
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(6): 9748–9766.
DOI:10.3934/math.2022543
Received: 23 January 2022
Revised: 05 March 2022
Accepted: 08 March 2022
Published: 17 March 2022

Research article

Existence of nontrivial positive solutions for generalized quasilinear elliptic
equations with critical exponent

Shulin Zhang1,2,∗

1 School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
2 School of Mathematics, Xuzhou Vocational Technology Academy of Finance and Economics,

Xuzhou 221116, China

* Correspondence: Email: zhangshulin0228@126.com.

Abstract: In this paper, we are concerned with the existence of nontrivial positive solutions for the
following generalized quasilinear elliptic equations with critical growth

−div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V(x)|u|p−2u = h(x, u), x ∈ RN ,

where N ≥ 3, 1 < p < N. Under some suitable conditions, we prove that the above equation
has a nontrivial positive solution by variational methods. To some extent, our results improve and
supplement some existing relevant results.
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1. Introduction

In this paper, we consider the existence of nontrivial positive solutions for the following generalized
quasilinear elliptic equations

− div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V(x)|u|p−2u = h(x, u), x ∈ RN , (1.1)

where N ≥ 3, 1 < p < N, g : R → R+ is an even differential function with g′(t) ≥ 0 for all t ≥ 0 and
g(0) = 1, V : RN → R and h : RN × R→ R are continuous functions.

Notice that if we take p = 2 and g2(u) = 1 +
[(l(u2))′]2

2 , where l is a given real function, then (1.1)
turns into

− 4u + V(x)u − 4(l(u2))l′(u2)u = h(x, u), x ∈ RN . (1.2)
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Equation (1.2) is related to the existence of solitary wave solutions for quasilinear Schrödinger
equations

izt = −4z + W(x)z − h(x, z) − 4(l(|z|2))l′(|z|2)z, x ∈ RN , (1.3)

where z : R × RN → C, W : RN → R is a given potential, h : RN × R → R and l : R → R are suitable
functions. The form of (1.3) has many applications in physics. For instance, the case l(s) = s was used
to model the time evolution of the condensate wave function in superfluid film [16, 17]. In the case
of l(s) =

√
1 + s, Eq (1.3) was used as a model of the self-channeling of a high-power ultrashort laser

in matter [3, 29]. For more details on the physical background, we can refer to [2, 4] and references
therein.

Putting z(t, x) = exp(−iEt)u(x) in (1.3), where E ∈ R and u is a real function, we obtain a
corresponding equation of elliptic type (1.2).

If we take p = 2, then (1.1) turns into

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(x, u), x ∈ RN . (1.4)

In recent years, many researchers have studied (1.4) under various hypotheses on the potential and
nonlinearity, for example [6-9, 24, 28, 38].

If we set p = 2, g2(u) = 1 + 2u2, i.e., l(s) = s, we can get the superfluid film equation in plasma
physics

− 4u + V(x)u − 4(u2)u = h(x, u), x ∈ RN . (1.5)

Equation (1.5) has been extensively studied, see [5, 20, 27, 30, 31].
If we take p = 2, g2(u) = 1 + u2

2(1+u2) , i.e., l(s) =
√

1 + s, (1.2) derives the following equation

− 4u + V(x)u − [4(1 + u2)
1
2 ]

u

2(1 + u2)
1
2

= h(x, u), x ∈ RN , (1.6)

which models of the self-channeling of a high-power ultrashort laser in matter. For (1.6), there are
many papers studying the existence of solutions, see [10, 13, 33] and references therein.

Furthermore, if we set gp(u) = 1 + 2p−1up in (1.1), then we get the following quasilinear elliptic
equations

− 4p(u) + V(x)|u|p−2u − 4p(u2)u = h(x, u), u ∈ W1,p(RN), (1.7)

where 4p = div(|∇u|p−2∇u) is the p-Laplacian operator with 1 < p ≤ N. In [11], where h(x, u) = h(u),
the authors constructed infinitely many nodal solutions for (1.7) under suitable assumptions.

We point out that the related semilinear elliptic equations with the asymptotically periodic condition
have been extensively researched, see [12, 19, 22, 23, 25, 34–37] and their references.

Especially, in [12], Lins and Silva considered the following asymptotically periodic p-laplacian
equations {

−4pu + V(x)up−1 = K(x)up∗−1 + g(x, u), x ∈ RN ,

u ∈ W1,p(RN), u ≥ 0.
(1.8)

Assume that the potential V satisfies
(V0) there exist a constant a0 > 0 and a function V̄ ∈ C(RN ,R), 1-periodic in xi, 1 ≤ i ≤ N, such

that V̄(x) ≥ V(x) ≥ a0 > 0 and V̄ − V ∈ K , where

K := {h ∈ C(RN)
⋂

L∞(RN) : ∀ε > 0,meas{x ∈ RN : |h(x)| ≥ ε} < +∞},
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and the asymptotically periodic of g at infinity was assumed to the following condition
(g0) there exist a constant p < q1 < p∗ and functions h ∈ K , g0 ∈ C(RN ,R), 1-periodic in xi,

1 ≤ i ≤ N, such that

|g(x, s) − g0(x, s)| ≤ h(x)|s|q1−1, for all (x, s) ∈ RN × [0,+∞).

For the other conditions on g, please see [12].
In recent paper [36], Xue and Tang studied the following quasilinear Schrodinger equation

− 4u + V(x)u − 4(u2)u = K(x)|u|22∗−2u + g(x, u), x ∈ RN , (1.9)

they proposed reformative conditions, which unify the asymptotic process of the potential and
nonlinear term at infinity, see the below condition (V1) and (i) of ( f5). It is easy to see that this
conditions contains more elements than those in [12]. To the best of our knowledge, there is no
work concerning with the unified asymptotic process of the potential and nonlinear term at infinity
for general quasilinear elliptic equations.

Motivated by above papers, under the asymptotically periodic conditions, we establish the existence
of a nontrivial positive solution for Eq (1.1) with critical nonlinearity. We assume h(x, u) = f (x, u) +

K(x)g(u)|G(u)|p
∗−2G(u). Equation (1.1) can be rewritten in the following form:

−div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V(x)|u|p−2u

= f (x, u) + K(x)g(u)|G(u)|p
∗−2G(u), x ∈ RN ,

(1.10)

where p∗ =
N p

N−p for N ≥ 3, G(t) =
∫ t

0
g(τ)dτ and f : RN × R→ R is continuous function.

We observe that the energy functional associate with (1.10) is given by

I(u) =
1
p

∫
RN

gp(u)|∇u|pdx +
1
p

∫
RN

V(x)|u|pdx −
∫
RN

F(x, u)dx −
1
p∗

∫
RN

K(x)|G(u)|p
∗

dx,

where F(x, u) =
∫ u

0
f (x, τ)dτ. However, I may be not well defined in W1,p(RN) because of the term∫

RN gp(u)|∇u|pdx. To overcome this difficulty, we make use of a change of variable constructed by [32],

v = G(u) =

∫ u

0
g(t)dt.

Then we obtain the following functional

J(v) =
1
p

∫
RN

[
|∇v|p + V(x)|G−1(v)|p

]
dx −

∫
RN

F(x,G−1(v))dx −
1
p∗

∫
RN

K(x)|v|p
∗

dx.

Since g is a nondecreasing positive function, we can get |G−1(v)| ≤ 1
g(0) |v|. From this and our hypotheses,

it is clear that J is well defined in W1,p(RN) and J ∈ C1.
If u is said to be a weak solution for Eq (1.10), then it should satisfy∫

RN

[
gp(u)|∇u|p−2∇u∇ψ + gp−1(u)g′(u)|∇u|pψ + V(x)|u|p−2uψ − f (x, u)ψ

− K(x)g(u)|G(u)|p
∗−2G(u)ψ

]
dx = 0, for all ψ ∈ C∞0 (RN).

(1.11)
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Let ψ = 1
g(u)ϕ, we know that (1.11) is equivalent to

〈J ′(v), ϕ〉 =

∫
RN

[
|∇v|p−2∇v∇ϕ + V(x)

|G−1(v)|p−2G−1(v)
g(G−1(v))

ϕ −
f (x,G−1(v))
g(G−1(v))

ϕ − K(x)|v|p
∗−2vϕ

]
dx = 0,

for any ϕ ∈ C∞0 (RN).
Therefore, in order to obtain a nontrivial solution of (1.1), it suffices to study the following equations

−∆pv + V(x)
|G−1(v)|p−2G−1(v)

g(G−1(v))
−

f (x,G−1(v))
g(G−1(v))

− K(x)|v|p
∗−2v = 0.

Obviously, if v is a nontrivial critical point of the functional J , then u = G−1(v) is a nontrivial
critical point of the functional I, i.e., u = G−1(v) is a nontrivial solution of equation (1.1).

In the asymptotically periodic potential case, the functional J loses the ZN-translation invariance
due to the asymptotically periodic potential. For this reason, many effective methods applied in
periodic problems become invalid in asymptotically periodic problems. In this paper, we adopt some
tricks to overcome the difficulties caused by the dropping of periodicity of V(x).

Before stating our results, we introduce some hypotheses on the potential V,K:

(V1) 0 < Vmin ≤ V(x) ≤ V0(x) ∈ L∞(RN) and V(x) − V0(x) ∈ F0, where

F0 :=
{
k(x) : ∀ε > 0, lim

|y|→∞
meas {x ∈ B1(y) : |k(x)| ≥ ε} = 0

}
,

Vmin is a positive constant and V0(x) is 1 − periodic in xi, 1 ≤ i ≤ N.

(K1) The function K ∈ C(RN ,R) is 1-periodic in xi, 1 ≤ i ≤ N and there exists a point x0 ∈ R
N such

that

(i) K(x) ≥ inf
x∈RN

K(x) > 0, for all x ∈ RN;

(ii) K(x) = ||K||∞ + O(|x − x0|
N−p
p−1 ), as x→ x0.

Moreover, the nonlinear term f ∈ C(RN × R,R) should satisfy the following assumptions:

( f0) f (x, t) = 0, t ≤ 0 uniformly for x ∈ RN;

( f1) lim
t→0+

f (x, t)
g(t)|G(t)|p−1 = 0 uniformly for x ∈ RN;

( f2) lim
t→+∞

f (x, t)
g(t)|G(t)|p∗−1 = 0 uniformly for x ∈ RN;

( f3)
f (x,G−1(t))t
g(G−1(t))

− pF(x,G−1(t)) ≥
f (x,G−1(ts))ts

g(G−1(ts))
− pF(x,G−1(ts)) for all t ∈ R+ and s ∈ [0, 1];

( f4) there exists an open bounded set Ω ⊂ RN , containing x0 given by (K1)
such that
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lim
t→+∞

F(x, t)
|G(t)|µ

= +∞ uniformly for x ∈ Ω, where µ = p∗ −
p

p − 1
, if N < p2;

lim
t→+∞

F(x, t)
|G(t)|p log |G(t)|

= +∞ uniformly for x ∈ Ω, if N = p2;

lim
t→+∞

F(x, t)
|G(t)|p

= +∞ uniformly for x ∈ Ω, if N > p2, where F(x, t) =

∫ t

0
f (x, τ)dτ;

( f5) There exists a periodic function f0 ∈ C(RN × R+,R+), which is 1 − periodic in xi, 1 ≤ i ≤ N,

such that
(i) f (x, t) ≥ f0(x, t) for all (x, t) ∈ RN × R+ and f (x, t) − f0(x, t) ∈ F , where

F :=
{
k(x, t) : ∀ε > 0, lim

|y|→∞
meas{x ∈ B1(y) : |k(x, t)| ≥ ε} = 0 uniformly for |t| bound

}
;

(ii)
f0(x,G−1(t))t

g(G−1(t))
− pF0(x,G−1(t)) ≥

f0(x,G−1(ts))ts
g(G−1(ts))

− pF0(x,G−1(ts)) for all t ∈ R+ and s ∈ [0, 1],

where F0(x, t) =

∫ t

0
f0(x, τ)dτ.

In the asymptotically periodic case, we establish the following theorem.
Theorem 1.1 Assume that (V1), (K1) and ( f1) − ( f5) hold. Then Eq (1.1) has a nontrivial positive

solution.
In the special case: V = V0, f = f0, we can get a nontrivial positive solution for the periodic

equation from Theorem 1.1. Indeed, considering the periodic equation

−div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V0(x)|u|p−2u

= f0(x, u) + K(x)g(u)|G(u)|p
∗−2G(u),

(1.12)

under the hypothesis:
(V2) The function V0(x) is 1-periodic in xi, 1 ≤ i ≤ N and there exists a constant Vmin > 0 such that

0 < Vmin ≤ V0(x) ∈ L∞(RN), for all x ∈ RN .

In the periodic case, we obtain the following theorem.
Theorem 1.2 Assume that (V2), (K1) hold, f0 satisfies ( f1) − ( f4). Then Eq (1.12) has a nontrivial

positive solution.
Remark 1.3 Compared with the results obtained by [12, 21, 23, 36], our results are new and

different due to the following some facts:
(i) Compared with Eq (1.8) and Eq (1.9), Eq (1.10) is more general. In our results, there is no need

to assume f (x, t) ∈ C1(RN ,R). To some extent, our results extends the results of the work [12, 23, 36,
38].

(ii) We choose condition ( f3) to be weaker than Ambrosetti-Rabinowitz type condition (see [21]).
(iii) The aim of ( f3) is to ensure that the Cerami sequence is bounded, which is different from the

conditions of [12].
The rest of this paper is organized as follows: in Section 2, we present some preliminary lemmas.

We will prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.
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2. Some preliminary lemmas

In this section, we present some useful lemmas.
Let us recall some basic notions. W := W1,p(RN) is the usual Sobolev space endowed with the norm

||u||W =
( ∫
RN (|∇u|p + |u|p)dx

) 1
p , we denote by Ls(RN) the usual Lebesgue space endowed with the norm

||u||s =
( ∫
RN |u|sdx

) 1
s
,∀s ∈ [1,+∞) and let C denote positive constants. Next, we define the following

working space

X := {u ∈ Lp∗(RN) : |∇u| ∈ Lp(RN),
∫
RN

V(x)|u|pdx < ∞}

endowed with the norm ||u|| =
( ∫
RN (|∇u|p + V(x)|u|p)dx

) 1
p . According to [22], it is easy to verify that

the norms || · || and || · ||W are equivalent under the assumption (V1).
Next, we summarize some properties of g,G and G−1.
Lemma 2.1 [32] The functions g,G and G−1 satisfy the following properties:

(i) the functions G(·) and G−1(·) are strictly increasing and odd;
(ii) G(s) ≤ g(s)s for all s ≥ 0; G(s) ≥ g(s)s for all s ≤ 0;
(iii) g(G−1(s)) ≥ g(0) = 1 for all s ∈ R;

(iv)
G−1(s)

s
is decreasing on (0,+∞) and increasing on (−∞, 0);

(v) |G−1(s)| ≤
1

g(0)
|s| = |s| for all s ∈ R;

(vi)
|G−1(s)|

g(G−1(s))
≤

1
g2(0)

|s| = |s| for all s ∈ R;

(vii)
G−1(s)s

g(G−1(s))
≤ |G−1(s)|2 for all s ∈ R;

(viii) lim
|s|→0

G−1(s)
s

=
1

g(0)
= 1 and

lim
|s|→∞

G−1(s)
s

=

{ 1
g(∞) , if g is bounded,
0, if g is unbounded.

Denote

f̄ (x, s) = V(x)|s|p−2s − V(x)
|G−1(s)|p−2G−1(s)

g(G−1(s))
+

f (x,G−1(s))
g(G−1(s))

. (2.1)

Then

F̄(x, s) =

∫ s

0
f̄ (x, τ)dτ =

1
p

V(x)|s|p −
1
p

V(x)|G−1(s)|p + F(x,G−1(s)). (2.2)

Therefore,

J(v) =
1
p

∫
RN

(|∇v|p + V(x)|v|p)dx −
∫
RN

F̄(x, v)dx −
1
p∗

∫
RN

K(x)|v|p
∗

dx. (2.3)
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Lemma 2.2 The functions f̄ (x, s) and F̄(x, s) satisfy the following properties under ( f1)− ( f3), ( f5):
(i) lims→0+

f̄ (x,s)
|s|p−1 =0 and lims→0+

F̄(x,s)
|s|p = 0 uniformly in x ∈ RN;

(ii) lims→+∞
f̄ (x,s)
|s|p∗−1 =0 and lims→+∞

F̄(x,s)
|s|p∗ = 0 uniformly in x ∈ RN;

(iii) t f̄ (x, t) − pF̄(x, t) ≥ st f̄ (x, st) − pF̄(x, st) for all t ∈ R+ and s ∈ [0, 1];
(iv) F̄(x, s) ≥ 0 for all (x, s) ∈ RN × R+.
Proof From ( f1) and Lemma 2.1-(8), we have

lim
s→0+

f̄ (x, s)
sp−1 = lim

s→0+

[
V(x)(1 − (

G−1(s)
s

)p−1 ·
1

g(G−1(s))
)
]

+ lim
s→0+

f (x,G−1(s))
sp−1g(G−1(s))

= 0,

uniformly in x ∈ RN . Moreover, by ( f2) and Lemma 2.1-(8), one has

lim
s→+∞

f̄ (x, s)
sp∗−1 = − lim

s→+∞

[
V(x)(

G−1(s)
s

)p−1 ·
1

g(G−1(s))
·

1
sp∗−p

]
+ lim

s→+∞

f (x,G−1(s))
sp∗−1g(G−1(s))

= 0,

uniformly in x ∈ RN . Then using the L’Hospital rule, we obtain

lim
s→0+

F̄(x, s)
|s|p

= 0 and lim
s→+∞

F̄(x, s)
|s|p∗

= 0,

uniformly in x ∈ RN . Hence, (i) and (ii) hold.
LetH(x, t) = t f̄ (x, t) − pF̄(x, t) for (x, t) ∈ (RN ,R+).
We claim thatH(x, t) is an increasing function with respect to t.
By (2.1) and (2.2), we directly calculate

H(x, t) = t f̄ (x, t) − pF̄(x, t)

= V(x)|G−1(t)|p−2
[
G−1(t)2 −

G−1(t)t
g(G−1(t))

]
+

f (x,G−1(t))t
g(G−1(t))

− pF(x,G−1(t)).

Next, set η(t) = G−1(t)2 −
G−1(t)t

g(G−1(t)) for any t ∈ R+. To compete the claim, combining with ( f3) and
Lemma 2.1-(1), We only need to prove that η(t) is an increasing function on R+. Please see literature
[26], for the reader’s convenience, we give a brief proof.

By Lemma 2.1-(2) and g′(t) ≥ 0 for all t ≥ 0, one has

G(t)
[g(t) − g′(t)t

g2(t)

]
≤ t,

which deduces that
G(t)
g(t)

( t
g(t)

)′
≤

t
g(t)

,

for all t ≥ 0. Set ξ = G(t). Then

G(t)
d
dξ

( t
g(t)

)
≤

t
g(t)

,

and thus

ξ
[ G−1(ξ)
g(G−1(ξ))

]′
≤

G−1(ξ)
g(G−1(ξ))

,
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for all ξ ≥ 0. Therefore,

η′(t) =
G−1(t)

g(G−1(t))
−

[ G−1(t)
g(G−1(t))

]′
t ≥ 0,

for all t ≥ 0. It follows that η(t) is increasing with respect to t ≥ 0. Thus, η(st) ≤ η(t) for all s ∈ [0, 1]
and t ≥ 0, and then

G−1(st)2 −
G−1(st)st
g(G−1(st))

≤ G−1(t)2 −
G−1(t)t

g(G−1(t))
,

for all s ∈ [0, 1] and t ≥ 0. So (iii) holds. Moreover, Lemma 2.1-(5) and ( f5)− (i) imply that F̄(x, s) ≥ 0
for all (x, s) ∈ RN × R+. This completes the proof. �

Lemma 2.3 Assume that (V1), (K1) and ( f1) − ( f2) are satisfied. Then the functional J satisfies the
following mountain pass geometry structure:

(i) there exist positive constants ρ and b such that J(v) ≥ b for ||v|| = ρ;
(ii) there exists a function v0 ∈ X such that ||v0|| > ρ and J(v0) < 0.
Proof By ( f1), ( f2), Lemma 2.2-(1), (2), for any ε > 0, there exists Cε > 0 and q ∈ (p, p∗) such that

F̄(x, s) ≤ ε(|s|p + |s|p
∗

) + Cε|s|q, (2.4)

for all (x, s) ∈ RN × R+. Therefore, by (2.3) and (2.4), we have

J(v) =
1
p

∫
RN

[
|∇v|p + V(x)|v|p

]
dx −

∫
RN

F̄(x, v)dx −
1
p∗

∫
RN

K(x)|v|p
∗

dx

≥
1
p

∫
RN

[
|∇v|p + V(x)|v|p

]
dx − ε

∫
RN
|v|pdx − ε

∫
RN
|v|p

∗

dx

−Cε

∫
RN
|v|qdx −

||K||∞
p∗

∫
RN
|v|p

∗

dx

=
1
p
||v||p − ε

∫
RN
|v|pdx − (ε +

||K||∞
p∗

)
∫
RN
|v|p

∗

dx −Cε

∫
RN
|v|qdx

≥ (
1
p
− εC)||v||p −C||v||p

∗

−C||v||q,

where ε is small enough, thus (i) is proved because p < q < p∗.
It follows from (2.3) that Lemma 2.2-(4), for any fixed v ∈ X with v ≥ 0 and v . 0, we obtain

J(tv) =
tp

p

∫
RN

[
|∇v|p + V(x)|v|p

]
dx −

∫
RN

F̄(x, tv)dx −
tp∗

p∗

∫
RN

K(x)|v|p
∗

dx

≤
tp

p
||v||p −

tp∗

p∗

∫
RN

K(x)|v|p
∗

dx.

Obviously, J(tv)→ −∞ as t → +∞. Thus there exists a t0 > 0 large enough such that J(t0v) < 0 with
||t0v|| > ρ. Hence, we take v0 = t0v, (ii) is proved. �

Lemma 2.4 Assume that (V1), (K1) and ( f1)−( f3) hold, then there exists a bounded Cerami sequence
{vn} ⊂ X for J .

Proof From Lemma 2.3, we know that J satisfies the mountain pass geometry structure. By the
mountain pass theorem (see [1]), there exists a Cerami sequence {vn} ⊂ X such that

J(vn)→ c and (1 + ||vn||)||J ′(vn)||∗ → 0,
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where
c := inf

γ∈Γ
sup

t∈[0,1]
J(γ(t)), Γ := {γ ∈ C([0, 1], X) : γ(0) = 0,J(γ(1)) < 0}.

As in [14], we can take a sequence {tn} ⊂ [0, 1] satisfying

J(tnvn) := max
t∈[0,1]

J(tvn). (2.5)

We claim that {J(tnvn)} is bounded from above.
Indeed, without loss of the generality, we may assume that tn ∈ (0, 1) for all n ∈ N. Thus, by Lemma

2.2-(3), we have

J(tnvn) −
1
p
〈J ′(tnvn), tnvn〉 =

∫
RN

[1
p

tnvn f̄ (x, tnvn) − F̄(x, tnvn)
]
dx + (

1
p
−

1
p∗

)tp∗
n

∫
RN

K(x)|vn|
p∗dx

≤

∫
RN

[1
p

vn f̄ (x, vn) − F̄(x, vn)
]
dx + (

1
p
−

1
p∗

)
∫
RN

K(x)|vn|
p∗dx

= J(vn) −
1
p
〈J ′(vn), vn〉 = c + on(1),

which implies that {J(tnvn)} is bounded from above.
Now, we prove that {vn} is bounded in X. Assume by contradiction that {vn} is unbounded, then

up to a subsequence, we may assume that ||vn|| → +∞. Set wn = vn
||vn ||

. Clearly, wn is bounded in X
and ||wn|| = 1. Then, there exists w ∈ X such that wn ⇀ w in X. Set Λ = {x ∈ RN : w(x) , 0}. If
meas(Λ) > 0, the Fatou lemma and Lemma 2.2-(4) implies

0 = lim sup
n→∞

J(vn)
||vn||

p =
1
p
− lim inf

n→∞

[ ∫
RN

F̄(x, vn)
||vn||

p dx +
1
p∗

∫
Λ

K(x)|wn|
p|vn|

p∗−pdx
]

≤
1
p
−

infx∈RN K(x)
p∗

lim inf
n→∞

∫
Λ

|wn|
p|vn|

p∗−pdx→ −∞,

which is a contradiction. Thus w = 0. For any B > 0, by ||vn|| → +∞ and (2.5), we have

J(tnvn) ≥ J(
B
||vn||

vn) = J(Bwn) =
Bp

p
−

∫
RN

F̄(x, Bwn)dx −
Bp∗

p∗

∫
RN

K(x)|wn|
p∗dx.

By ( f1), ( f2), Lemma 2.2-(1), (2), for ε > 0, there exists Cε > 0 and q ∈ (p, p∗) such that

f̄ (x, s)s ≤ ε(|s|p + |s|p
∗

) + Cε|s|q, (2.6)

for all (x, s) ∈ RN × R+. Hence, by (2.6), we get

inf
x∈RN

K(x)
∫
RN
|wn|

p∗dx ≤
∫
RN

K(x)|wn|
p∗dx =

1
||vn||

p∗−p −
1
||vn||

p∗

∫
RN

f̄ (x, vn)vndx + on(1)→ 0,

as n → ∞, namely,
∫
RN |wn|

p∗dx → 0 as n → ∞. Then by interpolation inequality, we have∫
RN |wn|

qdx→ 0 as n→ ∞. Moreover, from (2.4), we have∣∣∣∣ ∫
RN

F̄(x, Bwn)dx
∣∣∣∣ ≤ εBp

∫
RN
|wn|

pdx + εBp∗
∫
RN
|wn|

p∗dx + CεBq
∫
RN
|wn|

qdx.
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By the arbitrariness of ε, we can get
∫
RN F̄(x, Bwn)dx→ 0 as n→ ∞. Consequently,

lim inf
n→∞

J(tnvn) ≥
Bp

p
, ∀B > 0.

This contradicts the fact that J(tnvn) is bounded above. Therefore, {vn} is bounded in X. The proof
of Lemma 2.4 is complete �

Next, we do an estimate on c and follow the approach presented in [12]. Given ε > 0, we consider
the function

Uε(x) =

[
N
(

N−p
p−1

)p−1
ε
] N−p

p2

(ε + |x − x0|
p

p−1 )
N−p

p

,

which is a solution of the following equation

−4pu = |u|p
∗−2u, in RN

and

S := inf
u∈D1,p(RN )\{0}

∫
RN |∇u|pdx

(
∫
RN |u|p

∗dx)
p

p∗
.

can be achieved at Uε.
Let φ ∈ C∞0 (RN , [0, 1]) be a cut-off function such that φ ≡ 1 in B1(0), φ ≡ 0 in RN\B2(0). Define

uε = φUε, vε =
uε( ∫

RN K(x)|u|p
∗

ε dx
) 1

p∗
, (2.7)

then by a direct computation, there exist positive constants l1, l2 and ε0 such that

l1 <

∫
RN

K(x)|u|p
∗

ε dx < l2, for all 0 < ε < ε0, (2.8)∫
RN
|∇vε|p ≤ ||K||

p−N
N
∞ S + O(ε

N−p
p ), as ε→ 0+, (2.9)

and as ε→ 0, we have

∫
RN
|vε|pdx =


O(ε

N−p
p ), if N < p2,

O(εp−1| log ε|), if N = p2,

O(εp−1), if N > p2.

(2.10)

Lemma 2.5 Assume that (V1), (K1) and ( f1) − ( f2), ( f4) are satisfied. Then c < 1
N ||K||

p−N
p
∞ S

N
p .

Proof For t > 0, vε defined by above (2.7), we have

J(tvε) =
1
p

∫
RN

[
tp|∇vε|p + V(x)|G−1(tvε)|p

]
dx −

∫
RN

F(x,G−1(tvε))dx −
tp∗

p∗

∫
RN

K(x)|vε|p
∗

dx. (2.11)

Lemma 2.3 implies that there exists tε > 0 such that J(tεvε) = maxt≥0J(tvε).
We claim that there exist T1,T2 > 0 such that T1 ≤ tε ≤ T2 for ε small enough.
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Indeed, if tε → 0 as ε→ 0, we have 0 < J(tεvε)→ J(0) = 0, which is a contradiction.
On the other hand, from (2.11) and ( f4), one has

0 < J(tεvε) =
1
p

∫
RN

[
tp
ε |∇vε|p + V(x)|G−1(tεvε)|p

]
dx −

∫
RN

F(x,G−1(tεvε))dx −
tp∗
ε

p∗

∫
RN

K(x)|vε|p
∗

dx

≤
tp
ε

p

∫
RN

[
|∇vε|p + V(x)|vε|p

]
dx −

tp∗
ε

p∗

∫
RN

K(x)|vε|p
∗

dx

→ −∞,

as tε → +∞, a contradiction, which implies that the claim holds.

To complete the proof, it suffices to show that J(tεvε) < 1
N ||K||

p−N
p
∞ S

N
p . Therefore,

J(tεvε) =
1
p

∫
RN

[
tp
ε |∇vε|p + V(x)|G−1(tεvε)|p

]
dx −

∫
RN

F(x,G−1(tεvε))dx −
tp∗
ε

p∗

∫
RN

K(x)|vε|p
∗

dx

≤
tp
ε

p

∫
RN
|∇vε|pdx +

tp
ε

p

∫
RN

V(x)|vε|pdx −
∫
RN

F(x,G−1(tεvε))dx −
tp∗
ε

p∗

≤
1
N

( ∫
RN
|∇vε|pdx

) N
p

+ C
∫
RN
|vε|pdx −

∫
RN

F(x,G−1(tεvε))dx,

for some constant C =
T p

2 ||V0 ||∞

p > 0.

Indeed, for t > 0, define l(t) = tp

p

∫
RN |∇vε|pdx − tp∗

p∗ , we have that t0 =
( ∫
RN |∇vε|pdx

) 1
p∗−p is a

maximum point of l and l(t0) = 1
N

( ∫
RN |∇vε|pdx

) N
p . Applying the inequality

(a + b)κ ≤ aκ + κ(a + b)κ−1b, a, b ≥ 0, κ ≥ 1. (2.12)

By (2.9) and (2.12), we have

J(tεvε) ≤
1
N

(
||K||

p−N
N
∞ S + O(ε

N−p
p )

) N
p

+ C
∫
RN
|vε|pdx −

∫
RN

F(x,G−1(tεvε))dx

≤
1
N
||K||

p−N
p
∞ S

N
p + C

∫
RN
|vε|pdx −

∫
RN

F(x,G−1(tεvε))dx + O(ε
N−p

p ).
(2.13)

Now consider

r(ε) =


ε

N−p
p , if N < p2,

εp−1| log ε|, if N = p2,

εp−1, if N > p2.

(2.14)

From (2.13) and (2.14), we have

J(tεvε) ≤
1
N
||K||

p−N
p
∞ S

N
p + r(ε)

[
C −

∫
RN F(x,G−1(tεvε))dx

r(ε)

]
.

Next we claim that

lim
ε→0+

∫
RN F(x,G−1(tεvε))dx

r(ε)
= +∞. (2.15)
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It follows ( f4) that any A > 0, there exists R = RA > 0 such that for all (x, s) ∈ Ω × [RA,+∞),

F(x,G−1(s)) ≥


A|s|µ, if N < p2,

A|s|p log |s|, if N = p2,

A|s|p, if N > p2,

(2.16)

where µ = p∗ − p
p−1 . Now consider the function ηε : [0,+∞)→ R defined by

ηε(r) =
ε

N−p
p2

(ε + r
p

p−1 )
N−p

p

.

Since φ ≡ 1 in B1(0), due to (2.8), we choose a constant C > 0 such that vε(x) ≥ Cηε(|x|) for |x| < 1.
Note that ηε is decreasing and G−1 is increasing, there exists a positive constant C such that, for |x| <
ε

p−1
p ,

G−1(tεvε) ≥ G−1(T1Cηε(|x|)) ≥ G−1(T1Cηε(ε
p−1

p )) ≥ G−1(Cε
(N−p)(1−p)

p2 ).

Then we can choose ε1 > 0 such that

Cε
(N−p)(1−p)

p2 ≥ 1, G−1(tεvε) ≥ G−1(Cε
(N−p)(1−p)

p2 ) ≥ R, (2.17)

for |x| < ε
p−1

p , 0 < ε < ε1. It follows from (2.16) and (2.17) that

F(x,G−1(s)) ≥


CAε

(N−p)(1−p)µ
p2 , if N < p2,

CAε
(N−p)(1−p)

p log ε, if N = p2,

CAε
(N−p)(1−p)

p , if N > p2,

(2.18)

for |x| < ε
p−1

p , 0 < ε < ε1.
Using ( f5)-(i), one has

F(x,G−1(s)) + |s|p ≥ 0, x ∈ Ω, s ≥ 0. (2.19)

Since B2(0) ⊂ Ω, by (2.18) and (2.19), for 0 < ε < ε1, we have∫
RN

F(x,G−1(tεvε))dx =

∫
B
ε

p−1
p

F(x,G−1(tεvε))dx +

∫
Ω\B

ε
p−1

p

F(x,G−1(tεvε))dx

≥

∫
|x|<ε

p−1
p

F(x,G−1(tεvε))dx − T p
2 ||vε||

p
p,

(2.20)

where

∫
|x|<ε

p−1
p

F(x,G−1(tεvε))dx ≥


CA

∫
|x|<ε

p−1
p
ε

(N−p)(1−p)µ
p2 dx = CAε

N−p
p , if N < p2,

CA
∫
|x|<ε

p−1
p
ε

(N−p)(1−p)
p log εdx = CAεp−1 log ε, if N = p2,

CA
∫
|x|<ε

p−1
p
ε

(N−p)(1−p)
p dx = CAεp−1, if N > p2.

Consequently, by (2.20), we obtain

lim
ε→0+

∫
RN F(x,G−1(tεvε))dx

r(ε)
≥ CA − T p

2 . (2.21)

Choosing A > 0 sufficiently large, (2.21) establishes (2.15). Lemma 2.5 is proved. �
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3. The asymptotically period case

In this section, in order to overcome the difficulties caused by the loss of translation invariance due
to the asymptotically periodic potential, we need to state the following technical convergence results.
The detailed proofs can be found in [23, 36], where p = 2.

Lemma 3.1 Assume that (V1), (K1), ( f1) and (i) of ( f5) hold. Suppose that {vn} is bounded in X,
{yn} ⊂ Z

N with |yn| → +∞ and vn → 0 in Lαloc(R
N), for any α ∈ [p, p∗). Then up to a subsequence, one

has ∫
RN

(
V(x) − V0(x)

)
|G−1(vn)|pdx→ on(1); (3.1)∫

RN
(V(x) − V0(x))

|G−1(vn)|p−2G−1(vn)
g(G−1(vn))

ϕ(x − yn)dx→ on(1), ∀ϕ ∈ C∞0 (RN); (3.2)∫
RN

[
F(x,G−1(vn)) − F0(x,G−1(vn))

]
dx→ on(1); (3.3)∫

RN

f (x,G−1(vn)) − f0(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)dx→ on(1), ∀ϕ ∈ C∞0 (RN). (3.4)

Proof of Theorem 1.1 Lemma 2.3 implies the existence of a Cerami sequence {vn} ⊂ X. By
Lemma 2.4, {vn} is bounded in X. Thus, there exists v ∈ X such that vn ⇀ v in X, vn → v in Lp

loc(R
N),

vn(x)→ v(x) a.e. in RN . For any ϕ ∈ C∞0 (RN), one has

0 = 〈J ′(vn), ϕ〉 + on(1) = 〈J ′(v), ϕ〉,

that is, v is a weak solution of Eq (1.10).
Now we prove that v is nontrivial. By contradiction, we assume that v = 0. We divide the proof

four steps.
Step 1: We claim that {vn} ⊂ X is also a Cerami sequence for the functional J0 : X → R, where

J0(v) =
1
p

∫
RN

[
|∇v|p + V0(x)|G−1(v)|p

]
dx −

∫
RN

F0(x,G−1(v))dx −
1
p∗

∫
RN

K(x)|v|p
∗

dx.

From (3.1) and (3.3), we can deduce that∣∣∣∣J(vn) − J0(vn)
∣∣∣∣ ≤ 1

p

∫
RN

∣∣∣∣(V(x) − V0(x)
)
|G−1(vn)|p

∣∣∣∣dx +

∫
RN

∣∣∣∣F(x,G−1(vn)) − F0(x,G−1(vn))
∣∣∣∣dx

= on(1),
(3.5)

and taking ϕ ∈ X with ||ϕ|| = 1, by (3.2) and (3.4), we obtain that∣∣∣∣∣∣∣∣〈J ′(vn) − J ′0(vn)
∣∣∣∣∣∣∣∣
∗
≤ sup

ϕ∈X,||ϕ||=1

[ ∫
RN

∣∣∣∣(V(x) − V0(x)
) |G−1(vn)|p−2G−1(vn)

g(G−1(vn))
ϕ
∣∣∣∣dx

+

∫
RN

∣∣∣∣ f (x,G−1(vn)) − f0(x,G−1(vn))
g(G−1(vn))

ϕ
∣∣∣∣dx

]
= on(1).

(3.6)

From (3.5) and (3.6), we can get that {vn} is also a Cerami sequence for J0.
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Step 2: We prove that {vn} is non-vanishing i.e.,

β := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|vn|

pdx > 0. (3.7)

If β = 0, the Lions lemma [18], we have vn → 0 in Lq(RN) for all q ∈ (p, p∗).
Note that

on(1) = 〈J ′(vn), vn〉 =

∫
RN

[
|∇vn|

p + V(x)|vn|
p
]
dx −

∫
RN

f̄ (vn, v)vndx −
∫
RN

K(x)|vn|
p∗dx,

which combining with (2.6) leads to∫
RN

[
|∇vn|

p + V(x)|vn|
p
]
dx −

∫
RN

K(x)|vn|
p∗dx = on(1).

Therefore, there exists a constant l ≥ 0 such that∫
RN

[
|∇vn|

p + V(x)|vn|
p
]
dx→ l,

∫
RN

K(x)|vn|
p∗dx→ l.

Obviously, l > 0. Otherwise, J(vn)→ 0 as n→ ∞, which contradicts with c > 0. Since

l = lim
n→∞

∫
RN

K(x)|vn|
p∗dx ≤ ||K||∞ lim

n→∞

∫
RN
|vn|

p∗dx

≤ ||K||∞S −
p∗
p lim

n→∞
(
∫
RN
|∇vn|

pdx)
p∗
p ≤ ||K||∞S −

p∗
p lim

n→∞
||∇vn||

p∗ ≤ ||K||∞S −
p∗
p l

p∗
p ,

that is, l ≥ ||K||
p−N

p
∞ S

N
p . Consequently, (2.4) implies that

c + on(1) = J(vn) =
1
p

∫
RN

(|∇vn|
p + V(x)|vn|

p)dx −
∫
RN

F̄(x, vn)dx −
1
p∗

∫
RN

K(x)|vn|
p∗dx

→ (
1
p
−

1
p∗

)l =
1
N

l ≥
1
N
||K||

p−N
p
∞ S

N
p ,

as n→ ∞, which deduces that c ≥ 1
N ||K||

p−N
p
∞ S

N
p , a contradiction.

Step 3: After a translation of {vn} denoted {wn}, then {wn} converges weakly to a nonzero critical
point of J0.

Choose {yn} ⊂ Z
N such that |yn| → +∞ as n→ ∞ and denote wn(x) = vn(x + yn). Then

||wn|| = ||vn||, J0(wn) = J0(vn), J ′0(wn) = J ′0(vn).

Thus, {wn} is a bounded (PS )c0 of J0, where c0 is defined below. Going if necessary to a subsequence,
we get that wn ⇀ w in X and J ′0(w) = 0. So by Step 2 we get w , 0. Therefore, by ( f5)-(ii), Lemma
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2.1-(8) and Fatou Lemma, we have

c = lim inf
n→∞

[
J0(wn) −

1
p
〈J ′0(wn),wn〉

]
= lim inf

n→∞

1
p

∫
RN

V0(x)|G−1(wn)|p−2
[
(G−1(wn))2 −

G−1(wn)wn

g(G−1(wn)

]
dx

+ lim inf
n→∞

∫
RN

[ f0(x,G−1(wn))wn

pg(G−1(wn))
− F0(x,G−1(wn))

]
dx + (

1
p
−

1
p∗

)lim inf
n→∞

∫
RN

K(x)|wn|
p∗dx

≥
1
p

∫
RN

V0(x)|G−1(w)|p−2
[
(G−1(w))2 −

G−1(w)w
g(G−1(w)

]
dx

+

∫
RN

[ f0(x,G−1(w))w
pg(G−1(w))

− F0(x,G−1(w))
]
dx + (

1
p
−

1
p∗

)
∫
RN

K(x)|w|p
∗

dx

= J0(w) −
1
p
〈J ′0(w),w〉 = J0(w),

which implies that J0(w) ≤ c.
Step 4: We use w to construct a path which allows us to get a contradiction with the definition of

mountain pass level c.
Define the mountain pass level

c0 := inf
γ∈Γ̄

sup
t∈[0,1]

J0(γ(t)) > 0,

where Γ̄ := {γ ∈ C([0, 1], X) : γ(0) = 0,J0(γ(1)) < 0}. Applying similar arguments used in [15], we
can construct a path γ : [0, 1]→ X such that

γ(0) = 0, J0(γ(1)) < 0, w ∈ γ([0, 1]),
γ(t)(x) > 0, ∀x ∈ RN , t ∈ [0, 1],
maxt∈[0,1]J0(γ(t)) = J0(w).

Then c0 ≤ maxt∈[0,1]J0(γ(t)) = J0(w). Due to the fact that V(x) ≤ V0(x) but V(x) . V0(x), we take the
path γ given by above and by γ ∈ Γ̄ ⊂ Γ, we have

c ≤ max
t∈[0,1]

J(γ(t)) = J(γ(t̄)) < J0(γ(t̄)) ≤ max
t∈[0,1]

J0(γ(t)) = J0(w) ≤ c,

which is a contradiction. Consequently, v is a nontrivial solution of Eq (1.10), then using the strong
maximun principle, we obtain v > 0, namely, Eq (1.1) possesses a nontrivial positive solution u =

G−1(v). This completes the proof of Theorem 1.1. �

4. The period case

In this section, we give the proof of Theorem 1.2.
Proof of Theorem 1.2 By Lemma 2.3, there exists a Cerami sequence {vn} ⊂ X such that

J0(vn)→ c and (1 + ||vn||)||J ′0(vn)||∗ → 0.
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Applying Lemma 2.4, the Cerami sequence {vn} is bounded in X. Similar to (3.7), it is easy to verify
that {vn} is non-vanishing.

As in the step 3 of Theorem 1.1, set wn(x) = vn(x + yn). It is easy to know that ||wn|| = ||vn|| and {wn}

is bounded and non-vanishing. Going if necessary to a subsequence, we have

wn ⇀ w , 0 in X, wn → w in Lp
loc(R

N).

Moreover, since V0(x),K(x) and f0(x, u) are periodic on X, we see that {wn} is also a a Cerami sequence
of J0. Then for any ϕ ∈ C∞0 (RN),

〈J ′0(w), ϕ〉 = lim
n→∞
〈J ′0(wn), ϕ〉.

That is J ′0(w) = 0 and w is a nontrivial solution to (1.12). By the strong maximun principle, we obtain
w > 0. This completes the proof of Theorem 1.2. �

5. Conclusions

In [38], we discussed a class of generalized quasilinear Schrödinger equations with asymptotically
periodic potential, where p = 2 and the nonlinear term is subcritical. In this current work, we have
established the existence of nontrivial positive solutions for a class of generalized quasilinear elliptic
equations with critical growth. In the next work, we will extend the study to the case of variable
exponent p = p(t).
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