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Abstract: The atom-bond connectivity energy (ABC energy) of an undirected graph G, denoted by
EABC(G), is defined as the sum of the absolute values of the ABC eigenvalues of G. Gao and Shao [The
minimum ABC energy of trees, Linear Algebra Appl., 577 (2019), 186–203] proved that the star S n is
the unique tree with minimum ABC energy among all trees on n vertices. In this paper, we characterize
the trees with the minimum ABC energy among all trees on n vertices except the star S n.
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1. Introduction

Let G be a simple connected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G). The
eigenvalues of adjacency matrix A(G) are called the eigenvalues of G. The energy E(G) of G is defined
as the sum of the absolute values of its eigenvalues of A(G), which is studied in chemistry and used
to approximate the total-electron energy of a molecule [3]. The singular values of an n × m matrix M
are the square roots of the eigenvalues of MM∗ if n ≥ m or M∗M if n < m, where M∗ is the transpose
conjugate of M. Nikiforov [4] extended the concept of energy to all matrices and defined the energy of
a matrix M, denoted by E(M), as the sum of the singular values of M. Clearly, E(A(G)) = E(G).
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Estrada et al. [12] introduced the atom-bond connectivity index as

ABC(G) =
∑

viv j∈E(G)

√
di + d j − 2

did j
.

Moreover, they introduced the atom-bond connectivity matrix (or ABC matrix for short) ABCG of G,

which is correlated with the ABC index of G. The (i, j)-entry of the matrix ABCG is equal to
√

di+d j−2
did j

if viv j ∈ E(G) and 0 otherwise. The eigenvalues of the ABC matrix of G, denoted by µ1, µ2, . . . , µn, are
said to be the ABC eigenvalues of G. The atom-bond connectivity energy (ABC energy) of a connected
graph G is defined in [8] as

EABC(G) =
n∑

i=1

|µi(G)|.

Recently, several theoretical and computational properties of the ABC energy of graphs have been
obtained, see e.g., [1,8,13]. Estrada [8] and Chen [13] gave an upper bound and a lower bound for the
ABC energy in terms of the general Randić index, respectively. Ghorbani et al. [1] established some
new bounds for the ABC energy. Gao and Shao [7] determined the unique tree with the minimum
ABC energy. In this paper, we determine the trees with the minimum ABC energy among all trees on
n vertices except the star S n.

2. Preliminaries

A matching in a graph is a set of edges without common vertices. A k-matching is a matching
consisting of k edges. Let T be a tree, M be a matching of T and Mk(T ) be the set of all k-matchings
of T . We define m∗M(T ) and m∗(T, k) by

m∗M(T ) =
∏

viv j∈M

(ABCT )2
i j

and
m∗(T, k) =

∑
M∈Mk(T )

m∗M(T ),

respectively. By Sachs Theorem [14], the characteristic polynomial φABC(T, x) of the ABC matrix of a
tree T can be expressed as

φABC(T, x) =
b n

2c∑
k=0

(−1)km∗(T, k)xn−2k.

Then by Coulson integral formula, we get

EABC(T ) =
2
π

∫ +∞

0

1
x2 ln

1 +
b n

2c∑
k=1

m∗(T, k)x2k

 dx. (2.1)

Let T1 and T2 be two trees on n vertices. If m∗(T1, k) ≥ m∗(T2, k) for all k, then by (2.1) we
get EABC(T1) ≥ EABC(T2). Moreover, if there exists some k such that m∗(T1, k) > m∗(T2, k), then
EABC(T1) > EABC(T2).
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Let T be a tree on n vertices, B = (bi j) be an n×n nonnegative real symmetric matrix and ABCT ≥ B.
Let M be a matching of T , m∗M(B) =

∏
viv j∈M b2

i j and m∗(B, k) =
∑

M∈Mk(T ) m∗M(B). Then

E(B) =
2
π

∫ +∞

0

1
x2 ln

1 +
b n

2c∑
k=1

m∗(B, k)x2k

 dx.

Clearly, m∗(T, k) ≥ m∗(B, k). Thus EABC(T ) ≥ E(B). Moreover, if (ABCT )i j > bi j for some viv j ∈ E(T ),
then EABC(T ) > E(B). Thus we can get the following lemma.

Lemma 2.1. Let T be a tree on n vertices and B be an n × n nonnegative real symmetric matrix. If
ABCT ≥ B, then EABC(T ) ≥ E(B). Moreover, if (ABCT )i j > bi j for some viv j ∈ E(T ), then EABC(T ) >
E(B).

Let uv be an edge of a tree T and T − uv = T1 ∪ T2, where T1(T2) is the component of T − uv
containing u(v, respectively). We denote the sub-matrices of ABCT spanned by the vertices of T1 and
T2 by (ABCT )V(T1) and (ABCT )V(T2), respectively.

By Lemma 2.1, we have the next lemma.

Lemma 2.2. Let uv be an edge of a tree T and T − uv = T1 ∪ T2, where T1(T2) is the component of
T − uv containing u(v, respectively). Then

EABC(T ) > E((ABCT )V(T1)) + E((ABCT )V(T2)).

Suppose that uv is not a pendent edge. If dT (w) ≤ 2 for any w ∈ NT (u) \ {v}, then

E((ABCT )V(T1)) ≥ EABC(T1).

Furthermore, if d(w) ≤ 2 for any w ∈ NT (u) ∪ NT (v) \ {u, v}, then

EABC(T ) > EABC(T1) + EABC(T2).

Lemma 2.3. ( [7]) Let T be a tree of order n ≥ 3. Then EABC(T ) ≥ 2
√

n − 2, with equality if and only
if T � S n, where S n is the star of order n.

Lemma 2.4. ( [7]) Let t ≥ 2, xi ≥ 3 for i = 1, . . . , t, and
∑t

i=1 xi ≥ 8. Then
∑t

i=2

√
xi − 2 ≥√∑t

i=2 xi + (t − 1) − 2.

3. The minimum ABC energy of trees

For two graphs G and H, we define G ∪ H to be their disjoint union. In addition, let kG be the
disjoint union of k copies of G. Let S ∗n be the tree formed by attaching a vertex to a pendent vertex of
the star S n−1. Note that

φABC(S ∗n, x) = xn−4
[
x4 − (1 +

(n − 3)2

n − 2
)x2 +

(n − 3)2

2(n − 2)

]
.

Thus

EABC(S ∗n) = 2

√
n − 3 +

1
n − 2

+
√

2

√
n − 4 +

1
n − 2

.
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Lemma 3.1. Let x ≥ 11. Then

√
x − 5 + 1 >

√
x − 3 +

1
x − 2

+
√

2

√
x − 4 +

1
x − 2

. (3.1)

Proof. It is equivalent to prove that

2
√

x − 5 −
√

2

√
x − 4 +

1
x − 2

−
1

x − 2
− 1 > 0. (3.2)

Let f (x) = 2
√

x − 5 −
√

2
√

x − 4 + 1
x−2 −

1
x−2 − 1 with x ≥ 11. Then

d f
dx
=

1
√

x − 5
−

√
2

2
1√

x − 4 + 1
x−2

(1 −
1

(x − 2)2 ) +
1

(x − 2)2

>
1

√
x − 5

−

√
2

2
1√

x − 4 + 1
x−2

=
1

√
x − 5

−
1√

2(x − 4) + 2
x−2

> 0.

Thus f (x) is a strictly monotonously increasing function on x. Noting that f (11) = 0.0166 > 0, then
the lemma holds. �

From Lemma 3.1, EABC(S ∗n) < 2 + 2
√

n − 5 for n ≥ 11.
For n = 1, 2, 3, there is only unique tree S n. For n = 4, there are exactly two trees P4 and S 4.

Obviously, P4 is the tree with the second minimum ABC energy. For n = 5, there are exactly three
trees P5, S 5 and S ∗5. By direct calculation, we have EABC(S ∗5) = 3.9831 > EABC(P5) =

√
2 +
√

6 >

2
√

3 = EABC(S 5). Thus P5 is the tree with the second minimum ABC energy. Let P5 = v1v2v3v4v5, we
denote the tree, obtained by attaching a new vertex to v2 of P5, by P∗6. For n = 6, there are exactly six
trees T2.8,T2.9,T2.10,T2.11,T2.12,T2.13 (see tables of graph spectra in [14]), where T2.8 � S 6,T2.9 � S ∗6,
T2.11 � P∗6 and T2.13 � P6. By direct calculation, EABC(T2.12) = 5.0590 > EABC(P6) = 4.9412 >

EABC(T2.10) = 4.8074 > EABC(S ∗6) = 4.6352 > EABC(P∗6) = 4.6260 > EABC(S 6) = 4.
By simple calculations, we obtain the following lemma.

Lemma 3.2. Let T be an n-vertex tree not isomorphic to S n, where 7 ≤ n ≤ 10. Then EABC(T ) ≥
EABC(S ∗n) with equality if and only if T � S ∗n.

Lemma 3.3. Let T be a tree on n ≥ 11 vertices.
(i) Let u1v1 ∈ E(G) and T − u1v1 = T1 ∪ T2, where T1(T2) is the component of T − u1v1 containing

u1(v1, respectively). If d(w) ≤ 2 for any w ∈ N(u1)∪N(v1)\{u1, v1} and |V(T1)| = n1 ≥ |V(T2)| = n2 ≥ 3,
then EABC(T ) > EABC(S ∗n).

(ii) Let u2v2, u3v3 ∈ E(G), T − u2v2 � P2 ∪ T3 and T3 − u3v3 � P2 ∪ T4, where T3 is one of
the component of T − u2v2 and T4 is one of the component of T3 − u3v3. If dT (w1) ≤ 2 for any
w1 ∈ NT (u2)∪NT (v2)\ {u2, v2} and dT3(w2) ≤ 2 for any w2 ∈ NT3(u3)∪NT3(v3)\ {u3, v3}, then EABC(T ) >
EABC(S ∗n).
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Proof. (i) By Lemmas 2.2 and 2.3, we have

EABC(T ) > EABC(T1) + EABC(T2)
≥ 2

√
n1 − 2 + 2

√
n2 − 2

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

(ii) Similarly, by Lemmas 2.2 and 2.3, we have

EABC(T ) > EABC(T3) + E
(
(ABCT )V(P2)

)
> EABC(T4) +

√
2 +
√

2
≥ 2

√
n − 6 + 2

√
2

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

We complete the proof. �

Lemma 3.4. Let n ≥ 11. Then EABC(Pn) > EABC(S ∗n).

Proof. By Lemma 2.2, we have EABC(Pn) > EABC(P3) + EABC(Pn−3) ≥ 2 + 2
√

n − 5 > EABC(S ∗n). �

A tree is called starlike if it has exactly one vertex of degree greater than two.

Lemma 3.5. Let T � S n be a starlike tree with order n ≥ 11 and v be the unique vertex with degree at
least three. Let T − v = n1P1 ∪ n2P2 ∪ · · · ∪ nmPm and

∑m
i=1 ini + 1 = n. Then EABC(T ) > EABC(S ∗n).

Proof. If ni ≥ 1 for some i ≥ 3, then there exists an edge uv such that T − uv = T1 ∪ T2, where T1(T2)
is the component of T − uv containing u(v, respectively), |V(T1)|, |V(T2)| ≥ 3 and d(w) ≤ 2 for any
w ∈ N(u) ∪ N(v) \ {u, v}. Then by (i) of Lemma 3.3 we can get the result. Suppose that ni = 0 for all
i ≥ 3. If n2 = 0, then T � S n. If n2 = 1, then T � S ∗n. If n2 ≥ 2, then by (ii) of Lemma 3.3 we can get
the result. �

Let T be a tree and R(T ) be set of vertices of degree greater than two in T .

Lemma 3.6. Let T be a tree with n ≥ 11 vertices and |R(T )| ≥ 2. If there are no adjacent vertices in
R(T ), then EABC(T ) > EABC(S ∗n).

Proof. Let d(u) ≥ 3 and d(v) ≥ 3 and Pl = uv1 . . . vl−1v be the single path connecting u and v with
d(v1) = · · · = d(vl−1) = 2. Clearly, l ≥ 2. Without loss of generality, we suppose that T − uv1 = T1 ∪ T2

such that T1 is a starlike-tree or a path, where u ∈ V(T1).
If l ≥ 3, then by (i) of Lemma 3.3 we can get the result.
Suppose now that l = 2. Let T ′1(T ′2) be the component of T − uv1 − v1v containing u(v, respectively),

s = |V(T ′1)| and t = |V(T ′2)|. Obviously, s + t + 1 = n.
If s = 3, then the ABC matrix of T can be written as

ABCT =

[
B C

C> D

]
,
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where

B =



0 0
√

2
3 0

0 0
√

2
3 0√

2
3

√
2
3 0

√
1
2

0 0
√

1
2 0


, C =

 03×1 03×(t−1)√
1
2 01×(t−1)

 ,

and D = (ABCT )V(T ′2). Let

A =
[

B 0
0 ABCT ′2

]
.

Obviously, D ≥ ABCT ′2
. Thus ABCT > A. By Lemmas 2.1 and 2.3, we have

EABC(T ) > E(A) = E(B) + EABC(T ′2)

≥ 2

√
1 +

1
3
+

1
2
+ 2
√

n − 6

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

Suppose that s = 4. Then T ′1 � S 4 or P4. If T ′1 � S 4, then the ABC matrix of T can be written as

ABCT =

[
F H

H> K

]
,

where

F =



0 0 0
√

3
4 0

0 0 0
√

3
4 0

0 0 0
√

3
4 0√

3
4

√
3
4

√
3
4 0

√
1
2

0 0 0
√

1
2 0


, H =

 04×1 04×(t−1)√
1
2 01×(t−1)

 ,

and K = (ABCT )V(T ′2). Let

M =
[

F 0
0 ABCT ′2

]
.

Obviously, K ≥ ABCT ′2
. Thus ABCT > M. By Lemmas 2.1 and 2.3 we have

EABC(T ) ≥ E(M) = E(F) + EABC(T ′2)

≥ 2

√
2 +

1
4
+

1
2
+ 2
√

n − 7

≥ 2
√

n − 5 + 2
> EABC(S ∗n).
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Suppose now that T ′1 � P4. Let T ′1 = u1uu2u3. Then by Lemmas 2.2 and 2.3, we have

EABC(T ) ≥
√

2 + EABC(T − u2 − u3)
≥
√

2 + EABC(P3) + EABC(T ′2)

≥
√

2 + 2 + 2
√

n − 7
≥ 2

√
n − 5 + 2

> EABC(S ∗n).

By symmetry, we now suppose that 5 ≤ s, t ≤ n − 6, then by Lemmas 2.2 and 2.3, we have

EABC(T ) > EABC(T ′1) + EABC(T ′2)

≥ 2
√

s − 2 + 2
√

t − 2
≥ 2

√
3 + 2

√
n − 8

> 2 + 2
√

n − 5
> EABC(S ∗n).

�

Lemma 3.7. Let T be a tree with n ≥ 11 vertices and |R(T )| ≥ 2. If there exist adjacent vertices in
R(T ), then EABC(T ) > EABC(S ∗n).

Proof. Let E0 = {uv ∈ E(T )|d(u), d(v) ≥ 3}, and T − E0 = xP1 ∪ yP2 ∪ T1 ∪ · · · ∪ Tz, where
T1, . . . ,Tz are components of T − E0 with at least three vertices. Let xP1 = {v1, . . . , vx} and yP2 =

{vx+1vx+2, . . . , vx+2y−1vx+2y}. Then dT (vi) ≥ 3 with 1 ≤ i ≤ x, dT (vx+2 j−1) ≥ 3 and dT (vx+2 j) = 1 with
1 ≤ j ≤ y, and for each component Ti with 1 ≤ i ≤ z, there exists a vertex vi ∈ V(Ti) such that
dT (vi) ≥ dTi(vi) + 1. Let |V(Ti)| = si for 1 ≤ i ≤ z. Thus we have

2(n − 1) =
∑

v∈V(T )

dT (v) ≥ 3x + 4y +
z∑

i=1

(
∑

v∈V(Ti)

dTi(v) + 1)

= 3x + 4y +
z∑

i=1

2(si − 1) + z

= x + 2n − z.

Thus we get that z ≥ x + 2. We discuss the following four cases.
Case 1. y = 0 and z = 2.

Then x = 0 and s1 + s2 = n. By Lemmas 2.2 and 2.3, we get

EABC(T ) > EABC(T1) + EABC(T2)
≥ 2

√
s1 − 2 + 2

√
s2 − 2

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

Case 2. y = 0 and z ≥ 3.
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Then x +
∑z

i=1 si = n. Without loss of generation, we suppose that 3 ≤ sz ≤ sz−1 ≤ · · · ≤ s2 ≤ s1.
If

∑z−1
i=1 si = 6, then z = 3, sz = 3 and x ≤ 1. Thus n ≤ 10, a contradiction.

If
∑z−1

i=1 si = 7, then z = 3, s1 = 4, s2 = s3 = 3. Thus x = 1 and n = 11. Obviously, T2 � T3 � S 3 and
T1 � S 4 or P4. By Lemmas 2.2 and 2.3, we have

EABC(T ) ≥ EABC(T1) + E((ABCT )V(T2)) + E((ABCT )V(T3))

≥ 2
√

4 − 2 + 4 ×
2
√

3
= 7.448 > 6.8742 = EABC(S ∗11).

Suppose that
∑z−1

i=1 si ≥ 8. By Lemmas 2.2–2.4, we have that

EABC(T ) >

z∑
i=1

EABC(Ti) ≥ 2
z∑

i=1

√
si − 2

≥ 2

√√
z−1∑
i=1

si + (z − 1) − 3 + 2
√

sz − 2

≥ 2
√

n − x − sz + x + 2 − 4 + 2
√

sz − 2
= 2

√
n − sz − 2 + 2

√
sz − 2

≥ 2
√

n − 5 + 2
> EABC(S ∗n). (3.3)

Case 3. y ≥ 1 and z ≥ 3.
Then

∑z−1
i=1 si + sz + x + 2y = n. By Lemmas 2.2 and 2.3, we have

EABC(T ) ≥ 2y

√
2
3
+

z∑
i=1

EABC(Ti) ≥ 2y

√
2
3
+ 2

z∑
i=1

√
si − 2.

If
∑z−1

i=1 si ≥ 8, then by Lemma 2.4, we have

EABC(T ) ≥ 2y

√
2
3
+ 2

√√
z−1∑
i=1

si + (z − 1 − 1) − 2 + 2
√

sz − 2

≥ 2y

√
2
3
+ 2

√
n − sz − 2y − x + x + 2 − 4 + 2

√
sz − 2

= 2y

√
2
3
+ 2

√
n − sz − 2y − 2 + 2

√
sz − 2

≥ 2y

√
2
3
+ 2

√
n − 3 − 2y − 2 + 2

√
3 − 2

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

Here, the last but one inequality holds because f (y) = 2y
√

2
3 + 2

√
n − 5 − 2y + 2 is increasing for

0 ≤ y ≤ 2n−13
4 .
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Suppose that
∑z−1

i=1 si ≤ 7. Then z = 3. Thus s1 + s2 = 6 or 7, s3 = 3 and x ≤ 1.
Suppose first that s1 + s2 = 7 and s3 = 3. If x = 0, then n = 2y + 10. Hence

EABC(T ) ≥ 2y

√
2
3
+ EABC(T1) + EABC(T2) + EABC(T3)

≥ 2y

√
2
3
+ 2
√

2 + 2 + 2

= (n − 10)

√
2
3
+ 2
√

2 + 4

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

Suppose now that x = 1. Then n = 2y + 11. Hence

EABC(T ) > 2y

√
2
3
+ 2
√

2 + 2 + 2

= (n − 11)

√
2
3
+ 2
√

2 + 4.

Let f (x) = (x − 11)
√

2
3 + 4 + 2

√
2 − 2

√
x − 3 + 1

x−2 +
√

2 ·
√

x − 4 + 1
x−2 . It is easy to get that

f ′(x) > 0 for x ≥ 11. Then f (x) is an increasing function on x and f (x) ≥ f (11) > 0. Thus

EABC(T ) > (n − 11)

√
2
3
+ 4 + 2

√
2

> 2

√
n − 3 +

1
n − 2

+
√

2 ·

√
n − 4 +

1
n − 2

.

By a similar discussion as above, we can get the result for the case s1 + s2 = 6 and s3 = 3.
Case 4. y ≥ 1 and z = 2.

Then x = 0, n = 2y + s1 + s2. If n − 2y ≥ 11, then by Lemmas 2.1–2.3, we have

EABC(T ) ≥ 2y

√
2
3
+ EABC(T1) + EABC(T2)

≥ 2y

√
2
3
+ 2

√
s1 − 2 + 2

√
s2 − 2

≥ 2y

√
2
3
+ 2

√
n − 2y − 3 − 2 + 2

√
3 − 2

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

Suppose that n− 2y ≤ 10. Then 6 ≤ s1 + s2 ≤ 10. If s1 + s2 = 10, then by Lemmas 2.1–2.3, we have

EABC(T ) > 2y

√
2
3
+ 2
√

3 − 2 + 2
√

7 − 2
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= (n − 10)

√
2
3
+ 2 + 2

√
5

≥ 2
√

n − 5 + 2
> EABC(S ∗n).

Similarly, for each 6 ≤ s1 + s2 ≤ 9, we may also get the result. �
Combining Lemmas 3.2 and 3.4–3.7, we get our main result.

Theorem 3.1. Among all trees (except the star) on n ≥ 5 vertices, P5 is the unique tree with the
minimum ABC energy for n = 5, P∗6 is the unique tree with the minimum ABC energy for n = 6 and S ∗n
is the unique tree with the minimum ABC energy for n ≥ 7.

4. Conclusions

In this paper, motivated by the unique tree with the minimum ABC energy, we determine the trees
with the minimum ABC energy among all trees on n vertices except the star S n.
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