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Abstract: In this paper, we are concerned with the existence of nontrivial positive solutions for the
following generalized quasilinear elliptic equations with critical growth

—div(gp(u)IVulp_ZVu) + g”_l(u)g'(u)IVulp + V(x)lulp_zu = h(x,u), xeR",

where N > 3, 1 < p < N. Under some suitable conditions, we prove that the above equation
has a nontrivial positive solution by variational methods. To some extent, our results improve and
supplement some existing relevant results.
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1. Introduction

In this paper, we consider the existence of nontrivial positive solutions for the following generalized
quasilinear elliptic equations

— div(g” W)|\VulP>Vu) + g (w)g’ ()| Vul” + V(O)lul’*u = h(x,u), xeR", (1.1)

where N > 3,1 < p < N, g: R — R* is an even differential function with g’(¢) > 0 for all # > 0 and
2(0)=1,V:R¥Y > Rand & : RY x R — R are continuous functions.
Notice that if we take p = 2 and g>(u) = 1 + w, where [ is a given real function, then (1.1)
turns into
— Au+ V(x)u — A1) (uP)u = h(x,u), xe€R". (1.2)
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Equation (1.2) is related to the existence of solitary wave solutions for quasilinear Schrodinger
equations
iz, = =0z + W(X)z = h(x,2) = A1) (l2)z, x € RY, (1.3)

where z : RXRY — C, W : RY — R is a given potential, 7 : R¥ X R — R and / : R — R are suitable
functions. The form of (1.3) has many applications in physics. For instance, the case I(s) = s was used
to model the time evolution of the condensate wave function in superfluid film [16, 17]. In the case
of I(s) = V1 + s, Eq (1.3) was used as a model of the self-channeling of a high-power ultrashort laser
in matter [3, 29]. For more details on the physical background, we can refer to [2, 4] and references
therein.

Putting z(t,x) = exp(—iEt)u(x) in (1.3), where £ € R and u is a real function, we obtain a
corresponding equation of elliptic type (1.2).

If we take p = 2, then (1.1) turns into

— div(g*(u)Vu) + gw)g’ W)|\Vul* + V(x)u = h(x,u), x € R". (1.4)

In recent years, many researchers have studied (1.4) under various hypotheses on the potential and
nonlinearity, for example [6-9, 24, 28, 38].
If we set p = 2,g%(u) = 1 +2u?, i.e., I(s) = s, we can get the superfluid film equation in plasma
physics
— Au+ V(xu — A@)u = h(x,u), x€R". (1.5)

Equation (1.5) has been extensively studied, see [5, 20, 27, 30, 31].
If we take p = 2,8*(w) = 1 + z(%zuz), ie., I(s) = V1 + s, (1.2) derives the following equation

— pu+ Vu - [a(0 + u?) ] ——— = h(x,u), xeRY, (1.6)
2(1 + u?)2
which models of the self-channeling of a high-power ultrashort laser in matter. For (1.6), there are
many papers studying the existence of solutions, see [10, 13, 33] and references therein.
Furthermore, if we set g”(u) = 1 + 2°~'u” in (1.1), then we get the following quasilinear elliptic
equations
— Ap(u) + VOl u — A,(uu = h(x,u), ue W RY), (1.7)

where A, = div(|Vu|P~2Vu) is the p-Laplacian operator with 1 < p < N. In [11], where h(x, u) = h(u),
the authors constructed infinitely many nodal solutions for (1.7) under suitable assumptions.

We point out that the related semilinear elliptic equations with the asymptotically periodic condition
have been extensively researched, see [12, 19, 22, 23, 25, 34-37] and their references.

Especially, in [12], Lins and Silva considered the following asymptotically periodic p-laplacian
equations

{ —Apu+ V(xu™ = K(x)u? " + g(x,u), x € RV, (18)

ue WHRN), u > 0.

Assume that the potential V satisfies
(Vp) there exist a constant a, > 0 and a function V € C(RY,R), 1-periodic in x;, 1 < i < N, such
that V(x) > V(x) > ap > 0and V — V € K, where

K := (h € C(RY) ﬂ LR : Ve > 0, meas{x € RV : [h(x)| = &} < +00),
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and the asymptotically periodic of g at infinity was assumed to the following condition
(go) there exist a constant p < g; < p* and functions h € K, gy € C(RY,R), 1-periodic in x;,
1 <i < N, such that

lg(x, 8) — go(x, 8)| < h(x)|s]~", for all (x,s) € R x [0, +).

For the other conditions on g, please see [12].
In recent paper [36], Xue and Tang studied the following quasilinear Schrodinger equation

— Au+ V(u — AuP)u = K@x)ul* 2u + g(x,u), x e RY, (1.9)

they proposed reformative conditions, which unify the asymptotic process of the potential and
nonlinear term at infinity, see the below condition (V;) and (i) of (f5). It is easy to see that this
conditions contains more elements than those in [12]. To the best of our knowledge, there is no
work concerning with the unified asymptotic process of the potential and nonlinear term at infinity
for general quasilinear elliptic equations.

Motivated by above papers, under the asymptotically periodic conditions, we establish the existence
of a nontrivial positive solution for Eq (1.1) with critical nonlinearity. We assume h(x, u) = f(x,u) +
K(x)g(w)|G(u)|” ~>G(u). Equation (1.1) can be rewritten in the following form:

~div(g’ @I Vul"Vu) + g~ (w)g' W) Vul” + V(lul"u

1.1
= f(x,u) + Kgw)G)l" >Gu), xeRY, (110

where p* = NN—_’; for N > 3, G(t) = fOI g(t)dr and f : RN x R — R is continuous function.
We observe that the energy functional associate with (1.10) is given by

I(u):lf g”(u)IVulpdx+lf V(x)lul”dx—f F(x,u)dx—i*f KX)|Gw)|" dx,
P Jry P Jrv RN 2N

where F(x,u) = fou f(x,7)dr. However, 7 may be not well defined in W!»(R") because of the term
fRN g”(u)|VulPdx. To overcome this difficulty, we make use of a change of variable constructed by [32],

v=GUu) = fu g(ndt.
0

Then we obtain the following functional
1 1 .
JW) = - f [IVv + VIGT )P |dx - f F(x,G™'(v))dx — — f K(x)I” dx.
P Jr¥ RY P Jr¥

Since g is a nondecreasing positive function, we can get |G~' (v)| < ﬁ [v|. From this and our hypotheses,
it is clear that  is well defined in W'"»(R") and J € C'.
If u is said to be a weak solution for Eq (1.10), then it should satisfy

f |87 GOIV Ul 25Ty + g g @IVul s + VOOl = fCx, s
RN
- K(x)g(u)IG(u)Ip*_ZG(u)w]dx =0, for all y € C3RY).

(1.11)
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Let ¢ = ¢, we know that (1.11) is equivalent to

G OIP2G0)  f, G )
dG ) T gGv)

(T ). ) = f [V Vu9e + V() o =~ K@hI" vpldx =0,
RN
for any ¢ € CZ(RY).
Therefore, in order to obtain a nontrivial solution of (1.1), it suffices to study the following equations

IG'WIP2GI) [ GT(W)

L
2 G oG iy KM =0

—A,v+ V(x)

Obviously, if v is a nontrivial critical point of the functional 7, then u = G~ !(v) is a nontrivial
critical point of the functional 7, i.e., u = G™'(v) is a nontrivial solution of equation (1.1).

In the asymptotically periodic potential case, the functional J loses the Z"-translation invariance
due to the asymptotically periodic potential. For this reason, many effective methods applied in
periodic problems become invalid in asymptotically periodic problems. In this paper, we adopt some
tricks to overcome the difficulties caused by the dropping of periodicity of V(x).

Before stating our results, we introduce some hypotheses on the potential V, K:

(V1) 0 < Viypin < V(x) < Vo(x) € L°(RY) and V(x) — Vo(x) € Fy, where
Fo = {k(x) : Ve > 0, Jim meas {x € B(y) : k(x)| > &} = o},
y|—00

Vinin 18 @ positive constant and Vj(x) is 1 — periodic in x;, 1 <i < N.

(K) The function K € C(R¥,R) is 1-periodic in x;, 1 <i < N and there exists a point x, € R" such
that

(i) K(x) > inf K(x) >0, for all x € RY;
xeRN

(ii) K(x) = [IKlleo + O(lx = x0 ), as x - xo.
Moreover, the nonlinear term f € C(RY x R, R) should satisfy the following assumptions:

(fo) f(x,1) = 0,¢ < 0 uniformly for x € R";
J(x, 1)

lim ————— = 0 uniformly fi e RY;
(f1) lim OGO uniformly for x

)
() i, oGmr

f&. Gt

= 0 uniformly for x € RY;

F(x,G7\(ts))ts

(f3) F(x,G™'(1) 2 — pF(x,G"'(15)) for all 1 € R* and s € [0, 1];
ey 7 sGwsy P
(f2) there exists an open bounded set Q c R", containing x, given by (K))

such that
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F(x,t ) )
Jim |G((xt)|3 = +oo uniformly for x € Q, where u = p* — ‘Ij T if N < p%;
. Fx,) . N
tl_l)l;_l’go GO og |G = +oo uniformly for x € Q, if N = p~;
F(x,1)

!
im = +oo uniformly for x € Q, if N > pz, where F(x,1) = f f(x, 1)dT;
i—+o0 |G(1)|P 0

(fs) There exists a periodic function f € C (RN xR*,R"), whichis 1 — periodic in x;, 1 <i < N,
such that
() f(x, 1) > fo(x,t) for all (x,7) € RY x R* and f(x,1) — fo(x,t) € F, where
F = {k(x, 1) :VYe>0, |ylli_rgo meas{x € Bi(y) : |k(x, t)] > €} = 0 uniformly for || bound};

(ii) Jfolx, G (D)t Solx, G (t9))ts
8(G71(1) g(G-\(t5))

!
where Fy(x,1) = f Jo(x, T)dT.
0

— pFo(x,G7'(1)) > — pFo(x,G'(ts)) forall t € R* and s € [0, 1],

In the asymptotically periodic case, we establish the following theorem.

Theorem 1.1 Assume that (V;), (K;) and (f;) — (fs) hold. Then Eq (1.1) has a nontrivial positive
solution.

In the special case: V = V,, f = fo, we can get a nontrivial positive solution for the periodic
equation from Theorem 1.1. Indeed, considering the periodic equation

~div(g” ()| Vul"*Vu) + g () I Vul” + Vo(x)lul”u

o (1.12)
= folx,u) + K(x)g)|Gw)|” ~“G(u),

under the hypothesis:
(V») The function Vj(x) is 1-periodic in x;, 1 < i < N and there exists a constant V,,,;, > 0 such that

0 < Viypin < Vo(x) € L2(RY), for all x € RY.

In the periodic case, we obtain the following theorem.

Theorem 1.2 Assume that (V5), (K;) hold, f satisfies (f;) — (fs). Then Eq (1.12) has a nontrivial
positive solution.

Remark 1.3 Compared with the results obtained by [12, 21, 23, 36], our results are new and
different due to the following some facts:

(i) Compared with Eq (1.8) and Eq (1.9), Eq (1.10) is more general. In our results, there is no need
to assume f(x,t) € C (RN, R). To some extent, our results extends the results of the work [12, 23, 36,
38].

(i1) We choose condition (f3) to be weaker than Ambrosetti-Rabinowitz type condition (see [21]).

(ii1) The aim of (f3) is to ensure that the Cerami sequence is bounded, which is different from the
conditions of [12].

The rest of this paper is organized as follows: in Section 2, we present some preliminary lemmas.
We will prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.
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2. Some preliminary lemmas

In this section, we present some useful lemmas.
Let us recall some basic notions. W := W'?(RY") is the usual Sobolev space endowed with the norm

1
||ullw = ( fRN(Wulp + |u|1’)dx)” , we denote by L*(R") the usual Lebesgue space endowed with the norm
1

[Jul]s = ( fR N |u|sdx)§, Vs € [1,+00) and let C denote positive constants. Next, we define the following
working space
X:={uel’ RY):|Vul € LPRY), | V(@)ulPdx < oo}
RN

1
endowed with the norm ||u|| = ( fRN(IVuIP + V(x)lulp)dx);. According to [22], it is easy to verify that
the norms || - || and || - ||y are equivalent under the assumption (V7).
Next, we summarize some properties of g, G and G~'.
Lemma 2.1 [32] The functions g, G and G~! satisfy the following properties:

(i) the functions G(-) and G~'(-) are strictly increasing and odd;
(11) G(s) < g(s)s for all s > 0; G(s) > g(s)s for all s < 0;
(iii) g(G'(s)) > g(0) = 1 for all s € R;

1
i &

is decreasing on (0, +00) and increasing on (—oo, 0);

1
(V) |G (s)| < —|s| = |s| for all s € R;

8(0)
. 1G7'(9)l 1
(vi) 2(G1(s) < g2(0)|s| = |s| for all s € R;
-1
(vii) g((;G_—(ls()sj) <G (s forall 5 € R;
o Gl 1
(viii) llsllir}) P @ =1 and
. Gis) { L if g is bounded,
lim =3 8
Isloeo 8 0, if g is unbounded.
penote IGT' ()IP2G™'(s)  f(x,G™'(5))
- 3 e S S X, S
f(x,s) = V(x)|s|P“s — V(x) 2G5) + 2 G() (2.1)
Then ;
F(x,s) = f flx,7)dt = %V(x)lsl” —~ %V(x)lG‘l(s)Ip + F(x,G™'(s)). (2.2)
0
Therefore,
JW) = lf (V)P + V(x)|vP)dx —f F(x,v)dx — i*f K(X)” dx. (2.3)
P Jrv RN p* Jrw
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Lemma 2.2 The functions f(x, s) and F(x, s) satisfy the following properties under (f,) — (f3), (f5):
(1) limy_,p+ {%—O and lim,_,+ F I()ICPY) 0 uniformly in x € RY;

(ii) lim_ se0 lf f{ =0 and lim,_,, Fl G2 = 0 uniformly in x € RY;

(iii) tf(x, 1) — pF(x,1) > stf(x, st) — pF(x, st) forall t € R* and s € [0, 1];
(iv) F(x, s) > 0 for all (x, s) € RY x R*.
Proof From (f) and Lemma 2.1-(8), we have

_ fx, ‘1(S) 1 f(x,G™'(5))
tip Z55 =t Voot - e I G =
uniformly in x € RY. Moreover, by (f,) and Lemma 2.1-(8), one has
f(x s) "(S))p | 1 f(x,G(5))

Jlim =225 = = dim |V

PrRTO ] M S ey

uniformly in x € R¥. Then using the L’Hospital rule, we obtain

uniformly in x € R¥. Hence, (i) and (ii) hold.
Let H(x,t) = tf(x,1) — pF(x, 1) for (x,t) € (RN, R™).
We claim that H(x, ¢) is an increasing function with respect to .
By (2.1) and (2.2), we directly calculate

H(x, 1) = tf(x,t) — pF(x,1)

G (0t ] s fx, G ()t

_ V2] =102 _
= VIGO0’ - S )

~ pF(x,G™\(1)).

Next, set () = G™'(¢)* - % for any r € R*. To compete the claim, combining with (f3) and
Lemma 2.1-(1), We only need to prove that 7(¢) is an increasing function on R*. Please see literature
[26], for the reader’s convenience, we give a brief proof.

By Lemma 2.1-(2) and g’(¢) > O for all # > 0, one has

G(t)[M] <t

g (1)
which deduces that
) < 2
g(1) “g(1) g(1)’
for all > 0. Set & = G(¢). Then
t
Gt )d—f(ﬁ) oL
and thus 1) &)
P
g(G~1(%)) g(G~1(&))
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for all £ > 0. Therefore,

G [ GOy
N =——— -5 =]

g(G~'(@) ‘'g(GT'(®)
for all # > 0. It follows that 7(¢) is increasing with respect to ¢t > 0. Thus, 1(st) < n(t) for all s € [0, 1]
and ¢ > 0, and then

>0,

G~ !(st)st Gl (nt
G (st - O < Gy - T
g(G™'(s t)) g(G~(n)
forall s € [0,1] and ¢ > 0. So (iii) holds. Moreover, Lemma 2.1-(5) and (f5) — (i) imply that F(x, s) > 0
for all (x, s) € RY x R*. This completes the proof. i

Lemma 2.3 Assume that (V), (K;) and (f;) — (f>) are satisfied. Then the functional J satisfies the
following mountain pass geometry structure:

(i) there exist positive constants p and b such that J(v) > b for ||v|| =

(i1) there exists a function vy € X such that |[vo|| > p and T (vg) < 0.

Proof By (f1),(f>), Lemma 2.2-(1), (2), for any & > 0, there exists C; > 0 and g € (p, p*) such that

F(x,5) < &(lsl” + IsI”") + C.lsl, (2.4)

for all (x, s) € R¥ x R*. Therefore, by (2.3) and (2.4), we have

1 _ 1 .

JW) = —f [IVvIp + V(x)lvlp]dx —f F(x,v)dx — —f K)W|P dx
P Jrv RV p* Jry
1 .
> = f IV + V@l |dx -2 | Mrdx—e | b7 dx
RN

P RN RV
IIK IIOO

-C. ||’1d -

=—|IVI|”—8f vIPdx — (& + ” ||°°)f IVI”*dx—Caf vI?dx
RN

> (; = £O)|VII” = CIvlI”" = CIIvle,

II”d

where ¢ is small enough, thus (1) is proved because p < g < p*.
It follows from (2.3) that Lemma 2.2-(4), for any fixed v € X with v > 0 and v # 0, we obtain

Jv) = ff [lelp + V(x)lvlp]dx - f F(x,tv)dx — if KXW dx
P JrV RN P JrN

p p*

t t .
< —|vliF - —*f Kx)v|P dx.
p P Jrv

Obviously, J(tv) — —oo as t — +oo. Thus there exists a 7, > 0 large enough such that 7 (#,v) < 0 with
llzovl| > p. Hence, we take vy = #yv, (i1) is proved. O
Lemma 2.4 Assume that (V;), (K;) and (f;)—(f3) hold, then there exists a bounded Cerami sequence
{v,} c X for 7.
Proof From Lemma 2.3, we know that J satisfies the mountain pass geometry structure. By the
mountain pass theorem (see [1]), there exists a Cerami sequence {v,} C X such that

T ) = cand (1 + v DIT" Wall. — 0,
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where
¢ :=inf sup J(¥(1), I':={y € C([0,1],X) : y(0) = 0,T(y(1)) <O}

Y€l yef0,1]

As in [14], we can take a sequence {¢,} C [0, 1] satisfying
J(,v,) := max J(tv,). (2.5
1€[0,1]

We claim that {7 (¢,v,)} is bounded from above.

Indeed, without loss of the generality, we may assume that 7, € (0, 1) for all n € N. Thus, by Lemma
2.2-(3), we have

j(tnvn) - l<~7-,(z‘nvn)» tnvn> = f [ltnvnf_(x, fnvn) - F(X, thn)]dX + (l - iﬁ()t{ f K(x)'vnvfdx
p RN - P I RN
< f [lvnf(-x’ vn) - F(X, Vn)]dx + (l - i*)f K(x)lvnl”*dx
L p p ey
1
=T () - ;(J’(vn), va) = ¢+ 0,(1),

which implies that {7 (#,v,)} is bounded from above.
Now, we prove that {v,} is bounded in X. Assume by contradiction that {v,} is unbounded, then

up to a subsequence, we may assume that ||v,|| — +oco. Set w, = ”:—” Clearly, w, is bounded in X

and ||w,|| = 1. Then, there exists w € X such that w, — win X. Set A = {x € RY : w(x) # 0}. If
meas(A) > 0, the Fatou lemma and Lemma 2.2-(4) implies

WD 1 F(x,v, 1 .
0 = lim supj(v ) _1_ hmmf[f (x, v )dx+ —fK(x)Iwn|p|Vn|p pdx]
n—oo RN

oo |[Vall? [Ivall? " Ja

p
1 inf v K(x).. . .

< —- L()hmmff WolP[valP "Pdx — —oo,
p p n—oo A

which is a contradiction. Thus w = 0. For any B > 0, by ||v,|| = +oc0 and (2.5), we have

B B?

Jtvn) 2 J(—v,) = T (Bw,) = — —f F(x, Bw,)dx — ﬁf K@x)lw,|” dx.
[Vl 14 RN p* Jrw

By (f1), (f2), Lemma 2.2-(1), (2), for £ > 0, there exists C, > 0 and g € (p, p*) such that
fx,s)s < &(lsl” + Is1”") + Clslf, (2.6)

for all (x, s) € R¥ x R*. Hence, by (2.6), we get

. . 1 1 _
inf K(x) w,|? dx < f K(x)w,|P dx = - f S, v)vedx + 0,(1) — 0,
RV RV

xeRY RV vall?=7 lvall””

as n — oo, namely, j}i&N waP"dx — 0 as n — oo. Then by interpolation inequality, we have
fRN [w,|%dx — 0 as n — oco. Moreover, from (2.4), we have

‘f F(x,Bw,,)dx‘SeB” |w,,|”dx+sB”*f Iwnl”*dx+Cngf [w,|?dx.
RV RV RV R

N
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By the arbitrariness of &, we can get fRN F(x, Bw,)dx — 0 as n — oo. Consequently,

n—oo

BP
liminf g (t,v,) > —, VB > 0.
P

This contradicts the fact that 7 (#,v,) is bounded above. Therefore, {v,} is bounded in X. The proof
of Lemma 2.4 is complete O
Next, we do an estimate on ¢ and follow the approach presented in [12]. Given & > 0, we consider

the function .

N-p\P 7
o = [N(5=) sp]
(& +|x—=x0|77) 7

which is a solution of the following equation
—A,u = |ul’ *u, in RY

and f
IVulPdx
S = inf RN—p-
ueD P ENOL ([ Jul?” dox) 7

can be achieved at U.,.
Let ¢ € C(RY, [0, 1]) be a cut-off function such that ¢ = 1 in B;(0), ¢ = 0 in R¥\B,(0). Define

Ug

u, = pU,, vy = - (2.7)
(fon KGOl dx)”
then by a direct computation, there exist positive constants /1, /, and &y such that
I < f K()ul” dx < I, for all 0 < & < &, (2.8)
RN
[Vvel? < IIKIISO%S + 0(,9?), ase — 07, (2.9)
RN
and as £ — 0, we have
0(5%), if N < p?,
f velPdx = 4 O(e~!|logel), if N = p?, (2.10)
" O™, if N > p2.

Lemma 2.5 Assume that (V;), (K;) and (f1) — (f>), (f3) are satisfied. Then ¢ < ﬁllKHjS%-
Proof Fort > 0, v, defined by above (2.7), we have

T(v) =+ f #7190l + VOOIG™ (v )P |dx - f F(x,G_l(tvg))dx—i f KQOVl”dx. (2.11)
P Jr¥ RN p RN

Lemma 2.3 implies that there exists 7, > 0 such that J(#,v,) = max,so J (tv,).
We claim that there exist T, 7, > 0 such that 7| < ¢, < T, for £ small enough.
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Indeed, if t, —» 0 as € — 0, we have 0 < J(¢,v,) — J(0) = 0, which is a contradiction.
On the other hand, from (2.11) and (f3), one has

p*

0< Fltws) = f #2190l + V@IG™ (tov)I? |dx — f F(x, G\ (t,v,))dx — = f K()vel" dx
P Jr¥ RV P Jry
i i *
<= f (IVvel? + VIl dx - = f K@)yl dx
P JrN P JUrN
— —00

)

as t, — +oo, a contradiction, which implies that the claim holds.

p-N
To complete the proof, it suffices to show that J(z,v,) < %llK & S v Therefore,

p*

1 .
Jmm:—ffﬂwm+wmwﬂwm¢mifF@G%me—%j‘mmm%u
P JRrN RN P Jry

o A . e
<= Vv |Pdx + — V(x)|vePdx — F(x, G (t,v,)dx — —
P Jrvy RN 2

P Jrv
1 N
< —( Ivalpdx) "+C [velPdx — f F(x,G™'(t.v,))dx,
N RN RN RN
for some constant C = L Volle > 0.

Indeed, for ¢ > 0, define i(r) = & [, Vvelrdx = £, we have that tp = ( [, [Vvel’dx)"™" is a
maximum point of / and /(t) = %( [ [Vv+|"dx)”. Applying the inequality
(@a+b)f<d +x@a+b)'b, a,b>0, k1. (2.12)

By (2.9) and (2.12), we have

1 M N-p E
J%MS—me3+wsﬂy+CfWM%m:fF@ﬂ*@mwx
N RN RN

1 p-N y (2.13)
£ N —
< —|KlIl& S?+C | [|v|rdx - f F(x, G\ (t.v,)dx + O(e 7).
N RN RN
Now consider
N-p
g7, if N < p?,
r(e) =4 &’ loge|, if N = p? (2.14)
el1, if N > pz.
From (2.13) and (2.14), we have
1, ey Jow FCx, G (tv))dx
Ttve) < SIKIS ST +r(@)]C - (&) |
Next we claim that 1
F(x,G7'(t,v.))dx
o = +o0. (2.15)

e—0" r(g)
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It follows (f4) that any A > 0, there exists R = R4 > 0 such that for all (x, s) € Q X [Ry4, +00),

Alsl#, if N < p?,
F(x,G™'(s)) =4 Alsl?loglsl, if N = p?, (2.16)
Als|?, if N > p?,

where u = p* — p%l. Now consider the function 7, : [0, +00) — R defined by

N-p
er
ne(r) = ———-
(e+rr)™>
Since ¢ = 1 in B(0), due to (2.8), we choose a constant C > 0 such that v.(x) > Cn.(|x|) for |x| < 1.
Note that 7, is decreasing and G™! is increasing, there exists a positive constant C such that, for |x| <

p-l
er,

WN=p)d-p)

G \(tve) = G\(T\ (1) = G (TiC(e7 ) 2 GT/(Ce 7).

Then we can choose £; > 0 such that

WN=-p)1-p) WN=-p)d-p)

Cs 7 >1, G tw) =G (Ce 7 )>R, (2.17)

for |x| < s%, 0 < & < g;. It follows from (2.16) and (2.17) that

(N=p)(1-p)u

CAe »* if N < p?,
F(x,G™'(s) 24 cAe™ 7 " loge, ifN = p, (2.18)
CAs 7, it N > p?,
for |x| < sll;l O<e<eg.
Using (f5)-(1), one has
F(x,G'(s) +|sl”P >0, xeQ, s>0. (2.19)

Since B,(0) € Q, by (2.18) and (2.19), for 0 < & < &1, we have

f F(x,G ' (t.v.))dx = f
RN B

F(x,G™ (t.v,))dx + f F(x,G N (t.v,))dx
1 Q\B -1

= o7 (2.20)
> f o F, G (tpve))dx — T) [Ivell?,
|x|l<e P
where
(N-p)(1-p) —
CA[ sie 7 dx=CAer, itN < p?,
. lx|<e P Nemiim - ‘ .
o FO, G (1eve))dx > CAf||< p1E 7 logedx = CAe? ' loge, if N = p,
|x|<e P xi<e (1

CA[ o e 7 dx = CAsP, ifN > p.

Consequently, by (2.20), we obtain
Jo FOu, G (tov2))dx

e—0t r(g)

> CA-T?. 2.21)

Choosing A > 0 sufficiently large, (2.21) establishes (2.15). Lemma 2.5 is proved. O
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3. The asymptotically period case

In this section, in order to overcome the difficulties caused by the loss of translation invariance due
to the asymptotically periodic potential, we need to state the following technical convergence results.
The detailed proofs can be found in [23, 36], where p = 2.

Lemma 3.1 Assume that (V), (K;), (f1) and (i) of (fs) hold. Suppose that {v,} is bounded in X,
{y,} ¢ Z" with |y,| — +c0 and v, — 0 in L;fw(RN), for any a € [p, p*). Then up to a subsequence, one
has

f (V(x) = Vo)IG™ )l dx — 0,(1); (3.1
RN
G~ I G (v) 0
RN(V(X) - Vo(x) G 0)) p(x = y)dx = 0,(1), Yo € C7(RY); (3.2)
f [F(x,G™'0n) = Fox, G v)|dx — 0,(1):; (3.3)
RN
fO, G ) = folx, G (va)) co N
» 2(GT0) (x — yu)dx — 0,(1), Yo € Ci'(R™). (3.4)

Proof of Theorem 1.1 Lemma 2.3 implies the existence of a Cerami sequence {v,} € X. By
Lemma 2.4, {v,} is bounded in X. Thus, there exists v € X such thatv, — vin X, v, — vin Li) C(RN ),
v,(x) = v(x) a.e. in RY. For any ¢ € C7°(RY), one has

0 =(T (), @) + 0,(1) =(T'(v), ),

that is, v is a weak solution of Eq (1.10).

Now we prove that v is nontrivial. By contradiction, we assume that v = 0. We divide the proof
four steps.

Step 1: We claim that {v,} € X is also a Cerami sequence for the functional J, : X — R, where

1 1 .
Jov) = — f [IVV + Vo)IG™ )1 |dx - f Fo(x,G™' (v)dx — — f K(x)" dx.
P Jr¥ RW P JIrv
From (3.1) and (3.3), we can deduce that

T W) = Jo(vn)

< ,l)f (Ve = Vo)iG P fax + f |F(, G () = Fox, G () |dx
RN RY

= On(l)a
3.5)
and taking ¢ € X with ||¢|| = 1, by (3.2) and (3.4), we obtain that
G—l . p—ZG—l ;
k7@ - Tgm|| < sup | f (V) ~ Vo) 080 )
o peXllel=1 - JRN g(G~(vy) (3.6)

FOuG ) = folx, G (v))
* fR 2(G1(v) ¢l

From (3.5) and (3.6), we can get that {v,} is also a Cerami sequence for /.

=0,(1).
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Step 2: We prove that {v,} is non-vanishing i.e.,

[ := lim sup sup f [valPdx > 0. (3.7)
B1(y)

n—oo  yeRN

If 5 = 0, the Lions lemma [18], we have v, — 0 in LY(R") for all ¢ € (p, p*).
Note that

0n(1) = (T (), Vi) = f [IVvl? + V)l |dx — f F v, vvadx - f K| dx,

R R R

which combining with (2.6) leads to
f |IVvl” + Vol |dx — f K@)lv,|” dx = 0,(1).
RN RN
Therefore, there exists a constant / > 0 such that
f [|an|” + V(x)lvnl”]dx - 1, f K@x)v,[”dx — 1.
RV RV
Obviously, [ > 0. Otherwise, J(v,) — 0 as n — oo, which contradicts with ¢ > 0. Since

[ = lim K(X)v,|P dx < ||K||e lim f [valP" dx
n—00 JpN

n—oo Jon

< [IKlwS ™7 Lim( f VP dx)7 < |IKlloS ™ lim [Vvll” < K|S 717,
n—oo RN n—oo

Ny
that is, [ > ||K||. S 7. Consequently, (2.4) implies that

cto,(1)=J,) = lf IVl + V(v )dx —f F(x,v,)dx - if K(x)lv,|” dx
P Jry RN P Jrv

1 1 1 1 eN
= (- = =)= =12 <K ST,
p p N N
Ny

as n — oo, which deduces that ¢ > +||K]||.. S 7, a contradiction.

Step 3: After a translation of {v,} denoted {w,}, then {w,} converges weakly to a nonzero critical
point of .

Choose {y,} € ZV such that |y,| — +o0 as n — oo and denote w,,(x) = v,(x + y,). Then

wall = lvall, Town) = Toa), Town) = To(va).

Thus, {w,} is a bounded (PS),, of o, where ¢y is defined below. Going if necessary to a subsequence,
we get that w, — win X and J(w) = 0. So by Step 2 we get w # 0. Therefore, by (f5)-(ii), Lemma
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2.1-(8) and Fatou Lemma, we have
.. 1, _,
¢ = liminf[Fo(w,) - (T30, wa)|

1 _ ol e G~ (wa)w,
= timint= [ ViIG o 267 ) - T

-1
+ lim inf f (LG W _ i Gt w )] + (& — —liminf f Kol dx
e Jen b pg(G-1(wy) p ptonow e

]dx

G 'w)w

1 - —_— —_—
> [, Yoo o6 o - Tl
folx, G w)w : 11 :
" fRN[ Opg(G_l(W)) ~ Fo(x, G (w))|dx + (5= fR Kol dx

1
=Jow) - ;(J}S(W), w) = Jo(w),

which implies that Jy(w) < c.

Step 4: We use w to construct a path which allows us to get a contradiction with the definition of
mountain pass level c.

Define the mountain pass level

co := inf sup Jo(y(1)) > 0,

Y€l te[0,1]

where ' := {y € C([0,1],X) : y(0) = 0, Jo(y(1)) < 0}. Applying similar arguments used in [15], we
can construct a path y : [0, 1] — X such that

y(0) =0, Jo(y(1)) <0, wey(0,1]),
y()(x) >0, VxeRY, t€[0,1],

maXcjo,11 Jo(y(®) = Jo(w).

Then ¢y < maxeo,11 Jo(y(1)) = Jo(w). Due to the fact that V(x) < Vy(x) but V(x) £ Vj(x), we take the
path y given by above and by y € I ¢ T, we have

¢ <max J(y) =J (YD) < Jo(y(D) < max Jo(y(0) = Jo(w) < c,
which is a contradiction. Consequently, v is a nontrivial solution of Eq (1.10), then using the strong
maximun principle, we obtain v > 0, namely, Eq (1.1) possesses a nontrivial positive solution u =
G~'(v). This completes the proof of Theorem 1.1. O

4. The period case

In this section, we give the proof of Theorem 1.2.
Proof of Theorem 1.2 By Lemma 2.3, there exists a Cerami sequence {v,} C X such that

Joa) = cand (1 + [valDIIT 5 (v)ll — 0.
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Applying Lemma 2.4, the Cerami sequence {v,} is bounded in X. Similar to (3.7), it is easy to verify
that {v,} is non-vanishing.

As in the step 3 of Theorem 1.1, set w,(x) = v, (x + y,,). It is easy to know that ||w,|| = ||v,|| and {w,}
is bounded and non-vanishing. Going if necessary to a subsequence, we have

w, =w#0inX, w, » win L’ (RV).

loc

Moreover, since Vy(x), K(x) and fy(x, u) are periodic on X, we see that {w,} is also a a Cerami sequence
of Jo. Then for any ¢ € Cy°(R"),

(TG00, @) = im (Tgow), )

That is Jj(w) = 0 and w is a nontrivial solution to (1.12). By the strong maximun principle, we obtain
w > 0. This completes the proof of Theorem 1.2. O

5. Conclusions

In [38], we discussed a class of generalized quasilinear Schrodinger equations with asymptotically
periodic potential, where p = 2 and the nonlinear term is subcritical. In this current work, we have
established the existence of nontrivial positive solutions for a class of generalized quasilinear elliptic
equations with critical growth. In the next work, we will extend the study to the case of variable
exponent p = p(?).
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