This paper discusses the existence of solutions for fractional differential equations with nonlocal boundary conditions (NFDEs) under essential assumptions. The boundary conditions incorporate a point 0≤c<d and fixed points at the end of the interval [0,d]. For i=0,1, the boundary conditions are as follows: ai,bi>0, a0p(c)=−b0p(d), a1p′(c)=−b1p′(d). Furthermore, the research aims to expand the usability and comprehension of these results to encompass not just NFDEs but also classical fractional differential equations (FDEs) by using the Krasnoselskii fixed-point theorem and the contraction principle to improve the completeness and usefulness of the results in a wider context of fractional differential equations. We offer examples to demonstrate the results we have achieved.
Citation: Saleh Fahad Aljurbua. Extended existence results for FDEs with nonlocal conditions[J]. AIMS Mathematics, 2024, 9(4): 9049-9058. doi: 10.3934/math.2024440
[1] | Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599 |
[2] | Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393 |
[3] | Soon-Mo Jung, Jaiok Roh . Local stability of isometries on 4-dimensional Euclidean spaces. AIMS Mathematics, 2024, 9(7): 18403-18416. doi: 10.3934/math.2024897 |
[4] | Lijun Ma, Shuxia Liu, Zihong Tian . The binary codes generated from quadrics in projective spaces. AIMS Mathematics, 2024, 9(10): 29333-29345. doi: 10.3934/math.20241421 |
[5] | Anas Al-Masarwah, Abd Ghafur Ahmad . Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras. AIMS Mathematics, 2020, 5(2): 1035-1049. doi: 10.3934/math.2020072 |
[6] | Uğur Gözütok, Hüsnü Anıl Çoban . Detecting isometries and symmetries of implicit algebraic surfaces. AIMS Mathematics, 2024, 9(2): 4294-4308. doi: 10.3934/math.2024212 |
[7] | Yang Zhang, Shuxia Liu, Liwei Zeng . A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms. AIMS Mathematics, 2024, 9(11): 32819-32830. doi: 10.3934/math.20241570 |
[8] | Yuqi Sun, Xiaoyu Wang, Jing Dong, Jiahong Lv . On stability of non-surjective (ε,s)-isometries of uniformly convex Banach spaces. AIMS Mathematics, 2024, 9(8): 22500-22512. doi: 10.3934/math.20241094 |
[9] | Su-Dan Wang . The q-WZ pairs and divisibility properties of certain polynomials. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227 |
[10] | Peiying Huang, Yiyuan Zhang . H-Toeplitz operators on the Dirichlet type space. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868 |
This paper discusses the existence of solutions for fractional differential equations with nonlocal boundary conditions (NFDEs) under essential assumptions. The boundary conditions incorporate a point 0≤c<d and fixed points at the end of the interval [0,d]. For i=0,1, the boundary conditions are as follows: ai,bi>0, a0p(c)=−b0p(d), a1p′(c)=−b1p′(d). Furthermore, the research aims to expand the usability and comprehension of these results to encompass not just NFDEs but also classical fractional differential equations (FDEs) by using the Krasnoselskii fixed-point theorem and the contraction principle to improve the completeness and usefulness of the results in a wider context of fractional differential equations. We offer examples to demonstrate the results we have achieved.
This paper considers a fractional coupled system on an infinite interval involving the Erdélyi-Kober derivative:
{Dγ,δ1βu(x)+F(x,u(x),v(x))=0,x∈(0,+∞),Dγ,δ2βv(x)+G(x,u(x),v(x))=0,x∈(0,+∞),limx→0xβ(2+γ)Iδ1+γ,2−δ1u(x)=0,limx→∞xβ(1+γ)Iδ1+γ,2−δ1u(x)=0,limx→0xβ(2+γ)Iδ2+γ,2−δ2v(x)=0,limx→∞xβ(1+γ)Iδ2+γ,2−δ2v(x)=0, | (1.1) |
where δ1,δ2∈(1,2], γ∈(−2,−1), and β>0. Dγ,δ1β, Dγ,δ2β are Erdélyi-Kober fractional derivatives (EKFDs for short), and Iδ1+γ,2−δ1,Iδ2+γ,2−δ2 are the Erdélyi-Kober fractional integrals. F,G are continuous functions. We discuss the existence of positive solutions for (1.1).
During the past several decades, fractional equations have been studied widely; see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] for instance. From the literature, we can see that there are many fractional derivatives used in differential equations. Among these various definitions, the widely used ones are the Riemann-Liouville and Caputo fractional derivatives, in many works. To generalize the Riemann-Liouville fractional derivative, Erdélyi-Kober defined a new fractional derivative, and we call it the Erdélyi-Kober fractional derivative. Moreover, the Erdélyi-Kober operator is very useful; we can refer to [6,9,14,15,16,17] and the references therein. The Erdélyi-Kober operator is a fractional integration operation which was given by Arthur Erdélyi and Hermann Kober in 1940 [23]. Some of these definitions and results were given in Samko et al. [3], Kiryakova [19], and McBride [20].
Nowadays, the theory of fractional operators in the Erdélyi-Kober frame has attracted much interest from researchers. The study of fractional systems is also very important, as these systems appear in various applications, especially in biological sciences. Recently, some problems of Erdélyi-Kober type fractional differential equations on infinite intervals received widespread attention from many scholars; see [8,21,22] for example.
Recently, in [8], the authors investigated the following equation:
{(Dϑ,σθu)(x)+F(u(x))=0,0≤x<∞,limt→0xθ(2−σ)Iσ+ϑ,2−σu(x)=0,limt→+∞xθ(2−σ)Iσ+ϑ,2−σu(x)=0, |
where σ∈(1,2), ϑ∈(1,2), θ>0, and F is a given continuous function, Dϑ,σθ denotes the EKFD, and Iσ+ϑ,2−σ denotes the Erdélyi-Kober fractional integral. The authors studied the existence and nonexistence of positive solutions for this problem by utilizing a fixed point result which uses the strongly positive-like operators and eigenvalue criteria.
In [9], the authors studied a fractional coupled system:
{cDϱu(τ)=F(τ,u(τ),z(τ),cDς1z(τ),Iξz(τ)),τ∈[0,T]:=K,2<ϱ≤3,1<ς1<2,cDςz(τ)=G(τ,u(τ),cDϱ1u(τ),Iζu(τ),z(τ),τ∈[0,T]:=K,2<ς≤3,1<ϱ1<2,u(0)=ϕ1(z),u′(0)=ε1z′(k1),u(T)=γρϑ−ρ(ϖ+v)Γ(ϖ)∫ϑ0σρv+ρ−1z(σ)(ϑρ−σρ)1−ϖdσ:=γJv,ϖρv(ϑ),z(0)=ϕ2(u),z′(0)=ε2z′(k2),z(T)=δvφ−v(θ+ω)Γ(θ)∫φ0σvω+υ−1u(σ)(φv−σv)1−θdσ:=δJω,θvu(φ), |
where cDϱ,cDς1,cDς,cDϱ1 are the Liouville-Caputo fractional derivatives of order 2<ϱ,ς≤3, 1<ς1,ϱ1<2. Iξ,Iζ are the Riemann-Liouville fractional integrals of order 1<ξ,ζ<2. Jυ,ϖρ,Jω,θv are the Erdélyi-Kober fractional integrals of order ϖ,θ>0, with v,ω>0, ρ, ϑ∈(−∞,+∞). F,G:K×(−∞,+∞)4→(−∞,+∞) and ϕ1,ϕ2:C(K,(−∞,+∞))→(−∞,+∞) are continuous functions. γ,δ,ε1,ε2 are positive real constants. The existence result was given by the Leray-Schauder alternative, and the uniqueness result was obtained due to Banach's fixed-point theorem. By the same methods, Arioua and Titraoui [18] studied system (1.1). Moreover, In [10], Arioua and Titraoui also investigated a new fractional problem involving the Erdélyi-Kober derivative. Inspired by the above articles, we use different methods to consider the fractional coupled system involving Erdélyi-Kober derivative (1.1). We employ the Guo-Krasnosel'skii fixed point theorem to discuss (1.1) in a special Banach space, and we also use the monotone iterative technique to study this system. Some existence results of positive solutions for system (1.1) are obtained, including the existence results of at least two positive solutions.
Definition 2.1. (see [2]) Let α∈(−∞,+∞). Cnα, n∈N, denotes a set of all functions f(t),t>0, with f(t)=tpf1(t) with p>α and f1∈Cn[0,∞).
Definition 2.2. (see [1,2]) For a function u∈Cα, the σ-order right-hand Erdélyi-Kober fractional integral is
(Iγ,σβu)(t)=βt−β(γ+σ)Γ(σ)∫t0sβ(γ+1)−1u(s)(tβ−sβ)1−σds,σ,β>0,γ∈(−∞,+∞), |
in which, Γ is the Euler gamma function.
Definition 2.3. (see [2]) Let n−1<δ≤n,n∈N, and for u∈Cα, the σ-order right-hand Erdélyi-Kober fractional derivative is
(Dγ,σβu)(t)=n∏j=1(γ+j+tβddt)(Iγ+σ,n−σβu)(t), |
where
n∏j=1(γ+j+tβddt)(Iγ+σ,n−σβu)=(γ+1+tβddt)⋯(γ+n+tβddt)(Iγ+σ,n−σβu). |
Lemma 2.1. (see [10]) Let 1<σ≤2, −2<γ<−1, β>0, and h∈C2α, with ∫∞0sβ(γ+m)−1h(τ)dτ<∞, m=1,2. The fractional problem
{Dγ,σβu(x)+h(x)=0,x>0,limx→0xβ(2+γ)Iσ+γ,2−δu(x)=0,limx→∞xβ(1+γ)Iσ+γ,2−σu(x)=0, |
has a unique solution given by u(x)=∫∞0Gσ(x,s)sβ(γ+1)−1h(s)ds, where
Gσ(x,s)={βΓ(σ)[x−β(γ+1)−x−β(δ+γ)(xβ−sβ)σ−1],0<s≤x<∞,βΓ(σ)x−β(γ+1),0<x≤s<∞. | (2.1) |
Lemma 2.2. (see [10]) For 1<σ≤2, −2<γ<−1, and β>0, the function Gσ, defined in (2.1), has the following properties:
(i) Gσ(x,s)1+x−β(1+γ)>0, for x,s>0;
(ii) Gσ(x,s)1+x−β(1+γ)≤βΓ(σ), for x,s>0;
(iii) for 0<τλ≤x≤τ and s>τλ2, where λ>1,τ>0, we have
Gσ(x,s)1+x−β(1+γ)≥β(σ−1)τ−β(1+γ)Γ(σ)λ−β(1−γ)(1+τ−β(1+γ))=βp(τ)Γ(σ), |
where p(τ)=(σ−1)τ−β(1+γ)λβ(1+γ)(1+τ−β(1+γ)).
Lemma 2.3. (see [18]) Let 0<σ1,σ2≤1 and F,G∈C2α with
∫∞0sβ(γ+m)−1F(s,u(s),v(s))ds<∞,m=1,2, |
∫∞0sβ(γ+m)−1G(s,u(s),v(s))ds<∞,m=1,2. |
Then, (1.1) has a unique solution given by
u(x)=∫∞0Gσ1(x,s)sβ(γ+1)−1F(s,u(s),v(s))ds, |
v(x)=∫∞0Gσ2(x,s)sβ(γ+1)−1G(s,u(s),v(s))ds, |
where
Gσ1(x,s)={βΓ(σ1)[x−β(γ+1)−x−β(σ1+γ)(xβ−sβ)σ1−1],0<s≤x<∞,βΓ(σ1)x−β(γ+1),0<x≤s<∞, | (2.2) |
Gσ2(x,s)={βΓ(σ2)[x−β(γ+1)−x−β(σ2+γ)(xβ−sβ)σ2−1],0<s≤x<∞,βΓ(σ2)x−β(γ+1),0<x≤s<∞. | (2.3) |
The following result is our main tool.
Lemma 2.4. (Guo-Krasnosel'skii fixed point theorem; see [37]) P is a cone in a Banach space E, and D1 and D2 are bounded open sets in E with θ∈D1, ¯D1⊂D2. A:P∩(¯D2∖D1)→P is a completely continuous operator. Consider the following conditions (ⅰ), (ⅱ):
(i) ‖Aw‖≤‖w‖ for w∈P∩∂D1, ‖Aw‖≥‖w‖ for w∈P∩∂D2;
(ii) ‖Aw‖≥‖w‖ for w∈P∩∂D1, ‖Aw‖≤‖w‖ for w∈P∩∂D2.
If one of the preceding conditions (ⅰ), (ⅱ) holds, then A has at least one fixed point in P∩(¯D2∖D1).
Next, we present some hypotheses that will play an important role in the subsequent discussion:
(H1) F,G:(0,+∞)×(−∞,+∞)×(−∞,+∞)→(0,+∞) are continuous and nondecreasing with respect to the second, third variables on (0,+∞).
(H2) For (x,u,v)∈(0,+∞)×(−∞,+∞)×(−∞,+∞),
F1(x,u,v)=xβ(1+γ)−1F(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v), |
F2(x,u,v)=xβ(1+γ)−1G(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v), |
such that
F1(x,u,v)≤φ1(x)ω1(∣u∣)+ψ1(x)ω2(∣v∣), |
F2(x,u,v)≤φ2(x)~ω1(∣u∣)+ψ2(x)~ω2(∣v∣), |
with ωi,~ωi∈C((0,+∞),(0,+∞)) nondecreasing and φi,ψi∈L1(0,+∞), i=1,2.
(H3) There are positive functions qi,˜qi,i=1,2, with
q∗i=∫∞0(1+x−β(1+γ))qi(x)dx<∞, |
˜q∗i=∫∞0(1+x−β(1+γ))˜qi(x)dx<∞, |
such that
xβ(γ+1)−1∣F(x,u,v)−F(x,˜u,˜v)∣≤q1(x)∣u−˜u∣+˜q1(x)∣v−˜v∣, |
xβ(γ+1)−1∣G(x,u,v)−G(x,˜u,˜v)∣≤q2(x)∣u−˜u∣+˜q2(t)∣v−˜v∣, |
for any u,v,˜u,˜v∈(−∞,+∞) and x∈(0,+∞).
(H4) F,G:(0,+∞)×(0,+∞)×(0,+∞)→(0,+∞) are continuous, such that
xβ(1+γ)−1F(x,u,v)=a1(x)F1(x,u,v), |
xβ(1+γ)−1G(x,u,v)=a2(x)G1(x,u,v), |
where a1,a2∈L1((0,+∞),(0,+∞)), F1,G1∈C((0,+∞)×(0,+∞)×(0,+∞),(0,+∞)), 0<∫ττλa1(x)dx<∞, 0<∫ττλa2(x)dx<∞, with τ>0, λ>1. Moreover, xβ(1+γ)−1F(x,u,v), xβ(1+γ)−1G(x,u,v):[0,+∞)×(0,+∞)×(0,+∞)→[0,+∞) also are continuous.
Remark 2.1. These conditions ensure the continuity and integrability of nonlinear terms in an infinite interval, which play a very important role in the proof of completely continuity for the relevant integral operators.
In this section, we use two Banach spaces defined by
X={u∈C((0,+∞),(−∞,+∞))∣limx→0u(x)1+x−β(1+γ) and limt→+∞u(x)1+x−β(1+γ) exist}, |
with the norm
‖u‖X=supx>0∣u(x)1+x−β(1+γ)∣, |
and
Y={v∈C((0,+∞),(−∞,+∞))∣limx→0v(x)1+x−β(1+γ) and limx→+∞v(x)1+x−β(1+γ) exist}, |
with the norm
‖v‖Y=supx>0∣v(x)1+x−β(1+γ)∣. |
So, (X×Y,‖(u,v)‖X×Y) is a Banach space, with the norm ‖(u,v)‖X×Y=‖u‖X+‖v‖Y.
Lemma 3.1. If F,G are continuous, then (u,v)∈X×Y is a solution of system (1.1)⇔(u,v)∈X×Y is a solution of the following equations:
{u(x)=∫∞0Gσ1(x,s)sβ(γ+1)−1F(s,u(s),v(s))ds,v(x)=∫∞0Gσ2(x,s)sβ(γ+1)−1G(s,u(s),v(s))ds. |
For (u,v)∈X×Y, we define an operator A:X×Y→X×Y as follows:
A(u,v)(x)=(A1(u,v)(x),A2(u,v)(x)), |
where
A1(u,v)(x)=∫∞0Gσ1(x,s)sβ(γ+1)−1F(s,u(s),v(s))ds, |
A2(u,v)(x)=∫∞0Gσ2(x,s)sβ(γ+1)−1G(s,u(s),v(s))ds, |
with Gσi(x,s),i=1,2, given by (2.2) and (2.3).
Remark 3.1. Let σ1,σ2,β,γ,λ,τ∈R, such that 1<σ1,σ2≤2,β>0,−2<γ<−1,λ>1,τ>0. If (H2) and (H4) hold, then for (u,v)∈X×Y with u(x),v(x)>0,
∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds, |
∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds, |
where η=max{η1,η2} with η1=1+ιϱ1(λ2−1),η2=1+ι∗ϱ2(λ2−1)>1, ϱ1,ϱ2,ι,ι∗>0.
Proof. By (H4), for x∈[τλ2,τ], we know that there exist two constants ϱ1,ϱ2>0, such that
xβ(γ+1)−1F(s,u,v)≥ϱ1,xβ(γ+1)−1G(s,u,v)≥ϱ2,u,v∈(0,+∞). |
So, for (u,v)∈X×Y with u(x),v(x)>0,
∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥∫ττλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥τ(λ2−1)λ2ϱ1, |
∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds≥∫ττλ2sβ(γ+1)−1G(s,u(s),v(s))ds≥τ(λ2−1)λ2ϱ2, |
and hence,
λ2τ(λ2−1)ϱ1∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥1, |
λ2τ(λ2−1)ϱ2∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds≥1. |
By (H4), we know that there exist two constants ι,ι∗>0, such that
xβ(γ+1)−1F(x,u(x),v(x))≤ι,xβ(γ+1)−1G(x,u(x),v(x))≤ι∗,for ∀x∈[0,τλ2]. |
Thus,
∫τλ20sβ(γ+1)−1F(s,u(s),v(s))ds≤ιτλ2, |
∫τλ20sβ(γ+1)−1G(s,u(s),v(s))ds≤ι∗τλ2. |
Therefore, we can obtain
∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds=∫τλ20sβ(γ+1)−1F(s,u(s),v(s))ds+∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≤ιτλ2+∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≤(1+ιϱ1(λ2−1))∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds=η1∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds. |
Similarly,
∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds≤(1+ιϱ2(λ2−1))∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds=η2∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds. |
Take η=max{η1,η2}, and thus
∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds, |
∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds, |
hold.
Define two cones
K1={u∈X∣u(x)>0,x>0;minx∈[τλ,τ]u(x)1+x−β(1+γ)≥p(τ)η‖u‖X}, |
K2={v∈Y∣v(x)>0,x>0;minx∈[τλ,τ]v(x)1+x−β(1+γ)≥p(τ)η‖v‖Y}. |
Obviously, K1×K2={(u,v)∈X×Y∣u(x)>0,v(x)>0,∀x>0; minx∈[τλ,τ]u(x)1+x−β(1+γ)≥p(τ)η‖u‖X,minx∈[τλ,τ]v(x)1+x−β(1+γ)≥p(τ)η‖v‖Y} is also a cone. For convenience, we first list the following definitions:
F0=lim(u,v)→(0+,0+)supx>0F1(t,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
f∞=lim(u,v)→(+∞,+∞)infx>0F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
f0=lim(u,v)→(0+,0+)infx>0F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
F∞=lim(u,v)→(+∞,+∞)supx>0F1(t,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
G∗0=lim(u,v)→(0+,0+)supx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
g∗∞=lim(u,v)→(+∞,+∞)infx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
g∗0=lim(u,v)→(0+,0+)infx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
G∗∞=lim(u,v)→(+∞,+∞)supx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v. |
Lemma 4.1. If assumptions (H1) and (H2) hold, then A:K1×K2→K1×K2 is completely continuous.
Proof. First, we show A:K1×K2→K1×K2. By (H1) and (H2), for (u,v)∈K1×K2,
‖A1(u,v)‖X=supt>0|A1(u,v)(x)|1+x−β(1+γ)=supx>0∣∫∞0Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds∣≤βΓ(σ1)∫∞0∣sβ(γ+1)−1F(s,u(s),v(s))∣ds=βΓ(σ1)∫∞0∣sβ(γ+1)−1F(s,(1+s−β(1+γ))u(s)1+s−β(1+γ),(1+s−β(1+γ))v(s)1+s−β(1+γ))∣ds=βΓ(σ1)∫∞0∣F1(s,u(s)1+s−β(1+γ),v(s)1+s−β(1+γ))∣≤βΓ(σ1)[ω1(‖u‖X)∫∞0φ1(s)ds+ω2(‖v‖Y)∫∞0ψ1(s)ds]<+∞. |
Similarly,
‖A2(u,v)‖Y≤βΓ(σ1)[~ω1(‖u‖X)∫∞0φ2(s)ds+~ω2(‖v‖Y)∫∞0ψ2(s)ds]<+∞. |
By (H1) and Lemma 2.2, for (u,v)∈K1×K2, we have A1(u,v)(x)>0,A2(u,v)(x)>0,x>0. From Lemma 2.2 and Remark 3.1, for x∈[τλ,τ],τ>0, and λ>1,
|A1(u,v)(x)|1+x−β(1+γ)=∫∞0Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds=∫τλ20Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds+∫0τλ2Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds≥∫0τλ2Gσ1(t,s)1+t−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds≥βp(τ)Γ(σ1)∫0τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥βp(τ)ηΓ(σ1)∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds≥p(τ)η‖A1(u,v)‖X. |
So, A1(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A1(u,v)‖X. Similarly, A2(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A2(u,v)‖Y. Therefore,
minx∈[τλ,τ]A1(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A1(u,v)‖X, |
minx∈[τλ,τ]A2(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A2(u,v)‖Y. |
That is, A:K1×K2→K1×K2 is true.
Second, it will give a simply prove that A is continuous. Let D={(u,v)|(u,v)∈K1×K2,‖(u,v)‖X×Y≤K,K>0}, a bounded subset in K1×K2. Let (un,vn)∈D be a sequence that converges to (u,v) in ∈K1×K2. Then ‖(un,vn)‖X×Y≤K. From Lemma 2.2,
‖A1(un,vn)−A1(u,v)‖X=supx>0∣A1(un,vn)(x)−A1(u,v)(x)1+x−β(1+γ)∣≤βΓ(σ1)∣∫∞0sβ(γ+1)−1F(s,un(s),vn(s))ds−∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds∣≤βΓ(σ1)∫∞0∣sβ(γ+1)−1(F(s,un(s),vn(s))−F(s,u(s),v(s)))∣ds. |
By (H2),
∣sβ(γ+1)−1F(s,un(s),vn(s))∣=∣sβ(γ+1)−1F(s,(1+s−β(1+γ))un(s)1+s−β(1+γ),(1+s−β(1+γ))vn(s)1+s−β(1+γ))∣=F1(s,un(s)1+s−β(1+γ),vn(s)1+s−β(1+γ))≤φ1(s)ω1(‖un‖X)+ψ1(s)ω2(‖vn‖Y)∈L1(0,∞). |
By the continuity of sβ(γ+1)−1F(s,u(s),v(s)) and the Lebesgue dominated convergence theorem,
∫∞0sβ(γ+1)−1F(s,un(s),vn(s))ds→∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds,n→∞. |
Therefore, ‖A1(un,vn)−A1(u,v)‖X→0,n→∞. Similarly, ‖A2(un,vn)−A2(u,v)‖Y→0,n→∞.
So, ‖A(un,vn)−A(u,v)‖X×Y→0,n→∞. That is, A is continuous in D. In the end, we know that A(D) is relatively compact on (0,∞) and is equi-convergent at ∞ by [18]. Therefore, A:K1×K2→K1×K2 is completely continuous.
Theorem 4.1. Assume that (H2) and (H4) hold. If F0=0,G∗0=0,f∞=∞,g∗∞=∞, then the system (1.1) has at least one positive solution.
Proof. We divide the proof into several steps.
Step 1. A:K1×K2→K1×K2 is completely continuous. This result easily follows from Lemma 4.1.
Step 2. We show that there exist R1>0 and D1={(u,v)∈X×Y,‖(u,v)‖X×Y<R1} such that ‖A(u,v)‖X×Y≤‖(u,v)‖X×Y, (u,v)∈(K1×K2)∩∂D1.
Because F0=0,G∗0=0, we choose R1>0, such that
F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≤ϵ1(u+v), |
G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≤ϵ2(u+v), |
for 0<u+v≤R1,x>0, where ϵ1,ϵ2>0 satisfy
ϵ1≤12Γ(σ1)β∫∞0a1(s)ds,ϵ2≤12Γ(σ2)β∫∞0a2(s)ds. |
So, for (u,v)∈K1×K2 and ‖(u,v)‖X×Y=R1, by Lemma 2.2,
A1(u,v)(x)1+x−β(1+γ)=∫∞0Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds≤βΓ(σ1)∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds, |
A2(u,v)(x)1+x−β(1+γ)=∫∞0Gσ2(x,s)1+x−β(1+γ)sβ(γ+1)−1G(s,u(s),v(s))ds≤βΓ(σ2)∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds. |
By (H4),
A1(u,v)(x)1+x−β(1+γ)≤βΓ(σ1)∫∞0a1(s)F1(s,u(s),v(s))ds=βΓ(σ1)∫∞0a1(s)F1(s,(1+s−β(1+γ))u(s)1+s−β(1+γ),(1+s−β(1+γ))v(s)1+s−β(1+γ))ds≤βΓ(σ1)∫∞0a1(s)ϵ1u(s)+v(s)1+s−β(1+γ)ds≤βΓ(σ1)ϵ1‖(u,v)‖X×Y∫∞0a1(s)ds≤12‖(u,v)‖X×Y. |
Similarly,
A2(u,v)(x)1+x−β(1+γ)≤βΓ(σ2)ϵ2‖(u,v)‖X×Y∫∞0a2(s)ds≤12‖(u,v)‖X×Y. |
Therefore,
‖A(u,v)‖X×Y≤‖(u,v)‖X×Y, for (u,v)∈K1×K2, and ‖(u,v)‖X×Y=R1. |
Let D1={(u,v)∈X×Y,‖(u,v)‖X×Y<R1}. Then,
‖A(u,v)‖X×Y≤‖(u,v)‖X×Y, for (u,v)∈(K1×K2)∩∂D1. |
Step 3. We show that there exist R2>0 and D2={(u,v)∈X×Y,‖(u,v)‖X×Y<R2} such that
‖A(u,v)‖X×Y≥‖(u,v)‖X×Y, for (u,v)∈(K1×K2)∩∂D2. |
Because f∞=∞,g∗∞=∞, there exists R>0, such that
F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≥m1(u+v), |
G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≥m2(u+v), |
for u+v≥R,x>0, where m1,m2>0 satisfy
m1≥12η1ηΓ(σ1)βp2(τ)∫τλτa1(s)ds,m2≥12η2ηΓ(σ2)βp2(τ)∫τλτa2(s)ds,η=max{η1,η2}. |
Let R_{2}\geq\max\{R_{1}, \frac{\eta R}{p(\tau)}\} , and D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < R_{2}\} . Then, D_{1}\subset D_{2} .
Thus, for \ (u, v)\in K_{1}\times K_{2} , \|(u, v)\|_{X\times Y} = R_{2} , we have
\frac{u(x)}{1+x^{-\beta(1+\gamma)}}\geq \min\limits_{x\in [\frac{\tau}{\lambda}, \tau]}\frac{u(x)}{1+x^{-\beta(1+\gamma)}}\geq\frac{p(\tau)}{\eta_{1}}\|u\|_{X}, |
\frac{v(x)}{1+x^{-\beta(1+\gamma)}}\geq \min\limits_{x\in [\frac{\tau}{\lambda}, \tau]}\frac{v(x)}{1+x^{-\beta(1+\gamma)}}\geq\frac{p(\tau)}{\eta_{2}}\|v\|_{Y}. |
So,
\begin{eqnarray*} \frac{u(x)+v(x)}{1+x^{-\beta(1+\gamma)}}&\geq&\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{p(\tau)}{\eta_{2}}\|v\|_{Y}\geq \frac{p(\tau)}{\eta}(\|u\|_{X}+\|v\|_{Y})\\ & = &\frac{p(\tau)}{\eta}\|(u, v)\|_{X\times Y} = \frac{p(\tau)}{\eta}R_{2}\geq R. \end{eqnarray*} |
By (H_{4}) , for x\in [\frac{\tau}{\lambda}, \tau] , we can obtain
\begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_0^\infty a_{1}(s)\frac{u(s)+v(s)}{1+s^{-\beta(1+\gamma)}}ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ & = &\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds(\frac{1}{\eta_{1}}\|u\|_{X}+\frac{1}{\eta_{2}}\|v\|_{Y}) \\ &\geq&\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{1}{\eta}\|(u, v)\|_{X\times Y} \\ &\geq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*} |
Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\geq \frac{1}{2}\|(u, v)\|_{X\times Y} . Therefore,
\|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2}. |
Finally, by Lemma 2.4, A has a fixed point in (K_{1}\times K_{1})\cap\partial(\overline{D_{2}}\backslash D_{1}) . So, (1.1) has at least one positive solution.
Theorem 4.2. Assume that (H_{2}) and (H_{4}) hold. If f_{0} = \infty, g_{0}^{\ast} = \infty, F_{\infty} = 0, G_{\infty}^{\ast} = 0, then (1.1) has at least one positive solution.
Proof. We divide the proof into several steps.
Step 1. A:K_{1}\times K_{2}\rightarrow K_{1}\times K_{2} is completely continuous. This result easily follows from Lemma 4.1.
Step 2. We show that there exist r_1 > 0 and D_{1} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{1}\} such that
\|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{1}. |
Because f_{0} = \infty, g_{0}^{\ast} = \infty , there exists r_{1} > 0 such that
F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq M_{1}(u+v), |
G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq M_{2}(u+v), |
for 0 < u+v\leq r_{1}, x > 0 , where M_{1}, M_{2} > 0 , satisfy
M_{1}\geq \frac{1}{2}\frac{\eta_{1}\eta\Gamma(\sigma_{1})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{1}(s)ds}, M_{2}\geq \frac{1}{2}\frac{\eta_{2}\eta\Gamma(\sigma_{2})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{2}(s)ds}, \eta = \max\{\eta_{1}, \eta_{2}\}. |
Let D_{1} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{1}\} . So, for (u, v)\in K_{1}\times K_{2} with \|(u, v)\|_{X\times Y} = r_{1} , and x\in [\frac{\tau}{\lambda}, \tau] , then by (H_{4}) ,
\begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)\frac{u(s)+v(s)}{1+s^{-\beta(1+\gamma)}}ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ & = &\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds(\frac{1}{\eta_{1}}\|u\|_{X}+\frac{1}{\eta_{2}}\|v\|_{Y}) \\ &\geq&\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{1}{\eta}\|(u, v)\|_{X\times Y} \\ &\geq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*} |
Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\geq \frac{1}{2}\|(u, v)\|_{X\times Y} . Thus,
\|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{1}. |
Step 3. We show that there exist r_2 > 0 and D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{2}\} such that
\|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y}\ \mbox{for}\ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2}. |
Because F_{\infty} = 0, G_{\infty}^{\ast} = 0 , there exists r > 0 , such that
F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\leq \epsilon_{1}(u+v), |
G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\leq \epsilon_{2}(u+v), |
for u+v > r, x > 0 , where \epsilon_{1}, \epsilon_{2} > 0 satisfy
\epsilon_{1}\leq \frac{1}{2}\frac{\Gamma(\sigma_{1})}{\beta\int_0^\infty a_{1}(s)ds}, \epsilon_{2}\leq \frac{1}{2}\frac{\Gamma(\sigma_{2})}{\beta\int_0^\infty a_{2}(s)ds}. |
Let D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{2}\}, where r_{2} > \max\{r_{1}, r\} . Then D_{1}\subset D_{1} . We define two functions U_{1}, U_{2} as follows:
U_{1}:(-\infty, +\infty)\rightarrow (-\infty, +\infty), U_{1}(a) = \sup\limits_{0 < u+v\leq a}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v), |
U_{2}:(-\infty, +\infty)\rightarrow (-\infty, +\infty), U_{2}(a) = \sup\limits_{0 < u+v\leq a}\sup\limits_{x > 0}G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v). |
For (u, v)\in K_{1}\times K_{2} and \|(u, v)\|_{X\times Y} = r_{2} ,
\begin{eqnarray*} U_{1}(r_{2})& = &\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\\ &\leq&\epsilon_{1}\sup\limits_{0 < u+v\leq r_{2}}(u+v) = \epsilon_{1}r_{2} = \epsilon_{1}\|(u, v)\|_{X\times Y}, \end{eqnarray*} |
\begin{eqnarray*} U_{2}(r_{2})& = &\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\\ &\leq&\epsilon_{2}\sup\limits_{0 < u+v\leq r_{2}}(u+v) = \epsilon_{2}r_{2} = \epsilon_{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*} |
By Lemma 2.2 and (H_{4}) ,
\begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)U_{1}(r_{2})ds\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)ds\epsilon_{1}\|(u, v)\|_{X\times Y}\\ &\leq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*} |
Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\leq\frac{1}{2}\|(u, v)\|_{X\times Y} . Therefore, \|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y} , for (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2} . Finally, by Lemma 2.4, A has a fixed point in (K_{1}\times K_{1})\cap\partial(\overline{D_{2}}\backslash D_{1}) . So, the system (1.1) has at least one positive solution.
In the section, we obtain the multiplicity of positive solution of (1.1) by using the monotone iterative technique.
Theorem 5.1. If (H_{1}) and (H_{2}) hold, then (1.1) has two positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying 0\leq\|(u^{\ast}, v^{\ast})\|_{X\times Y}\leq \Upsilon and 0\leq\|(w^{\ast}, z^{\ast})\|_{X\times Y}\leq \Upsilon , where \Upsilon is a positive preset constant. Moreover, \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) , where (u_{n}, v_{n}) and (w_{n}, z_{n}) are given by
\begin{align} \begin{array}{ll} (u_{n}(x), v_{n}(x)) = (A_{1}(u_{n-1}, v_{n-1})(x), A_{2}(u_{n-1}, v_{n-1})(x)), n = 1, 2, \ldots, \end{array} \end{align} | (5.1) |
with
(u_{0}(x), v_{0}(x)) = (\Upsilon_{1}[1+x^{-\beta(\gamma+1)}], \Upsilon_{2}[1+x^{-\beta(\gamma+1)}]), \Upsilon_{1}, \Upsilon_{2} > 0, \Upsilon_{1}+\Upsilon_{2}\leq\Upsilon, |
and
\begin{align} \begin{array}{ll} (w_{n}(x), z_{n}(x)) = (A_{1}(w_{n-1}, z_{n-1})(x), A_{2}(w_{n-1}, z_{n-1})(x)), n = 1, 2, \ldots, \end{array} \end{align} | (5.2) |
with (w_{0}(x), z_{0}(x)) = (0, 0) . In addition,
\begin{align} \begin{array}{ll} (w_{0}(x), z_{0}(x))\leq(w_{1}(x), z_{1}(x))\leq\cdots\leq(w_{n}(x), z_{n}(x))\leq\cdots\leq(w^{\ast}, z^{\ast})\leq(u^{\ast}, v^{\ast})\\ \leq\cdots\leq(u_{n}(x), v_{n}(x))\leq\cdots\leq(u_{1}(x), v_{1}(x))\leq(u_{0}(x), v_{0}(x)). \end{array} \end{align} | (5.3) |
Proof. First, from Lemma 4.1, A(K_{1}\times K_{2})\subset K_{1}\times K_{2} for (u, v)\in K_{1}\times K_{2} . Let
\Upsilon_{1} = \frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] < \infty, |
\Upsilon_{2} = \frac{\beta}{\Gamma(\sigma_{2})}[\widetilde{\omega_{1}}(\Upsilon)\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\Upsilon)\int_0^\infty \psi_{2}(s)ds] < \infty, |
and \Upsilon\geq\Upsilon_{1}+\Upsilon_{2} with D_{\Upsilon} = \{(u, v)\in K_{1}\times K_{2}:\|(u, v)\|_{X\times Y}\leq\Upsilon\} . For any (u, v)\in D_{\Upsilon} , from (H_{2}) and Lemma 2.2,
\begin{eqnarray*} \|A_{1}(u, v)\|_{X}& = &\sup\limits_{x > 0}\frac{|A_{1}(u, v)(x)|}{1+x^{-\beta(1+\gamma)}}\\ & = &\sup\limits_{x > 0}\mid\int_0^\infty \frac{G_{\sigma_{1}}(x, s)}{1+t^{-\beta(1+\gamma)}}s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\mid \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty \mid s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\mid \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\frac{\mid u(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\frac{\mid v(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{1}(s)ds]\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\|u\|_{X})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\|v\|_{Y})\int_0^\infty \psi_{1}(s)ds]\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] = \Upsilon_{1}. \end{eqnarray*} |
Similarly, \|A_{2}(u, v)\|_{Y}\leq\Upsilon_{2} for (u, v)\in D_{\Upsilon} . Thus,
\|A(u, v)\|_{X\times Y} = \|A_{1}(u, v)\|_{X}+\|A_{2}(u, v)\|_{Y}\leq\Upsilon_{1}+\Upsilon_{2}\leq\Upsilon. |
That is, A(D_{\Upsilon})\subset D_{\Upsilon} . We construct two sequences as follows:
(u_{n}, v_{n}) = A(u_{n-1}, v_{n-1}), (w_{n}, z_{n}) = A(w_{n-1}, z_{n-1}), \ \ n = 1, 2, 3, \ldots. |
Obviously, (u_{0}(x), v_{0}(x)), (w_{0}(x), z_{0}(x))\in D_{\Upsilon} . Because A(D_{\Upsilon})\subset D_{\Upsilon} , (u_{n}, v_{n}), (w_{n}, z_{n})\in D_{\Upsilon}, n = 1, 2, \ldots . We need to show that there exist (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) which are two monotone sequences for approximating positive solutions of the system (1.1).
For x\in(0, +\infty), (u_{n}, v_{n})\in D_{\Upsilon} , from Lemma 2.2 and (5.1),
\begin{eqnarray*} u_{1}(x)& = &A_{1}(u_{0}, v_{0})(x) = \int_0^\infty G_{\sigma_{1}}(x, s)s^{\beta(\gamma+1)-1}F(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty (1+t^{-\beta(1+\gamma)})s^{\beta(\gamma+1)-1}F(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\frac{\mid u_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\frac{\mid v_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{1}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\|u_{0}\|_{X})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\|v_{0}\|_{Y})\int_0^\infty \psi_{1}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] \\ & = &(1+x^{-\beta(1+\gamma)})\Upsilon_{1} = u_{0}(x) \end{eqnarray*} |
and
\begin{eqnarray*} v_{1}(x) = A_{2}(u_{0}, v_{0})(x)& = &\int_0^\infty G_{\sigma_{2}}(x, s)s^{\beta(\gamma+1)-1}G(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}\int_0^\infty (1+x^{-\beta(1+\gamma)})s^{\beta(\gamma+1)-1}G(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+t^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\frac{\mid u_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\frac{\mid v_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{2}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+t^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\|u_{0}\|_{X})\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\|v_{0}\|_{Y})\int_0^\infty \psi_{2}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+x^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\Upsilon)\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\Upsilon)\int_0^\infty \psi_{2}(s)ds] \\ & = &(1+x^{-\beta(1+\gamma)})\Upsilon_{2} = v_{0}(x), \end{eqnarray*} |
that is,
(u_{1}(x), v_{1}(x)) = (A_{1}(u_{0}, v_{0})(x), A_{2}(u_{0}, v_{0})(x))\leq((1+x^{-\beta(1+\gamma)})\Upsilon_{1}, (1+x^{-\beta(1+\gamma)})\Upsilon_{2}) = (u_{0}(x), v_{0}(x)). |
So, by the condition (H_{1}) ,
(u_{2}(x), v_{2}(x)) = (A_{1}(u_{1}, v_{1})(x), A_{2}(u_{1}, v_{1})(x))\leq(A_{1}(u_{0}, v_{0})(x), A_{2}(u_{0}, v_{0})(x)) = (u_{1}(x), v_{1}(x)). |
For x\in(0, +\infty) , the sequences \{(u_{n}, v_{n})\}_{n = 0}^{\infty} satisfy (u_{n+1}(x), v_{n+1}(x))\leq(u_{n}(x), v_{n}(x)) . By the iterative sequences (u_{n+1}, v_{n+1}) = A(u_{n}, v_{n}) and the complete continuity of the operator A , (u_{n}, v_{n})\rightarrow (u^{\ast}, v^{\ast}) , and A(u^{\ast}, v^{\ast}) = (u^{\ast}, v^{\ast}) .
Similarly, for the sequences \{(w_{n}, z_{n})\}_{n = 0}^{\infty} , we have
\begin{eqnarray*} (w_{1}(x), z_{1}(x))& = &(A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x))\\ & = &(\int_0^\infty G_{\sigma_{1}}(x, s)s^{\beta(\gamma+1)-1}F(s, w_{0}(s), z_{0}(s))ds, \int_0^\infty G_{\sigma_{2}}(x, s)s^{\beta(\gamma+1)-1}G(s, w_{0}(s), z_{0}(s))ds)\\ &\geq&(0, 0) = (w_{0}(x), z_{0}(x)). \end{eqnarray*} |
Then, by the condition (H_{1}) ,
(w_{2}(x), z_{2}(x)) = (A_{1}(w_{1}, z_{1})(x), A_{2}(w_{1}, z_{1})(x))\geq(A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x)) = (w_{1}(x), z_{1}(x)). |
Analogously, for x\in(0, +\infty) , we have (w_{n+1}(x), z_{n+1}(x))\geq(w_{n}(x), z_{n}(x)) . By the iterative sequences (w_{n+1}, z_{n+1}) = A(w_{n}, z_{n}) and the complete continuity of the operator A , (w_{n}, z_{n})\rightarrow (w^{\ast}, z^{\ast}) , and A(w^{\ast}, z^{\ast}) = (w^{\ast}, z^{\ast}) .
Finally, we prove that (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) are the minimal and maximal positive solutions of (1.1). Assume that (\varsigma(x), \mu(x)) is any positive solution of (1.1). Then, A(\varsigma(x), \mu(x)) = (\varsigma(x), \mu(x)) , and
(w_{0}(x), z_{0}(x)) = (0, 0)\leq(\varsigma(x), \mu(x))\leq((1+x^{-\beta(1+\gamma)})\Upsilon_{1}, (1+x^{-\beta(1+\gamma)})\Upsilon_{2}) = (u_{0}(x), v_{0}(x)). |
Therefore,
(w_{1}(x), z_{1}(x)) = (A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x))\leq(\varsigma(x), \mu(x))\leq(A_{1}(u_{0}, v_{0})(x), A_{2} (u_{0}, v_{0})(x)) = (u_{1}(x), v_{1}(x)). |
That is, (w_{1}(x), z_{1}(x))\leq(\varsigma(x), \mu(x))\leq(u_{n}(x), v_{n}(x)) . So, (5.3) holds. By (H_{1}) , (0, 0) is not a solution of (1.1). From (5.1), (w^{\ast}, z^{\ast}) and (u^{\ast}, v^{\ast}) are two extreme positive solutions of (1.1), which can be constructed via limitS of two monotone iterative sequences in (5.1) and (5.2).
Example 6.1. We consider the following system:
\begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{5}{3}}u(x)+x^{\frac{3}{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}e^{-x}+x^{\frac{3}{2}} (\frac{v}{1+x^{\frac{1}{2}}})^{2}e^{-x} = 0, t\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{3}{2}}v(x)+x^{\frac{5}{2}}e^{-2x^{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u} {1+x^{\frac{1}{2}}})^{2}) +x^{\frac{5}{2}}e^{-2x^{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}), x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \end{cases} \end{align} | (6.1) |
where \sigma_{1} = \frac{5}{3}, \sigma_{2} = \frac{3}{2}, \gamma = -\frac{3}{2}, \beta = 1 ,
F(x, u, v) = x^{\frac{3}{2}}e^{-x}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2}], |
G(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2})]. |
First, for F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = e^{-x}(u^{2}, v^{2}) , we choose \omega_{1}(u) = u^{2}\in C((0, +\infty), (0, +\infty)) , \omega_{2}(v) = v^{2}\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \psi_{1}(x) = e^{-x}\in L^{1}(0, +\infty) . Then,
\mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(t)\omega_{2}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
Similarly, for F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}G(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}}[u^{2}\ln(u^{2}+1)+ v^{2}\ln(v^{2}+1)] , we choose \widetilde{\omega_{1}}(u) = u^{2}\ln(u^{2}+1)\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = v^{2}\ln(v^{2}+1)\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = \psi_{2}(x) = xe^{-2x^{2}}\in L^{1}(0, +\infty) . Then,
\mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
So, the condition (H_{2}) holds. Obviously, F, G:(0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow (0, +\infty) are continuous.
x^{-\frac{3}{2}}F(x, u, v) = e^{-x}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2}] = a_{1}(x)F_{1}(x, u, v), |
x^{-\frac{3}{2}}G(x, u, v) = xe^{-2x^{2}}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2})] = a_{2}(x)G_{1}(x, u, v), |
where a_{1}(x) = e^{-x}, a_{2}(x) = xe^{-2x^{2}} , F_{1}(x, u, v) = (\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2} , G_{1}(t, u, v) = (\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) . So, x^{-\frac{3}{2}}f(x, u, v), x^{-\frac{3}{2}}G(x, u, v):[0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow [0, +\infty) are continuous. Hence, the condition (H_{4}) holds. Finally,
F_{0} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{u^{2}+v^{2}}{u+v} = 0, G_{0}^{\ast} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{u^{2}\ln(u^{2}+1)+v^{2}\ln(v^{2}+1)}{u+v} = 0, |
f_{\infty} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{u^{2}+v^{2}}{u+v} = \infty, g_{\infty}^{\ast} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{u^{2}\ln(u^{2}+1)+v^{2}\ln(v^{2}+1)}{u+v} = \infty. |
Therefore, from Theorem 4.1, (6.1) has at least one positive solution (u(x), v(x)) . Further,
\begin{cases} u(x) = \frac 3{2\Gamma(\frac 23)}[x^{\frac 12}\int_0^\infty s^{-\frac 32}F(s, u(s), v(s))ds-x^{-\frac 83}\int_x^\infty (x-s)^{\frac 23}s^{-\frac 32}F(s, u(s), v(s))ds], \\ v(x) = \frac 2{\sqrt{\pi}}[x^{\frac 12}\int_0^\infty s^{-\frac 32}G(s, u(s), v(s))ds-\int_x^\infty (x-s)^{\frac 12}s^{-\frac 32}G(s, u(s), v(s))ds]. \end{cases} |
Example 6.2. We consider the following system:
\begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{3}{2}}u(x)+x^{\frac{5}{2}}e^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}]+ x^{\frac{5}{2}}e^{-2x^{2}+1} [\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\pi] = 0, x\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{7}{6}}v(x)+x^{\frac{3}{2}}e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi]+ x^{\frac{3}{2}}e^{-x} [\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1], x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0 \frac{1}{2}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{-\frac{1}{3}, \frac{5}{6}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{-\frac{1}{3}, \frac{5}{6}}v(x) = 0, \end{cases} \end{align} | (6.2) |
where \sigma_{1} = \frac{3}{2}, \sigma_{2} = \frac{7}{6}, \gamma = -\frac{3}{2}, \beta = 1 ,
F(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}]+x^{\frac{5}{2}}e^{-2x^{2}+1} [\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}], |
G(x, u, v) = x^{\frac{3}{2}}e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi]+x^{\frac{3}{2}}e^{-x} [\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1]. |
First, for
F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}+1}[\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi], |
we choose \omega_{1}(u) = \arctan u^{2}+\frac{1}{\pi}\in C((0, +\infty), (0, +\infty)), \omega_{2}(v) = \arctan v^{2}+\pi\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \psi_{1}(x) = xe^{-2x^{2}+1}\in L^{1}(0, +\infty) . Then,
\mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(x)\omega_{2}(\mid v\mid), \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
Similarly, for
F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}g(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = e^{-x}[\arctan(\ln(u^{2}+1))+ \frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1], |
we choose \widetilde{\omega_{1}}(u) = \arctan(\ln(u^{2}+1))+\frac{3}{2}\pi\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = \arctan(\ln(v^{2}+1))+1\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = \psi_{2}(x) = e^{-x}\in L^{1}(0, +\infty) . Then,
\mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
That is, (H_{2}) holds. Second, F, G:(0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow (0, +\infty) are continuous. And
x^{-\frac{3}{2}}F(x, u, v) = xe^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}+\arctan(\frac{v} {1+x^{\frac{1}{2}}})^{2}+\pi] = a_{1}(x)F_{1}(x, u, v), |
x^{-\frac{3}{2}}G(x, u, v) = e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi+\arctan(\ln((\frac{v} {1+x^{\frac{1}{2}}})^{2}+1))+1] = a_{2}(x)G_{1}(x, u, v), |
where a_{1}(x) = xe^{-2x^{2}+1}, a_{2}(x) = e^{-x} , F_{1}(x, u, v) = \arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}+\arctan(\frac{v}{1+x^{\frac{1}{2}}})^{2}+\pi , G_{1}(x, u, v) = \arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi+\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1 . So, x^{-\frac{3}{2}}F(x, u, v), x^{-\frac{3}{2}}G(x, u, v):[0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow [0, +\infty) are continuous. That is, (H_{4}) holds. In addition,
f_{0} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi}{u+v} = \infty, |
g_{0}^{\ast} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{\arctan(\ln(u^{2}+1))+\frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1}{u+v} = \infty, |
F_{\infty} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi}{u+v} = 0, |
G_{\infty}^{\ast} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{\arctan(\ln(u^{2}+1))+\frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1}{u+v} = 0. |
Therefore, from Theorem 4.2, (6.2) has at least one positive solution (u(x), v(x)) . Further,
\begin{cases} u(x) = \frac 2{\sqrt{\pi}}[x^{\frac 12}\int_0^\infty s^{-\frac 32}F(s, u(s), v(s))ds-\int_x^\infty (x-s)^{\frac 12}s^{-\frac 32}F(s, u(s), v(s))ds], \\ v(x) = \frac 6{\Gamma(\frac 16)}[x^{\frac 12}\int_0^\infty s^{-\frac 32}G(s, u(s), v(s))ds-x^{\frac 13}\int_x^\infty (x-s)^{\frac 16}s^{-\frac 32}G(s, u(s), v(s))ds]. \end{cases} |
Example 6.3. We consider the following system:
\begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{5}{3}}u(x)+x^{\frac{3}{2}}\frac{e^{-x}}{3}\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+ x^{\frac{5}{2}}\ln(\mid\frac{v}{1+x^{\frac{1}{2}}}\mid+1)\frac{e^{-2x^{2}+1}}{10} = 0, x\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{3}{2}}v(x)+x^{\frac{5}{2}}e^{-2x^{2}+1}\arctan(\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+ \frac{1}{\sqrt{\pi}})+x^{\frac{5}{2}}\frac{e^{-2x^{2}+1}}{5} \mid\frac{v}{1+x^{\frac{1}{2}}}\mid = 0, x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \end{cases} \end{align} | (6.3) |
where \sigma_{1} = \frac{5}{3}, \sigma_{2} = \frac{3}{2}, \gamma = -\frac{3}{2}, \beta = 1 ,
F(x, u, v) = x^{\frac{3}{2}}\frac{e^{-x}}{3}\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+x^{\frac{5}{2}}\ln(\mid\frac{v} {1+x^{\frac{1}{2}}}\mid+1)\frac{e^{-2x^{2}+1}}{10}, |
G(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}+1}\arctan(\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+\frac{1}{\sqrt{\pi}})+ x^{\frac{5}{2}}\frac{e^{-2x^{2}+1}}{5} \mid\frac{v}{1+x^{\frac{1}{2}}}\mid. |
Obviously, F, G:(0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty)\rightarrow (0, +\infty) are continuous and nondecreasing with respect to the second and the third variables on (0, +\infty) . That is, (H_{1}) holds. Next,
F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = \frac{e^{-x}}{3}\mid u\mid+x\frac{e^{-2x^{2}+1}}{10}\ln(\mid v\mid+1). |
We choose \omega_{1}(u) = \mid u\mid\in C((0, +\infty), (0, +\infty)) , \omega_{2}(v) = \ln(\mid v\mid+1)\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \frac{e^{-x}}{3}, \psi_{1}(x) = \frac{xe^{-2x^{2}+1}}{10}\in L^{1}(0, +\infty) . Then,
\mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(x)\omega_{2}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
Similarly, for
F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}G(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}+1}\arctan(\mid u\mid+\frac{1}{\sqrt{\pi}})+x\frac{e^{-2x^{2}+1}}{5}\mid v\mid, |
we choose \widetilde{\omega_{1}}(u) = \arctan(\mid u\mid+\frac{1}{\sqrt{\pi}})\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = \mid v\mid\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = xe^{-2x^{2}+1}, \psi_{2}(x) = x\frac{e^{-2x^{2}+1}}{5}\in L^{1}(0, +\infty) . Then,
\mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
That is, (H_{2}) holds. Therefore, from Theorem 5.1, (6.3) has two positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) with (0, 0)\leq (u^{\ast}(x), v^{\ast}(x)), (w^{\ast}(x), z^{\ast}(x))\leq ((1+x^{\frac 12})\Upsilon_{1}, (1+x^{\frac 12})\Upsilon_{2}) , where \Upsilon_{1}+\Upsilon_{2}\leq \Upsilon , and \Upsilon satisfies
\frac{95.58}{191.86}\Upsilon-0.69\arctan (\Upsilon+0.56)\geq \frac 1{36}. |
This paper studies the Erdélyi-Kober fractional coupled system (1.1), where the variable is in an infinite interval. We give some proper conditions and set a special Banach space. We obtain the existence of at least one positive solution for (1.1) by using the Guo-Krasnosel'skii fixed point theorem, and we get the existence of at least two positive solutions for (1.1) by using the monotone iterative technique. Our methods and results are different from ones in [18]. Moreover, we give three examples to show the plausibility of our main results. For future work, we intend to use other fixed point theorems to solve some Erdélyi-Kober fractional differential equations.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
This paper is supported by the Fundamental Research Program of Shanxi Province (202303021221068).
The authors declare that they have no competing interests.
[1] | I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, Elsevier, 198 (1999). |
[2] | S. Abbas, M. Benchohra, G. M. N'Guerekata, Topics in fractional differential equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4036-9 |
[3] | D. R. Smart, Fixed point theorems, Cambridge University Press, 1980. |
[4] | Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Academic Press, 2016. https://doi.org/10.1016/C2015-0-00813-9 |
[5] |
A. Ali, I. Suwan, T. Abdeljawad, Abdullah, Numerical simulation of time partial fractional diffusion model by Laplace transform, AIMS Mathematics, 7 (2022), 2878–2890. https://doi.org/10.3934/math.2022159 doi: 10.3934/math.2022159
![]() |
[6] |
M. M. Al-Sawalha, O. Y. Ababneh, R. Shah, N. A. Shah, K. Nonlaopon, Combination of Laplace transform and residual power series techniques of special fractional-order non-linear partial differential equations, AIMS Mathematics, 8 (2023), 5266–5280. https://doi.org/10.3934/math.2023264 doi: 10.3934/math.2023264
![]() |
[7] |
X. Zuo, W. Wang, Existence of solutions for fractional differential equation with periodic boundary condition, AIMS Mathematics, 7 (2022), 6619–6633. https://doi.org/10.3934/math.2022369 doi: 10.3934/math.2022369
![]() |
[8] | B. Ahmad, J. J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via leray-Schauder degree theory, Topol. Methods Nonlinear Anal., 35 (2010), 295–304. |
[9] |
B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Bound. Value Probl., 2009 (2009), 625347. https://doi.org/10.1155/2009/625347 doi: 10.1155/2009/625347
![]() |
[10] | R. P. Agarwal, B. Ahmad, J. J. Nieto, Fractional differential equations with nonlocal (parametric type) anti-periodic boundary conditions, Filomat, 31 (2017), 1207–1214. |
[11] |
A. Hyder, M. A. Barakat, D. Rizk, R. Shah, K. Nonlaopon, Study of HIV model via recent improved fractional differential and integral operators, AIMS Mathematics, 8 (2023), 1656–1671. https://doi.org/10.3934/math.2023084 doi: 10.3934/math.2023084
![]() |
[12] |
M. D. Johansyah, A. K. Supriatna, E. Rusyaman, J. Saputra, Application of fractional differential equation in economic growth model: A systematic review approach, AIMS Mathematics, 6 (2021), 10266–10280. https://doi.org/10.3934/math.2021594 doi: 10.3934/math.2021594
![]() |
[13] |
C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Mathematics, 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174
![]() |
[14] |
M. Manjula, K. Kaliraj, T. Botmart, K. S. Nisar, C. Ravichandran, Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses, AIMS Mathematics, 8 (2023), 4645–4665. https://doi.org/10.3934/math.2023229 doi: 10.3934/math.2023229
![]() |