent vertex of the star S_{n-1}. Note that

$$
\phi_{A B C}\left(S_{n}^{*}, x\right)=x^{n-4}\left[x^{4}-\left(1+\frac{(n-3)^{2}}{n-2}\right) x^{2}+\frac{(n-3)^{2}}{2(n-2)}\right] .
$$

Thus

$$
\mathcal{E}_{A B C}\left(S_{n}^{*}\right)=2 \sqrt{n-3+\frac{1}{n-2}+\sqrt{2} \sqrt{n-4+\frac{1}{n-2}}}
$$

Lemma 3.1. Let $x \geq 11$. Then

$$
\begin{equation*}
\sqrt{x-5}+1>\sqrt{x-3+\frac{1}{x-2}+\sqrt{2} \sqrt{x-4+\frac{1}{x-2}}} \tag{3.1}
\end{equation*}
$$

Proof. It is equivalent to prove that

$$
\begin{equation*}
2 \sqrt{x-5}-\sqrt{2} \sqrt{x-4+\frac{1}{x-2}}-\frac{1}{x-2}-1>0 \tag{3.2}
\end{equation*}
$$

Let $f(x)=2 \sqrt{x-5}-\sqrt{2} \sqrt{x-4+\frac{1}{x-2}}-\frac{1}{x-2}-1$ with $x \geq 11$. Then

$$
\begin{aligned}
\frac{d f}{d x} & =\frac{1}{\sqrt{x-5}}-\frac{\sqrt{2}}{2} \frac{1}{\sqrt{x-4+\frac{1}{x-2}}}\left(1-\frac{1}{(x-2)^{2}}\right)+\frac{1}{(x-2)^{2}} \\
& >\frac{1}{\sqrt{x-5}}-\frac{\sqrt{2}}{2} \frac{1}{\sqrt{x-4+\frac{1}{x-2}}} \\
& =\frac{1}{\sqrt{x-5}}-\frac{1}{\sqrt{2(x-4)+\frac{2}{x-2}}} \\
& >0 .
\end{aligned}
$$

Thus $f(x)$ is a strictly monotonously increasing function on x. Noting that $f(11)=0.0166>0$, then the lemma holds.

From Lemma 3.1, $\mathcal{E}_{A B C}\left(S_{n}^{*}\right)<2+2 \sqrt{n-5}$ for $n \geq 11$.
For $n=1,2,3$, there is only unique tree S_{n}. For $n=4$, there are exactly two trees P_{4} and S_{4}. Obviously, P_{4} is the tree with the second minimum ABC energy. For $n=5$, there are exactly three trees P_{5}, S_{5} and S_{5}^{*}. By direct calculation, we have $\mathcal{E}_{A B C}\left(S_{5}^{*}\right)=3.9831>\mathcal{E}_{A B C}\left(P_{5}\right)=\sqrt{2}+\sqrt{6}>$ $2 \sqrt{3}=\mathcal{E}_{A B C}\left(S_{5}\right)$. Thus P_{5} is the tree with the second minimum ABC energy. Let $P_{5}=v_{1} v_{2} v_{3} v_{4} v_{5}$, we denote the tree, obtained by attaching a new vertex to v_{2} of P_{5}, by P_{6}^{*}. For $n=6$, there are exactly six trees $T_{2.8}, T_{2.9}, T_{2.10}, T_{2.11}, T_{2.12}, T_{2.13}$ (see tables of graph spectra in [14]), where $T_{2.8} \cong S_{6}, T_{2.9} \cong S_{6}^{*}$, $T_{2.11} \cong P_{6}^{*}$ and $T_{2.13} \cong P_{6}$. By direct calculation, $\mathcal{E}_{A B C}\left(T_{2.12}\right)=5.0590>\mathcal{E}_{A B C}\left(P_{6}\right)=4.9412>$ $\mathcal{E}_{A B C}\left(T_{2.10}\right)=4.8074>\mathcal{E}_{A B C}\left(S_{6}^{*}\right)=4.6352>\mathcal{E}_{A B C}\left(P_{6}^{*}\right)=4.6260>\mathcal{E}_{A B C}\left(S_{6}\right)=4$.

By simple calculations, we obtain the following lemma.
Lemma 3.2. Let T be an n-vertex tree not isomorphic to S_{n}, where $7 \leq n \leq 10$. Then $\mathcal{E}_{A B C}(T) \geq$ $\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$ with equality if and only if $T \cong S_{n}^{*}$.
Lemma 3.3. Let T be a tree on $n \geq 11$ vertices.
(i) Let $u_{1} v_{1} \in E(G)$ and $T-u_{1} v_{1}=T_{1} \cup T_{2}$, where $T_{1}\left(T_{2}\right)$ is the component of $T-u_{1} v_{1}$ containing $u_{1}\left(v_{1}\right.$, respectively). If $d(w) \leq 2$ for any $w \in N\left(u_{1}\right) \cup N\left(v_{1}\right) \backslash\left\{u_{1}, v_{1}\right\}$ and $\left|V\left(T_{1}\right)\right|=n_{1} \geq\left|V\left(T_{2}\right)\right|=n_{2} \geq 3$, then $\mathcal{E}_{A B C}(T)>\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$.
(ii) Let $u_{2} v_{2}, u_{3} v_{3} \in E(G), T-u_{2} v_{2} \cong P_{2} \cup T_{3}$ and $T_{3}-u_{3} v_{3} \cong P_{2} \cup T_{4}$, where T_{3} is one of the component of $T-u_{2} v_{2}$ and T_{4} is one of the component of $T_{3}-u_{3} v_{3}$. If $d_{T}\left(w_{1}\right) \leq 2$ for any $w_{1} \in N_{T}\left(u_{2}\right) \cup N_{T}\left(v_{2}\right) \backslash\left\{u_{2}, v_{2}\right\}$ and $d_{T_{3}}\left(w_{2}\right) \leq 2$ for any $w_{2} \in N_{T_{3}}\left(u_{3}\right) \cup N_{T_{3}}\left(v_{3}\right) \backslash\left\{u_{3}, v_{3}\right\}$, then $\mathcal{E}_{A B C}(T)>$ $\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$.

Proof. (i) By Lemmas 2.2 and 2.3, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & >\mathcal{E}_{A B C}\left(T_{1}\right)+\mathcal{E}_{A B C}\left(T_{2}\right) \\
& \geq 2 \sqrt{n_{1}-2}+2 \sqrt{n_{2}-2} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

(ii) Similarly, by Lemmas 2.2 and 2.3, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & >\mathcal{E}_{A B C}\left(T_{3}\right)+\mathcal{E}\left(\left(A B C_{T}\right)_{V\left(P_{2}\right)}\right) \\
& >\mathcal{E}_{A B C}\left(T_{4}\right)+\sqrt{2}+\sqrt{2} \\
& \geq 2 \sqrt{n-6}+2 \sqrt{2} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

We complete the proof.
Lemma 3.4. Let $n \geq 11$. Then $\mathcal{E}_{A B C}\left(P_{n}\right)>\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$.
Proof. By Lemma 2.2, we have $\mathcal{E}_{A B C}\left(P_{n}\right)>\mathcal{E}_{A B C}\left(P_{3}\right)+\mathcal{E}_{A B C}\left(P_{n-3}\right) \geq 2+2 \sqrt{n-5}>\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$. A tree is called starlike if it has exactly one vertex of degree greater than two.

Lemma 3.5. Let $T \nRightarrow S_{n}$ be a starlike tree with order $n \geq 11$ and v be the unique vertex with degree at least three. Let $T-v=n_{1} P_{1} \cup n_{2} P_{2} \cup \cdots \cup n_{m} P_{m}$ and $\sum_{i=1}^{m} i n_{i}+1=n$. Then $\mathcal{E}_{A B C}(T)>\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$.

Proof. If $n_{i} \geq 1$ for some $i \geq 3$, then there exists an edge $u v$ such that $T-u v=T_{1} \cup T_{2}$, where $T_{1}\left(T_{2}\right)$ is the component of $T-u v$ containing $u\left(v\right.$, respectively), $\left|V\left(T_{1}\right)\right|,\left|V\left(T_{2}\right)\right| \geq 3$ and $d(w) \leq 2$ for any $w \in N(u) \cup N(v) \backslash\{u, v\}$. Then by (i) of Lemma 3.3 we can get the result. Suppose that $n_{i}=0$ for all $i \geq 3$. If $n_{2}=0$, then $T \cong S_{n}$. If $n_{2}=1$, then $T \cong S_{n}^{*}$. If $n_{2} \geq 2$, then by (ii) of Lemma 3.3 we can get the result.

Let T be a tree and $R(T)$ be set of vertices of degree greater than two in T.
Lemma 3.6. Let T be a tree with $n \geq 11$ vertices and $|R(T)| \geq 2$. If there are no adjacent vertices in $R(T)$, then $\mathcal{E}_{A B C}(T)>\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$.

Proof. Let $d(u) \geq 3$ and $d(v) \geq 3$ and $P_{l}=u v_{1} \ldots v_{l-1} v$ be the single path connecting u and v with $d\left(v_{1}\right)=\cdots=d\left(v_{l-1}\right)=2$. Clearly, $l \geq 2$. Without loss of generality, we suppose that $T-u v_{1}=T_{1} \cup T_{2}$ such that T_{1} is a starlike-tree or a path, where $u \in V\left(T_{1}\right)$.

If $l \geq 3$, then by (i) of Lemma 3.3 we can get the result.
Suppose now that $l=2$. Let $T_{1}^{\prime}\left(T_{2}^{\prime}\right)$ be the component of $T-u v_{1}-v_{1} v$ containing $u(v$, respectively), $s=\left|V\left(T_{1}^{\prime}\right)\right|$ and $t=\left|V\left(T_{2}^{\prime}\right)\right|$. Obviously, $s+t+1=n$.

If $s=3$, then the ABC matrix of T can be written as

$$
A B C_{T}=\left[\begin{array}{cc}
B & C \\
C^{\top} & D
\end{array}\right]
$$

where

$$
B=\left[\begin{array}{cccc}
0 & 0 & \sqrt{\frac{2}{3}} & 0 \\
0 & 0 & \sqrt{\frac{2}{3}} & 0 \\
\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 & \sqrt{\frac{1}{2}} \\
0 & 0 & \sqrt{\frac{1}{2}} & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
0_{3 \times 1} & 0_{3 \times(t-1)} \\
\sqrt{\frac{1}{2}} & 0_{1 \times(t-1)}
\end{array}\right],
$$

and $D=\left(A B C_{T}\right)_{V\left(T_{2}^{\prime}\right)}$. Let

$$
A=\left[\begin{array}{cc}
B & 0 \\
0 & A B C_{T_{2}^{\prime}}
\end{array}\right]
$$

Obviously, $D \geq A B C_{T_{2}^{\prime}}$. Thus $A B C_{T}>A$. By Lemmas 2.1 and 2.3, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & >\mathcal{E}(A)=\mathcal{E}(B)+\mathcal{E}_{A B C}\left(T_{2}^{\prime}\right) \\
& \geq 2 \sqrt{1+\frac{1}{3}+\frac{1}{2}}+2 \sqrt{n-6} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right)
\end{aligned}
$$

Suppose that $s=4$. Then $T_{1}^{\prime} \cong S_{4}$ or P_{4}. If $T_{1}^{\prime} \cong S_{4}$, then the ABC matrix of T can be written as

$$
A B C_{T}=\left[\begin{array}{cc}
F & H \\
H^{\top} & K
\end{array}\right]
$$

where

$$
F=\left[\begin{array}{ccccc}
0 & 0 & 0 & \sqrt{\frac{3}{4}} & 0 \\
0 & 0 & 0 & \sqrt{\frac{3}{4}} & 0 \\
0 & 0 & 0 & \sqrt{\frac{3}{4}} & 0 \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{3}{4}} & \sqrt{\frac{3}{4}} & 0 & \sqrt{\frac{1}{2}} \\
0 & 0 & 0 & \sqrt{\frac{1}{2}} & 0
\end{array}\right], \quad H=\left[\begin{array}{cc}
0_{4 \times 1} & 0_{4 \times(t-1)} \\
\sqrt{\frac{1}{2}} & 0_{1 \times(t-1)}
\end{array}\right]
$$

and $K=\left(A B C_{T}\right)_{V\left(T_{2}^{\prime}\right)}$. Let

$$
M=\left[\begin{array}{cc}
F & 0 \\
0 & A B C_{T_{2}^{\prime}}
\end{array}\right] .
$$

Obviously, $K \geq A B C_{T_{2}^{\prime}}$. Thus $A B C_{T}>M$. By Lemmas 2.1 and 2.3 we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & \geq \mathcal{E}(M)=\mathcal{E}(F)+\mathcal{E}_{A B C}\left(T_{2}^{\prime}\right) \\
& \geq 2 \sqrt{2+\frac{1}{4}+\frac{1}{2}}+2 \sqrt{n-7} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

Suppose now that $T_{1}^{\prime} \cong P_{4}$. Let $T_{1}^{\prime}=u_{1} u u_{2} u_{3}$. Then by Lemmas 2.2 and 2.3, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & \geq \sqrt{2}+\mathcal{E}_{A B C}\left(T-u_{2}-u_{3}\right) \\
& \geq \sqrt{2}+\mathcal{E}_{A B C}\left(P_{3}\right)+\mathcal{E}_{A B C}\left(T_{2}^{\prime}\right) \\
& \geq \sqrt{2}+2+2 \sqrt{n-7} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

By symmetry, we now suppose that $5 \leq s, t \leq n-6$, then by Lemmas 2.2 and 2.3, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & >\mathcal{E}_{A B C}\left(T_{1}^{\prime}\right)+\mathcal{E}_{A B C}\left(T_{2}^{\prime}\right) \\
& \geq 2 \sqrt{s-2}+2 \sqrt{t-2} \\
& \geq 2 \sqrt{3}+2 \sqrt{n-8} \\
& >2+2 \sqrt{n-5} \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

Lemma 3.7. Let T be a tree with $n \geq 11$ vertices and $|R(T)| \geq 2$. If there exist adjacent vertices in $R(T)$, then $\mathcal{E}_{A B C}(T)>\mathcal{E}_{A B C}\left(S_{n}^{*}\right)$.

Proof. Let $E^{0}=\{u v \in E(T) \mid d(u), d(v) \geq 3\}$, and $T-E^{0}=x P_{1} \cup y P_{2} \cup T_{1} \cup \cdots \cup T_{z}$, where T_{1}, \ldots, T_{z} are components of $T-E^{0}$ with at least three vertices. Let $x P_{1}=\left\{v_{1}, \ldots, v_{x}\right\}$ and $y P_{2}=$ $\left\{v_{x+1} v_{x+2}, \ldots, v_{x+2 y-1} v_{x+2 y}\right\}$. Then $d_{T}\left(v_{i}\right) \geq 3$ with $1 \leq i \leq x, d_{T}\left(v_{x+2 j-1}\right) \geq 3$ and $d_{T}\left(v_{x+2 j}\right)=1$ with $1 \leq j \leq y$, and for each component T_{i} with $1 \leq i \leq z$, there exists a vertex $v_{i} \in V\left(T_{i}\right)$ such that $d_{T}\left(v_{i}\right) \geq d_{T_{i}}\left(v_{i}\right)+1$. Let $\left|V\left(T_{i}\right)\right|=s_{i}$ for $1 \leq i \leq z$. Thus we have

$$
\begin{aligned}
2(n-1) & =\sum_{v \in V(T)} d_{T}(v) \geq 3 x+4 y+\sum_{i=1}^{z}\left(\sum_{v \in V\left(T_{i}\right)} d_{T_{i}}(v)+1\right) \\
& =3 x+4 y+\sum_{i=1}^{z} 2\left(s_{i}-1\right)+z \\
& =x+2 n-z .
\end{aligned}
$$

Thus we get that $z \geq x+2$. We discuss the following four cases.
Case 1. $y=0$ and $z=2$.
Then $x=0$ and $s_{1}+s_{2}=n$. By Lemmas 2.2 and 2.3, we get

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & >\mathcal{E}_{A B C}\left(T_{1}\right)+\mathcal{E}_{A B C}\left(T_{2}\right) \\
& \geq 2 \sqrt{s_{1}-2}+2 \sqrt{s_{2}-2} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

Case 2. $y=0$ and $z \geq 3$.

Then $x+\sum_{i=1}^{z} s_{i}=n$. Without loss of generation, we suppose that $3 \leq s_{z} \leq s_{z-1} \leq \cdots \leq s_{2} \leq s_{1}$.
If $\sum_{i=1}^{z-1} s_{i}=6$, then $z=3, s_{z}=3$ and $x \leq 1$. Thus $n \leq 10$, a contradiction.
If $\sum_{i=1}^{z-1} s_{i}=7$, then $z=3, s_{1}=4, s_{2}=s_{3}=3$. Thus $x=1$ and $n=11$. Obviously, $T_{2} \cong T_{3} \cong S_{3}$ and $T_{1} \cong S_{4}$ or P_{4}. By Lemmas 2.2 and 2.3, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & \geq \mathcal{E}_{A B C}\left(T_{1}\right)+\mathcal{E}\left(\left(A B C_{T}\right)_{V\left(T_{2}\right)}\right)+\mathcal{E}\left(\left(A B C_{T}\right)_{V\left(T_{3}\right)}\right) \\
& \geq 2 \sqrt{4-2}+4 \times \frac{2}{\sqrt{3}} \\
& =7.448>6.8742=\mathcal{E}_{A B C}\left(S_{11}^{*}\right) .
\end{aligned}
$$

Suppose that $\sum_{i=1}^{z-1} s_{i} \geq 8$. By Lemmas 2.2-2.4, we have that

$$
\begin{align*}
\mathcal{E}_{A B C}(T) & >\sum_{i=1}^{z} \mathcal{E}_{A B C}\left(T_{i}\right) \geq 2 \sum_{i=1}^{z} \sqrt{s_{i}-2} \\
& \geq 2 \sqrt{\sum_{i=1}^{z-1} s_{i}+(z-1)-3}+2 \sqrt{s_{z}-2} \\
& \geq 2 \sqrt{n-x-s_{z}+x+2-4}+2 \sqrt{s_{z}-2} \\
& =2 \sqrt{n-s_{z}-2}+2 \sqrt{s_{z}-2} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) . \tag{3.3}
\end{align*}
$$

Case 3. $y \geq 1$ and $z \geq 3$.
Then $\sum_{i=1}^{z-1} s_{i}+s_{z}+x+2 y=n$. By Lemmas 2.2 and 2.3, we have

$$
\mathcal{E}_{A B C}(T) \geq 2 y \sqrt{\frac{2}{3}}+\sum_{i=1}^{z} \mathcal{E}_{A B C}\left(T_{i}\right) \geq 2 y \sqrt{\frac{2}{3}}+2 \sum_{i=1}^{z} \sqrt{s_{i}-2}
$$

If $\sum_{i=1}^{z-1} s_{i} \geq 8$, then by Lemma 2.4, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & \geq 2 y \sqrt{\frac{2}{3}}+2 \sqrt{\sum_{i=1}^{z-1} s_{i}+(z-1-1)-2}+2 \sqrt{s_{z}-2} \\
& \geq 2 y \sqrt{\frac{2}{3}}+2 \sqrt{n-s_{z}-2 y-x+x+2-4}+2 \sqrt{s_{z}-2} \\
& =2 y \sqrt{\frac{2}{3}}+2 \sqrt{n-s_{z}-2 y-2}+2 \sqrt{s_{z}-2} \\
& \geq 2 y \sqrt{\frac{2}{3}}+2 \sqrt{n-3-2 y-2}+2 \sqrt{3-2} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

Here, the last but one inequality holds because $f(y)=2 y \sqrt{\frac{2}{3}}+2 \sqrt{n-5-2 y}+2$ is increasing for $0 \leq y \leq \frac{2 n-13}{4}$.

Suppose that $\sum_{i=1}^{z-1} s_{i} \leq 7$. Then $z=3$. Thus $s_{1}+s_{2}=6$ or $7, s_{3}=3$ and $x \leq 1$.
Suppose first that $s_{1}+s_{2}=7$ and $s_{3}=3$. If $x=0$, then $n=2 y+10$. Hence

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & \geq 2 y \sqrt{\frac{2}{3}}+\mathcal{E}_{A B C}\left(T_{1}\right)+\mathcal{E}_{A B C}\left(T_{2}\right)+\mathcal{E}_{A B C}\left(T_{3}\right) \\
& \geq 2 y \sqrt{\frac{2}{3}}+2 \sqrt{2}+2+2 \\
& =(n-10) \sqrt{\frac{2}{3}}+2 \sqrt{2}+4 \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right)
\end{aligned}
$$

Suppose now that $x=1$. Then $n=2 y+11$. Hence

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & >2 y \sqrt{\frac{2}{3}}+2 \sqrt{2}+2+2 \\
& =(n-11) \sqrt{\frac{2}{3}}+2 \sqrt{2}+4
\end{aligned}
$$

Let $f(x)=(x-11) \sqrt{\frac{2}{3}}+4+2 \sqrt{2}-2 \sqrt{x-3+\frac{1}{x-2}+\sqrt{2} \cdot \sqrt{x-4+\frac{1}{x-2}}}$. It is easy to get that $f^{\prime}(x)>0$ for $x \geq 11$. Then $f(x)$ is an increasing function on x and $f(x) \geq f(11)>0$. Thus

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & >(n-11) \sqrt{\frac{2}{3}}+4+2 \sqrt{2} \\
& >2 \sqrt{n-3+\frac{1}{n-2}+\sqrt{2} \cdot \sqrt{n-4+\frac{1}{n-2}}}
\end{aligned}
$$

By a similar discussion as above, we can get the result for the case $s_{1}+s_{2}=6$ and $s_{3}=3$.
Case 4. $y \geq 1$ and $z=2$.
Then $x=0, n=2 y+s_{1}+s_{2}$. If $n-2 y \geq 11$, then by Lemmas 2.1-2.3, we have

$$
\begin{aligned}
\mathcal{E}_{A B C}(T) & \geq 2 y \sqrt{\frac{2}{3}}+\mathcal{E}_{A B C}\left(T_{1}\right)+\mathcal{E}_{A B C}\left(T_{2}\right) \\
& \geq 2 y \sqrt{\frac{2}{3}}+2 \sqrt{s_{1}-2}+2 \sqrt{s_{2}-2} \\
& \geq 2 y \sqrt{\frac{2}{3}}+2 \sqrt{n-2 y-3-2}+2 \sqrt{3-2} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

Suppose that $n-2 y \leq 10$. Then $6 \leq s_{1}+s_{2} \leq 10$. If $s_{1}+s_{2}=10$, then by Lemmas 2.1-2.3, we have

$$
\mathcal{E}_{A B C}(T)>2 y \sqrt{\frac{2}{3}}+2 \sqrt{3-2}+2 \sqrt{7-2}
$$

$$
\begin{aligned}
& =(n-10) \sqrt{\frac{2}{3}}+2+2 \sqrt{5} \\
& \geq 2 \sqrt{n-5}+2 \\
& >\mathcal{E}_{A B C}\left(S_{n}^{*}\right) .
\end{aligned}
$$

Similarly, for each $6 \leq s_{1}+s_{2} \leq 9$, we may also get the result.
Combining Lemmas 3.2 and 3.4-3.7, we get our main result.
Theorem 3.1. Among all trees (except the star) on $n \geq 5$ vertices, P_{5} is the unique tree with the minimum $A B C$ energy for $n=5, P_{6}^{*}$ is the unique tree with the minimum $A B C$ energy for $n=6$ and S_{n}^{*} is the unique tree with the minimum $A B C$ energy for $n \geq 7$.

4. Conclusions

In this paper, motivated by the unique tree with the minimum $A B C$ energy, we determine the trees with the minimum ABC energy among all trees on n vertices except the star S_{n}.

Acknowledgments

The authors would like to thank anonymous referees for helpful comments and suggestions which improved the original version of the paper. This work was supported by the Natural Science Foundation of Guangdong Province (No.2021A1515010028).

Conflict of interest

The authors declare that they have no competing interests.

References

1. M. Ghorbani, X. Li, M. Hakimi-Nezhaad, J. Wang, Bounds on the ABC spectral radius and ABC energy of graphs, Linear Algebra Appl., 598 (2020), 145-164. https://doi.org/10.1016/j.laa.2020.03.043
2. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals: Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. https://doi.org/10.1016/0009-2614(72)85099-1
3. I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta, 45 (1977), 79-87. https://doi.org/10.1007/BF00552542
4. V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl., 326 (2007), 1472-1475. https://doi.org/10.1016/j.jmaa.2006.03.072
5. I. Gutman, X. Li, J. Zhang, Analysis of complex networks: From biology to linguistics, Wiley-VCH Verlag: Weinheim, 2009, 145-174. https://doi.org/10.1002/9783527627981.ch7
6. J. Day, W. So, Graph energy change due to edge deletion, Linear Algebra Appl., 428 (2008), 20702078. https://doi.org/10.1016/j.laa.2007.11.009
7. Y. Gao, Y. Shao, The minimum ABC energy of trees, Linear Algebra Appl., 577 (2019), 186-203. https://doi.org/10.1016/j.laa.2019.04.032
8. E. Estrada, The ABC matrix, J. Math. Chem., 55 (2017), 1021-1033. https://doi.org/10.1007/s 10910-016-0725-5
9. A. Jahanbani, Some new lower bounds for energy of graphs, Appl. Math. Comput., 296 (2017), 233-238. https://doi.org/10.1016/j.amc.2016.10.019
10. X. Li, Y. Shi, I. Gutman, Graph energy, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4220-2
11. I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Berlin: Springer, 1986. https://doi.org/10.1515/9783112570180
12. E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849-855.
13. X. Chen, On ABC eigenvalues and ABC energy, Linear Algebra Appl., 544 (2018), 141-157. https://doi.org/10.1016/j.laa.2018.01.011
14. D. Cvetković, M. Doob, H. Sachs, Spectra of graphs-theory and application, New York: Academic, 1980.

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

