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1. Introduction

We first recall definitions of (ε, s)-isometry, ε-isometry, and isometry.

Definition 1.1. Let (X, dX), (Y, dY) be two metric spaces, f : X → Y be a mapping, and ε, s ≥ 0. We
say that f is an (ε, s)-isometry if

|dY( f (x), f (y)) − dX(x, y)| ≤ εdX(x, y)s for all x, y ∈ X;

f is said to be an ε-isometry if

|dY( f (x), f (y)) − dX(x, y)| ≤ ε for all x, y ∈ X; (1.1)

f is called an isometry if ε = 0 in (1.1).

The Mazur-Ulam theorem [1] (1932) is well-known for stating that every surjective isometry
between two real normed spaces must be affine. This theorem provides the profound insight that a
mapping f from a real normed space to another real normed space, which preserves distances and
satisfies f (0) = 0, must be a linear isometry. Research on isometries and their extensions has been
ongoing for more than 90 years since then. For more information on non-surjective isometries, please
refer to the following references: Figiel [2], Godefroy and Kalton [3], Dutrieux and Lancien [4], and
Cheng and Zhou [5].
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In 1945, Hyers and Ulam [6] introduced the concept of ε-isometry. They raised a question: Given
two Banach spaces E1, E2 and a positive constant β, can we find a surjective linear isometry U :
E1 → E2 that corresponds to every surjective ε-isometry f : E1 → E2 with f (0) = 0, such that
‖ f (x) − Ux‖ is less than βε? After extensive research by numerous mathematicians over fifty years
(see, for instance, [7–9]), Omladič and Šemrl [10] eventually provided an affirmative answer to this
question with the sharp estimate of β = 2. Inspired by Figiel theorem [2] and other important results on
non-surjective ε-isometries (see [11,12]), Cheng, Dong, and Zhang [13] discovered a remarkable result
known as the weak stability formula. It has received considerable attention from numerous researchers
(see [5, 14–18]).

In 2000, Dolinar [19] investigated the stability of non-surjective (ε, s)-isometries of Lp spaces and
Hilbert spaces when 0 ≤ s < 1, and obtained the superstability of surjective (ε, s)-isometries between
finite dimensional spaces when s > 1.

On the other hand, Cǎdariu and Radu [20] (2003) investigated the stability of Jensen’s functional
equation by using the fixed point approach; for related literature, see [21, 22]. Further, Jung [23] gave
an interesting stability result for non-surjective perturbed isometries from a normed space to a Banach
space in which the range space satisfies the parallelogram law. As an application, he obtained the
stability results of non-surjective (ε, s)-isometries(s , 1) of Hilbert spaces.

In this paper, we use a fixed point theorem to extend some results of (ε, s)-isometries, established
by Dolinar [19] and Jung, from Hilbert spaces or Lp spaces to uniformly convex spaces with power
type p. More precisely, we prove that if f : E → F is an (ε, s)-isometry with f (0) = 0, where E is a
real normed space, F is a real uniformly convex space with power type p, and s , 1, then there exist a
linear isometry U : E → F and a constant M(ε, s, p) ≥ 0 with lim

ε→0
M(ε, s, p) = 0 such that

‖ f (u) − Uu‖ ≤ M(ε, s, p) max{‖u‖s, ‖u‖1−
1−s

p } for all u ∈ E.

2. Preliminaries

The modulus of convexity of a Banach space F is the function δF : [0, 2]→ [0, 1] defined by

δF(ε) = inf{1 − ‖
u + v

2
‖ : ‖u‖ = ‖v‖ = 1, ‖u − v‖ ≥ ε}.

Definition 2.1. A Banach space F is called uniformly convex if δF(ε) > 0 for all 0 < ε ≤ 2. Let p ≥ 2,
and we say that a uniformly convex Banach space F has power type p if there is a constant α > 0 so
that δF(ε) ≥ αεp for all 0 < ε ≤ 2.

Remark 2.2. Pisier [24] showed that every uniformly convex Banach spaces can be renormed to admit
power type p for some 2 ≤ p < +∞.

The main result in this section is based on the following inequality (2.1); we refer to [24].

Lemma 2.3. (Pisier) A Banach space F has power type p if, and only if, there is a constant α ≥ 1
so that ∥∥∥w1 − w2

2

∥∥∥ ≤ α(‖w1‖
p + ‖w2‖

p

2
−

∥∥∥w1 + w2

2

∥∥∥p) 1
p for all w1,w2 ∈ F. (2.1)

We now recall a fixed point result in generalized metric space, which is essential in this article; one
can refer to [25].
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Definition 2.4. Let X be a nonempty set. A function % : X × X → [0,+∞] is said to be a generalized
metric on X if % satisfies the following statements:
(1) %(u, v) = 0 if, and only if, u = v;
(2) %(u, v) = %(v, u) for all u, v ∈ X;
(3) %(u,w) ≤ %(u, v) + %(v,w) for all u, v,w ∈ X.

Note that the distinction between the generalized metric and the usual metric is that the range of the
former is permitted to include the infinity.

Definition 2.5. Let (X, %) be a generalized metric space. We say that T : X → X is a strictly contractive
operator with the constant λ if there is a constant λ such that 0 ≤ λ < 1 and

%(Tu,Tv) ≤ λ%(u, v) for all u, v ∈ X.

Lemma 2.6. (Margolis-Diaz [25]) Let (X, %) be a generalized complete metric space and let T : X → X
be a strictly contractive operator with the constant λ. If there exists a nonnegative integer n so that
%(T n+1u,T nu) < +∞ for some u ∈ X, then the following statements hold:
(i) {T nu} converges to a fixed point u∗ of T;
(ii) u∗ is the unique fixed point of T in

Y = {v ∈ X : %(T nu, v) < +∞};

(iii) If v ∈ Y, then

%(v, u∗) ≤
1

1 − λ
%(Tv, v).

3. Stability of (ε, s)-isometries for 0 ≤ s < 1

We start with the following theorem:

Theorem 3.1. Let E be a real normed space, F be a real uniformly convex space with power type p,
and let f : E → F be an (ε, s)-isometry with f (0) = 0, where 0 ≤ s < 1. Then, there exist a linear
isometry U : E → F and a constant M(ε, s, p) ≥ 0 with lim

ε→0
M(ε, s, p) = 0 such that

‖ f (u) − Uu‖ ≤ M(ε, s, p) max{‖u‖s, ‖u‖1−
1−s

p } for all u ∈ E.

Proof. Let X = {g : E → F| g(0) = 0} and

d(g1, g2) = inf{C ∈ [0,+∞] : ‖g1(u) − g2(u)‖ ≤ Cϕ(u) for all u ∈ E}, (3.1)

where ϕ(u) = max{‖u‖s, ‖u‖1−
1−s

p }. Then, (X, d) is a complete generalized metric space. Indeed, by
definition of a space to have power type p, it is a Banach space, thus F is complete. This fact ensures
that (X, d) is complete. We define the mapping T : X → X by

(Tg)(u) =
1
2

g(2u) and (T 0g)(u) = g(u), ∀g ∈ X, u ∈ E. (3.2)
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We first show that T is a strictly contractive operator. Given g1, g2 ∈ X, let C ∈ [0,+∞] satisfy
C ≥ d(g1, g2). It follows from (3.1) that

‖g1(u) − g2(u)‖ ≤ Cϕ(u) for all u ∈ E.

This and (3.2) imply

‖(Tg1)(u) − (Tg2)(u)‖ =
1
2
‖g1(2u) − g2(2u)‖ ≤

1
2

Cϕ(2u) =
1
2

C max{‖2u‖s, ‖2u‖1−
1−s

p }.

Since 0 ≤ s < 1, p ≥ 2, we get s < 1 − 1−s
p < 1, and then 2s < 21− 1−s

p < 2. So,

‖(Tg1)(u) − (Tg2)(u)‖ ≤
1
2

C · 21− 1−s
p max{‖u‖s, ‖u‖1−

1−s
p }

=
1
2

C · 2λmax{‖u‖s, ‖u‖1−
1−s

p }

= Cλϕ(u),

where λ = 21− 1−s
p

2 = 2
s−1

p < 1. This entails that d(Tg1,Tg2) ≤ Cλ by (3.1). Thus, d(Tg1,Tg2) ≤
λd(g1, g2), i.e., T is a strictly contractive operator.

Next, we shall prove that
d(T f , f ) < +∞.

Given u ∈ E, let us denote w1 = (T f )(u)− 1
2 f (u),w2 = 1

2 f (u) in (2.1) of Lemma 2.3. Then, there exists
α ≥ 1 such that

‖(T f )(u) − f (u)‖p ≤ 2pα
(‖(T f )(u) − 1

2 f (u)‖p + ‖ 1
2 f (u)‖p

2
− ‖

(T f )(u)
2
‖p

)
.

According to the definition of T , we have

‖(T f )(u) −
1
2

f (u)‖p = ‖
1
2

f (2u) −
1
2

f (u)‖p =
1
2p ‖ f (2u) − f (u)‖p,

and
‖
T f (u)

2
‖p =

1
2p ‖

f (2u)
2
‖p.

Then,

‖(T f )(u) − f (u)‖p ≤ α
(‖ f (2u) − f (u)‖p + ‖ f (u)‖p

2
− ‖

f (2u)
2
‖p

)
.

Since f is an (ε, s)-isometry, we get

‖ f (2u) − f (u)‖ ≤ ‖2u − u‖ + ε‖2u − u‖s = ‖u‖ + ε‖u‖s,

and
‖ f (u)‖ ≤ ‖u‖ + ε‖u‖s.

Therefore,

‖(T f )(u) − f (u)‖p ≤ α
( (‖u‖ + ε‖u‖s)p + (‖u‖ + ε‖u‖s)p

2
− ‖

f (2u)
2
‖p

)
AIMS Mathematics Volume 9, Issue 8, 22500–22512.
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= α
(
(‖u‖ + ε‖u‖s)p − ‖

f (2u)
2
‖p

)
. (3.3)

We distinguish two cases:
i) If ‖u‖ < ε‖u‖s, then (3.3) implies

‖(T f )(u) − f (u)‖ ≤α
1
p
(
(‖u‖ + ε‖u‖s)p − ‖

f (2u)
2
‖p

) 1
p

≤α
1
p (‖u‖ + ε‖u‖s)

≤2α
1
pε‖u‖s. (3.4)

ii) If ‖u‖ ≥ ε‖u‖s, then

‖ f (2u)‖ ≥ ‖2u‖ − ε‖2u‖s = 2(‖u‖ − ε2s−1‖u‖s) ≥ 0,

which implies

‖
f (2u)

2
‖p ≥ (‖u‖ − ε2s−1‖u‖s)p.

Thus, by (3.3), we have

‖(T f )(u) − f (u)‖p ≤ α
(
(‖u‖ + ε‖u‖s)p − (‖u‖ − ε2s−1‖u‖s)p

)
= α‖u‖p

(
(1 + ε‖u‖s−1)p − (1 − ε2s−1‖u‖s−1)p

)
.

Note that, for 0 ≤ r ≤ 1 and p ≥ 1, we have

(1 + r)p ≤ 1 + (2p − 1)r,

and
(1 − r)p ≥ 1 − rp.

Then,

‖T f (u) − f (u)‖p ≤ α‖u‖p
(
1 + (2p − 1)ε‖u‖s−1 − (1 − ε2s−1 p‖u‖s−1)

)
= α‖u‖p

(
(2p − 1 + 2s−1 p)ε‖u‖s−1

)
= (2p − 1 + 2s−1 p)αε‖u‖p+s−1,

and so

‖(T f )(u) − f (u)‖ ≤ (2p − 1 + 2s−1 p)
1
pα

1
pε

1
p ‖u‖1+ s−1

p

= M1(ε, s, p)‖u‖1−
1−s

p , (3.5)

where M1(ε, s, p) = (2p − 1 + 2s−1 p)
1
pα

1
pε

1
p ≥ 0. Therefore, combining (3.4) and (3.5), we obtain that

‖(T f )(u) − f (u)‖ ≤ M2(ε, s, p) max{‖u‖s, ‖u‖1−
1−s

p },
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where M2(ε, s, p) = max{M1(ε, s, p), 2α
1
pε}. It follows from the definition of d that

d(T f , f ) ≤ M2(ε, s, p) < +∞.

Then, by Lemma 2.6, we obtain that {T n f } converges to a fixed point U of T and U ∈ X. So,

Uu = lim
n→∞

(T n f )(u) = lim
n→∞

f (2nu)
2n for all u ∈ E.

Note that U : E → F is an isometry. Indeed,∣∣∣‖Uu − Uv‖ − ‖u − v‖
∣∣∣ = lim

n→∞

∣∣∣‖ f (2nu) − f (2nv)‖ − ‖2nu − 2nv‖
∣∣∣

2n

≤ lim
n→∞

ε‖2nu − 2nv‖s

2n

= 0.

Baker [26] showed that an isometry from a normed space into a strictly convex normed space, which
maps the origin to the origin, is a linear transformation. Since F is a strictly convex space and U0 = 0,
we obtain that U is a linear isometry. From (ii) in Lemma 2.6, we get

U ∈ Y = {g ∈ X : d(T 0 f , g) < ∞} = {g ∈ X : d( f , g) < ∞}.

Clearly, f ∈ Y . It follows from (iii) in Lemma 2.6 that

d( f ,U) ≤
1

1 − λ
d(T f , f ) ≤

M2(ε, s, p)
1 − λ

,

where λ = 2
s−1

p . Let M(ε, s, p) =
M2(ε,s,p)

1−λ , then lim
ε→0

M(ε, s, p) = 0.
Consequently, by (3.1), we have

‖ f (u) − Uu‖ ≤ M(ε, s, p)ϕ(u) = M(ε, s, p) max{‖x‖s, ‖x‖1−
1−s

p } for all u ∈ E.

The proof is completed. �

Note that Hilbert spaces have power type 2 and the power type of Lp spaces can be characterized by
the following two cases: For p > 2, the power type is p; for 1 < p ≤ 2, the power type is 2 (see [27], on
page 69). Then, by Theorem 3.1, we have the following corollaries which were obtained by Dolinar.

Corollary 3.2. [19, Proposition 2] Let H be a Hilbert space, and let f : E → H be an (ε, s)-isometry
with f (0) = 0, where 0 ≤ s < 1. Then, there exist a linear isometry U : E → H and a constant
M(ε, s) ≥ 0 such that lim

ε→0
M(ε, s) = 0 and

‖ f (u) − Uu‖ ≤ M(ε, s) max{‖u‖s, ‖u‖
1+s

2 } for all u ∈ E.

Corollary 3.3. [19, Proposition 3] Let (Ω,Σ, µ) be a measure space, and let f : E → Lp(Ω,Σ, µ)(1 <
p < ∞) be an (ε, s)-isometry with f (0) = 0, where 0 ≤ s < 1. Then, there exist a linear isometry
U : E → Lp(Ω,Σ, µ) and a constant M(ε, s, p′) ≥ 0 such that lim

ε→0
M(ε, s, p′) = 0 and

‖ f (u) − Uu‖ ≤ M(ε, s, p′) max{‖u‖s, ‖u‖1−
1−s
p′ } for all u ∈ E,

where p′ denotes the power type of the space Lp(Ω,Σ, µ).

AIMS Mathematics Volume 9, Issue 8, 22500–22512.
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Remark 3.4. Jung obtained the stability of (ε, s)-isometries into Hilbert spaces for 0 ≤ s < 1, where
one has to restrict ε to 1 < ε ≤ 21−s (see [23] (Corollary 3.2)). Note that our results no longer impose
any additional requirements on ε.

4. Stability of (ε, s)-isometries for s > 1

Theorem 4.1. Let E be a real normed space, F be a real uniformly convex space with power type p,
and let f : E → F be an (ε, s)-isometry with f (0) = 0, where s > 1. Then, there exist a linear isometry
U : E → F and a constant M̃(ε, s, p) ≥ 0 with lim

ε→0
M̃(ε, s, p) = 0 such that

‖ f (u) − Uu‖ ≤ M̃(ε, s, p) max{‖u‖s, ‖u‖1−
1−s

p } for all u ∈ E.

Proof. Let X = {g : E → F| g(0) = 0} and

d(g1, g2) = inf{C ∈ [0,+∞] : ‖g1(u) − g2(u)‖ ≤ Cϕ(u) for all u ∈ E}, (4.1)

where ϕ(u) = max{‖u‖s, ‖u‖1−
1−s

p }. Then, (X, d) is a complete generalized metric space. Indeed, by
definition of a space to have power type p, it is a Banach space, thus F is complete. This fact ensures
that (X, d) is complete. We define the mapping T̃ : X → X by

(T̃ g)(u) = 2g(
1
2

u) and (T̃ 0g)(u) = g(u), ∀g ∈ X, u ∈ E. (4.2)

We first show that T̃ is a strictly contractive operator. Given g1, g2 ∈ X, let C ∈ [0,+∞] satisfy
C ≥ d(g1, g2). It follows from (4.1) that

‖g1(u) − g2(u)‖ ≤ Cϕ(u) for all u ∈ E.

This and (4.2) imply

‖(T̃ g1)(u) − (T̃ g2)(u)‖ = 2‖g1(
1
2

u) − g2(
1
2

u)‖ ≤ 2Cϕ(
1
2

u) = 2C max{‖
1
2

u‖s, ‖
1
2

u‖1−
1−s

p }.

Since s > 1, p ≥ 2, we get s > 1 − 1−s
p > 1, and then

(1
2

)s
<

(1
2

)1− 1−s
p < 1. So,

‖(T̃ g1)(u) − (T̃ g2)(u)‖ ≤ 2C ·
(1
2
)1− 1−s

p max{‖u‖s, ‖u‖1−
1−s

p }

= 2C ·
1
2
λ̃max{‖u‖s, ‖u‖1−

1−s
p }

= Cλ̃ϕ(u),

where λ̃ =

(
1
2

)1− 1−s
p

1
2

=
(1

2

) s−1
p < 1. This entails that d(T̃ g1, T̃ g2) ≤ Cλ̃ by (4.1). Thus, d(T̃ g1, T̃ g2) ≤

λ̃d(g1, g2), i.e., T̃ is a strictly contractive operator.
Next, we shall prove that

d(T̃ f , f ) < +∞.
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Given u ∈ E, let us denote w1 = f (u) − 1
2 (T̃ f )(u),w2 = 1

2 (T̃ f )(u) in (2.1) of Lemma 2.3. Then, there
exists α ≥ 1 such that

‖ f (u) − (T̃ f )(u)‖p ≤ 2pα
(‖ f (u) − 1

2 (T̃ f )(u)‖p + ‖ 1
2 (T̃ f )(u)‖p

2
− ‖

f (u)
2
‖p

)
.

According to the definition of T , we have

‖ f (u) −
1
2

(T̃ f )(u)‖p = ‖ f (u) − f (
1
2

u)‖p,

and
‖
1
2

(T̃ f )(u)‖p = ‖ f (
1
2

u)‖p.

Then,

‖ f (u) − (T̃ f )(u)‖p ≤ 2pα
(‖ f (u) − f (1

2u)‖p + ‖ f ( 1
2u)‖p

2
− ‖

f (u)
2
‖p

)
.

Since f is an (ε, s)-isometry, we get

‖ f (u) − f (
1
2

u)‖ ≤ ‖u −
1
2

u‖ + ε‖u −
1
2

u‖s = ‖
1
2

u‖ + ε‖
1
2

u‖s,

and
‖ f (

1
2

u)‖ ≤ ‖
1
2

u‖ + ε‖
1
2

u‖s.

Therefore,

‖ f (u) − (T̃ f )(u)‖p ≤ 2pα
( (‖1

2u‖ + ε‖1
2u‖s)p + (‖ 1

2u‖ + ε‖ 1
2u‖s)p

2
− ‖

f (u)
2
‖p

)
= 2pα

(
(‖

1
2

u‖ + ε‖
1
2

u‖s)p − ‖
f (u)
2
‖p

)
= α

(
(‖u‖ + ε‖u‖s)p − ‖ f (u)‖p

)
. (4.3)

We distinguish two cases:
i) If ‖u‖ < ε‖u‖s, then (4.3) implies

‖ f (u) − (T̃ f )(u)‖ ≤α
1
p
(
(‖u‖ + ε‖u‖s)p − ‖ f (u)‖p

) 1
p

≤α
1
p (‖u‖ + ε‖u‖s)

≤2α
1
pε‖u‖s. (4.4)

ii) If ‖u‖ ≥ ε‖u‖s, then
‖ f (u)‖ ≥ ‖u‖ − ε‖u‖s ≥ 0.

Thus, by (4.3), we have

‖ f (u) − (T̃ f )(u)‖p ≤ α
(
(‖u‖ + ε‖u‖s)p − (‖u‖ − ε‖u‖s)p

)
= α‖u‖p

(
(1 + ε‖u‖s−1)p − (1 − ε‖u‖s−1)p

)
.

AIMS Mathematics Volume 9, Issue 8, 22500–22512.
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Note that, for 0 ≤ r ≤ 1 and p ≥ 1, we have

(1 + r)p ≤ 1 + (2p − 1)r,

and
(1 − r)p ≥ 1 − rp.

Then,

‖ f (u) − (T̃ f )(u)‖p ≤ α‖u‖p
(
1 + (2p − 1)ε‖u‖s−1 − (1 − εp‖u‖s−1)

)
= α‖u‖p

(
(2p − 1 + p)ε‖u‖s−1

)
= (2p − 1 + p)αε‖u‖p+s−1,

and so

‖ f (u) − (T̃ f )(u)‖ ≤ (2p − 1 + p)
1
pα

1
pε

1
p ‖u‖1+ s−1

p

= M̃1(ε, s, p)‖u‖1−
1−s

p , (4.5)

where M̃1(ε, s, p) = (2p − 1 + p)
1
pα

1
pε

1
p ≥ 0. Therefore, combining (4.4) and (4.5), we obtain that

‖ f (u) − (T̃ f )(u)‖ ≤ M̃2(ε, s, p) max{‖u‖s, ‖u‖1−
1−s

p },

where M̃2(ε, s, p) = max{M̃1(ε, s, p), 2α
1
pε}. It follows from the definition of d that

d(T̃ f , f ) ≤ M̃2(ε, s, p) < +∞.

Then, by Lemma 2.6, we obtain that {T̃ n f } converges to a fixed point U of T̃ and U ∈ X. So,

Uu = lim
n→∞

(T̃ n f )(u) = lim
n→∞

2n f
( u
2n

)
for all u ∈ E.

Note that U : E → F is an isometry. Indeed,∣∣∣‖Uu − Uv‖ − ‖u − v‖
∣∣∣ = lim

n→∞
2n

∣∣∣‖ f ( u
2n

)
− f (

v
2n )‖ − ‖

u
2n −

v
2n ‖

∣∣∣
≤ lim

n→∞
2nε‖

u − v
2n ‖

s

= 0.

Baker [26] showed that an isometry from a normed space into a strictly convex normed space, which
maps the origin to the origin, is a linear transformation. Since F is a strictly convex space and U0 = 0,
we obtain that U is a linear isometry. From (ii) in Lemma 2.6, we get

U ∈ Y = {g ∈ X : d(T̃ 0 f , g) < ∞} = {g ∈ X : d( f , g) < ∞}.

Clearly, f ∈ Y . It follows from (iii) in Lemma 2.6 that

d( f ,U) ≤
1

1 − λ̃
d(T̃ f , f ) ≤

M̃2(ε, s, p)

1 − λ̃
,

AIMS Mathematics Volume 9, Issue 8, 22500–22512.
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where λ̃ = 2
s−1

p . Let M̃(ε, s, p) =
M̃2(ε,s,p)

1−λ̃
, then lim

ε→0
M̃(ε, s, p) = 0.

Consequently, by (4.1), we have

‖ f (u) − Uu‖ ≤ M̃(ε, s, p)ϕ(u) = M̃(ε, s, p) max{‖u‖s, ‖u‖1−
1−s

p } for all u ∈ E.

The proof is completed. �

The following results are obtained, similar to Corollaries 3.2 and 3.3.

Corollary 4.2. Let H be a Hilbert space, and let f : E → H be an (ε, s)-isometry with f (0) = 0,
where s > 1. Then, there exist a linear isometry U : E → H and a constant M̃(ε, s) ≥ 0 such that
lim
ε→0

M̃(ε, s) = 0 and

‖ f (u) − Uu‖ ≤ M̃(ε, s) max{‖u‖s, ‖u‖
1+s

2 } for all u ∈ E.

Corollary 4.3. Let (Ω,Σ, µ) be a measure space, and let f : E → Lp(Ω,Σ, µ)(1 < p < ∞) be an
(ε, s)-isometry with f (0) = 0, where s > 1. Then, there exist a linear isometry U : E → Lp(Ω,Σ, µ)
and a constant M̃(ε, s, p′) ≥ 0 such that lim

ε→0
M̃(ε, s, p′) = 0 and

‖ f (u) − Uu‖ ≤ M̃(ε, s, p′) max{‖u‖s, ‖u‖1−
1−s
p′ } for all u ∈ E,

where p′ denotes the power type of the space Lp(Ω,Σ, µ).

Remark 4.4. Let H be a Hilbert space, s > 1, 0 < ε1 ≤ 1, and 1 < ε2 ≤ 2s−1. Jung obtained the
stability of the mapping f : E → H defined by

∣∣∣‖ f (u) − f (v)‖ − ‖u − v‖
∣∣∣ ≤ ε1‖u − v‖s, ‖x‖ < 1,

ε2‖u − v‖s, ‖x‖ ≥ 1.

For more details, see [23] (Corollary 3.4). Note that our results no longer impose any additional
requirements on ε for any (ε, s)-isometry.

5. Discussion

In this article, we use a fixed theorem to extend two results for the stability of non-surjective (ε, s)-
isometries from Hilbert spaces or Lp spaces to uniformly convex Banach spaces. Note that our results
no longer impose any additional requirements on ε for any (ε, s)-isometry. For more recent related
literature on the stability of perturbed isometries and functional equations in Banach spaces, see, for
example, [28–30].

6. Conclusions

Dolinar [19] studied the stability of non-surjective (ε, s)-isometries of Hilbert spaces and Lp(1 <

p < ∞) spaces, here 0 ≤ s < 1. In 2006, Jung [23] used a fixed point theorem to establish the stability
of a class of perturbed isometries of Banach spaces that satisfy the parallelogram law. In particular,

AIMS Mathematics Volume 9, Issue 8, 22500–22512.
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he give two results for (ε, s)-isometries of Hilbert spaces where s , 1. In this paper, we extend the
above results for the stability of (ε, s)-isometries from Hilbert spaces or Lp spaces to uniformly convex
spaces. In addition, Dolinar [19] also proved that there exists a non-surjective (ε, 1)-isometries which
is not stable.

As for future work, we suggest the following:
(1). If f : X → Y is an (ε, s)-isometry, does there exist an isometry from X to Y?
(2). Are the findings of this study applicable in the case where Y is a Bochner space?
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