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Abstract:  This paper discusses the existence of solutions for fractional differential equations
with nonlocal boundary conditions (NFDEs) under essential assumptions. The boundary conditions
incorporate a point 0 < ¢ < d and fixed points at the end of the interval [0,d]. For i = 0,1, the
boundary conditions are as follows: a;, b; > 0, agp(c) = —bop(d), a;p’(c) = —b,p (d). Furthermore,
the research aims to expand the usability and comprehension of these results to encompass not just
NFDE:s but also classical fractional differential equations (FDEs) by using the Krasnoselskii fixed-
point theorem and the contraction principle to improve the completeness and usefulness of the results
in a wider context of fractional differential equations. We offer examples to demonstrate the results we
have achieved.

Keywords: fractional derivatives; differential equations; fractional differential equations; existence of
solutions; fixed-point theorem
Mathematics Subject Classification: 26A33, 34A08

1. Introduction

In this paper, we study the existence of solutions for the following NFDE:

{CD{I)(S) =q(s,p(s), se€[0,d], 1<<2, 0<c<d, (L1

aop(c) = =bop(d), arp'(¢) = ~bip'(d),

where a;, b; € R* for i = 0, 1, D¢ represents the Caputo derivative of order £, and there is a continuous
function g : [0,d] X R — R, by using the Krasnoselskii fixed-point theorem and the contraction
principle.

Fractional differential equations (FDEs) have loomed as a dominant and masterful mathematical
framework. They are a generalization of integer-order of differential equations, which have
comprehensive applications over diverse scientific disciplines. Unlike traditional differential equations,
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FDEs provide a unified framework to address phenomena characterized by fractional-order dynamics
due to their incorporation of information in a wider range of points in the domain [1,2].

The Riemann-Liouville fractional derivative (RLFD) and Caputo fractional derivatives (CFD) are
tools in the realm of fractional calculus. They are used to deal with initial and nonlocal conditions
involving information, ensuring the description of particular phenomena in diverse applications [1].

Over the years, several methodologies have been used to solve FDEs, such as Laplace
transformation, asymptotic methods, and numerical methods. The investigation of solutions under
essential conditions has been explored widely concerning various intriguing topics. For some
interesting topics, see [3,4]. In [5], authors achieved an accurate solution for the analyzed model,
and methodology has been proposed that combines the Adomian decomposition method with the
Laplace transform, while in [6], researchers solved a fractional order partial differential equation
(PDE) using the Laplace residual power series method, which was proven to be effective for numerical
solutions. These methods have been used widely in single and multi-point initial conditions of
fractional differential equations. To the best of our knowledge, very few research papers have delved
into the exploration of a nonlocal boundary condition, which presents a promising avenue for further
investigation. In [7], Zuo and Wang employed the Krasnosel’skii fixed point theorem with Green’s
function transformation to demonstrate the existence of positive solutions in a fractional differential
equation with periodic boundary conditions.

In [8], existence results are presented using Leray-Schauder theory for the following FDE with
order 1 < ¢ <2:

‘D p(s) = q(s, p(s)), s€[0,d],
p(0) = —p(d), p'(0) = —p'(d),
where g : [0,d] X R — R.

For the same order, Bashir and Espinar [9] consider the following fractional differential inclusion:

‘Dfp(s) € O(s, p(s)), s€[0,d],
p0) = —p(d), p'(0) = —p'(d),

where Q : [0,d] xR — 2%\ {0}, to obtain the existence results using the Bohnenblust-Karlin theorem.
Most of the studied problems are based on the antiperiodic boundary conditions at the initial point 0,
which got researchers attention to study a new kind of problems with a different type of boundary
conditions involving a point in the interval [0, d].

For FDEs with parametric type boundary conditions, Agarwal, Bashir, and Nieto [10] devoted the
following NFDE:

‘Dip(s) = q(s, p(s)), s€[0,d], 0<c<d, 1<{<2,
p(c) = =p(d), p'(c) = —p'(a),

and obtained the existence results for a given function ¢ : [0,d] X R — R using standard fixed-point
theorems.

Nonlocal fractional differential equations (NFDEs) serve enchanting and multifaceted applications
in physics and mathematical models. These applications and models for characterizing real-world
phenomena have been highly influential in capturing the behavior of various systems in engineering,
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physics, and biology. For some results related to these applications, see [11, 12]. Researchers are
delving deeper into mathematical models with non-integer orders to solve practical problems, fostering
the advancement of solutions for NFDEs in an engineering context and promising profound insights
into the complex and multifaceted dynamics that underpin engineered systems. Such equations are
particularly valuable in scenarios where memory effects or correlations beyond neighboring points
significantly impact the system’s dynamics, such as in modeling anomalous diffusion or complex
transport phenomena, and interesting results can be found in [13, 14].

The structure of the paper is outlined as follows. Section 2 delves into the materials and
methods employed in this study, particularly the Krasnoselskii’s fixed point theorem and the necessary
assumptions to investigate the existence of the solution. In Section 3, significant theorems that prove
the existence of solutions to NFDE (1.1) are stated and demonstrated. Notably, Section 4 features
examples that serve to illustrate the results. Finally, the conclusion is presented in Section 5.

1.1. Preliminaries

Definition 1.1. The Caputo fractional derivative of order ¢ > 0, D¢, for a given function u € AC"(0, d)
is defined as follows:

1 T
‘Diu(r) = ——— f (r — )" u™(1)dr,
I'(m-20) Jo
where m = [{] + 1, [{] is the integer part of £, and I is the Gamma function.

Definition 1.2. The Riemann-Liouville fractional integral (RLFI) of order ¢, I¢, for a defined function
ue LY0,d)is

Fu(r) = = o f (r—0'u(nydr, ¢>0.

Lemma 1.1. The general solution of ‘D¢ p(s) = 0, where ¢ > 0, is given by

j=m
p(s)= Y visl, v,eR. (1.2)

J=1

Lemma 1.2. The unique solution of

‘Dp(s) =6(s), s€[0,d], 1<(<2,0<c<d, 13)
aop(c) = =bop(d), arp'(c) = =bip'(d), anb; €R* for i=0,1, '
is given by:
(=t (c =) f d-r}!
p(s) —f(; Tg)d(r)dr - bl[ 1 f o ——6(r)dr + by o ———6(r)dr]
(aic + bid) — (a +bl)S “(c—rf? f( —r)?
+ (@0 + bo)a + b)) [ao . T - )6(r)dr+b0 ) —F({— D o(rydr]. (1.4)
Proof. In view of Lemma 1.1, p(s) = I°6(s) — Z} | vjsf ! v; € R s the solution for (1.3).
(s =" $
p(s) = fo - F(Z) S(r)dr — Z visil, (1.5)

j=
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1 ¢ P
Vi :m [al j(: (c— r)g_lé(l’)dl” + by ﬁ (d - ”){_zé(r)dr]
b\d c
(ag + bo)a(lc-lcl : bll)l“(g m—y [ao f (c — P 28(r)dr + by f (d - r)<28(r) a’r] ’

1
— )2 N2
vy = (ao + )T (£ — 1) [ f (c = r)*~°6(r)dr + by f(d r)’ 5(r)dr]

Substitute values of v; and v, into (1.5) to yield the following:

B S (s —r)! 1 “(c—r)t! (d—-r)!
p(s) = | —F(g“) o(r)dr — —611 s [al | —F({) o(rydr + b, ) —F(g“) 6(r)dr]

(@c+bid) = (@ +b)s| [ (c=n 4 (d - )2
e [ e o [t

O

Remark 1.1. Fori = 0,1, @¢; = b; = 1, and ¢ = 0, problem (1.3) represents the classical FDE of
Lemma 2.5 in [8] . Comparing the solution in [8] and (1.4), we see additional terms are added in (1.4).
On the other hand, fori = 0, 1, a¢; = b; = 1, the solution (1.4) is the same as that of Lemma 2.1 in [10] .

2. Materials and methods

Numerous approaches are used to prove existence of a solution for FDEs, such as Leray-Schauder,
Krasnosel’skii, and Schaefer fixed-point theorems. In this research, we use Krasnoseliskii’s fixed-point
theorem and the contraction principle.

Additionally, let us assume the following:

(A)): g(s, p1) — q(s, p2)| < K|p1 — pal, for p1, p2,€ R, K > 0, and for all s € [0, d].
(A2): lg(s, p)| < u(s) for all (s, p) € [0,1] X R, and u € L'([0,d],R").

Let 8 be the Banach space of all continuous functions, 8 = C([0,d],R), and define an operator

T :8— Bas

(s =)
(T'p)(s) = f — 4, p(r))dr

F(g)
1 “(c—r)! d — )&
- 0 (c r(?)—q(r, p(r))dr + b, : ( F—(?) q(r, p(r))dr] 2.1
(Cl]C‘i'b]d)—(Cll +b])S ¢ (C_r)§_2 d (d_r)g—Z
(ao + bo)(a; + by) [ao o TC—-1) q(r, p(r))dr + by o T __1) q(r, p(r))dr] .

The solution exists for (1.1) iff 7 p = p, for p € [0,d].

Theorem 2.1. [4, Theorem 1.2] If a family Q{q(s)} in C(J, R) is uniformly bounded and equicontinuous
on J, and if for any s* € J, {q(s*)} is relatively compact, then, Q has uniformly convergent subsequence

{gn} ;-

Theorem 2.2. [3, Theorem 1.2.2, Contraction Mapping Theorem] Any contraction mapping of a
complete nonempty metric space space € into Q has a unique fixed point in Q.
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Theorem 2.3. /3, Theorem 4.4.1, Kasnoseliskii’s Theorem] Let M be a nonempty closed convex subset
of a Banach space B. Suppose that O, and O, map M into B and,

¢ Oip1+Orpr €M (Vpi,pr €M),
e O, is compact and continuous,
e O, is a contraction mapping.

Then there exists p in M such that Op + O,p = p.

3. Results
In this section we will state and prove important theorems that discuss the existence of solutions to
NFDEs (1.1).

Theorem 3.1. The FBVP (1.1) has a unique solution on [0, d] if, for a continuous function q : [0, d] X
R — R, assumption (A,) holds, and K6 < 1, where
_ 1 (a; + Zbl)dz + alcé + (ajc + b]d)é’(a()cg_l + bodg_l)
I'(¢+1) a + b (ao + bo)(ai + by)

(3.1)

Proof. Let 7 be the operator defined in (2.1) and setting sup (o 5 9(s,0) = 1 < co.
Then choose a suitable radius r for a ball B, such that

no

>
"=1"ke

B, ={p e C(0,d],R) : |lpll <r}.

Then,

N _ 0\l
[T b1 = T pall < max f S p1(9) = g, par)dr
) 0

€[0,d] I'(0)
1 “(c—r)!
s a fo Tg)lq(npl(r)) = q(r, p2(r)ldr
d d— -1
“b | %lq(r,pl(r» ~ qtr, Pz(r))|d”]
(ajc + bid) — (a; + b))s “(c—r)2
P a0 Ty i) ~ g o
d d— -2
+ by fo (r(g—?l)lqmpl(r» - 40 pa(rr|
K (a) +2b))d +aict  (ajc + bid)(ayc*™" + bod®™)
< + lp1 = pall.
I'(¢+1) a, + b, (ap + bo)(a; + b))

Therefore, |7 py — T p2ll < 0K||p; — p2ll. Thus, 6K < 1, implying that 7 is a contraction. Moreover,
||T|| < r, implying that 7 B, C B,. Therefore, a unique solution exists for (1.1). O

Remark 3.1. Theorem 3.1 is an extension and a generalization of Theorem 3.1 in [10] . Additionally,
when ¢ = 0 and fori = 0,1, @; = b; = 1, the quantity #10[6 + (] is used in Theorem 3.3 [8] as a
maximum of the operator.
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Theorem 3.2. Assume there exist constants o > 0 and u > O and let g : [0,d] X R — R be a
continuous function with |q(s, p(s))| < ulp| + o, where, 0 < pu < 5 L and

_ (Clo + bo)[d]C{ + (Cl] + 2b1)d§] + (alc + bld)g“(aoc‘:_l + bod{_l)
- (ao + bo)(ar + b)I'({ + 1) '

Then, problem (1.1) has at least one solution.

Proof. Define the operator 7 as in (2.1). Then, the solution exists if and only if 7 p = p. Choose a ball
B, ={p € C([0,d]) : maxgeogq |p(s)| < r} with a radius r > 0. We need to show that a p € C([0, d])
satisfies 7 p = p. Show that p # A7 p, Vp € 0B and A € [0, 1], where, 7 : B, — C([0,d]), and
setting G(4, p) = AT p for p € C(R), and 1[0, 1]. Then g,(p) = p — G(4, p) = p — AT p is completely
continuous according to Arzeld-Ascoli theorem (Theorem 2.1).

If p # A7 p, then for O € B, and the unite operator /, we have

deg(ga, B,,0) = deg(I — AT p, B,,0) = deg(g1, B,,0) = deg(go, B,,0) = deg(l, B,,0) = 1 # 0.

Hence, for at least one p € B,, g1(s) = p— A7 p = 0.
Suppose that p = A7 p for some A € [0, 1], and for all s € [0,d] and p € B,. Then,

S (s =)t “(c—r)!
o bl [al fo T{)'W’ p(r))|dr

1
ol =T < [ S0 g pofar+

(d-r)!
by f L p(r))ldr]

<a1c+b1d>—<a1+b1>s[a “(c—r)2
(@ +bo)a +b) | Jo T -

Iq(r p(r)|dr

d—r)?
+ by (r@ D\, p(r))ldr]
(s—r)f1 1 (C—V)(1 d-n" ”)(1
S(“""*")[ o T e |t TTo blf TO ]

|(arc + bid) — (a1 + by)s| (¢ - ry? (d - r)y-2
(o + bo)a + br) [““fo rc-n ) Te- dr“

B | | ) s¢ a,ct + byd¢
_(“p T [r(§+ D @b+ D)

(Cl()Cg_1 + bodg_l )

(alc + bld) - (Cll + b])S

" (a0 + bo)ar + b)IQ)
<( | | 4 ) (Cl() + bo)[a1c§ + (Cll + 2b1)d{] + (611C + bld)g“(aoc»f‘l + bodg_l)
=T e (a0 + bo)ar + b)T(C + 1) '

We have,
p| < (,u|p| + 0-)9.
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, we have,
Ioll = 725
1 — b
thereby completing the proof by choosing r > %~ #6 O

Theorem 3.3. Let g : [0,d] X R — R be a continuous function for which assumptions (A,) and (A;)
hold. Then, there exists at least one solution for FBVP (1.1) if

K
I'ic+1)

Proof. Define aball B, = {p € B: ||pl|| < r}, where r > |lu||., 6, and 6 is defined in (3.1) . Then, define
= @max, and the operators 7 and 7 as follows:

bid¢ + a;cf . (aic + bid)(apct™" + bod{‘l)] -1
a + by (ao + bo)(ay + by) '

SUP s, p)el0,d]1x B,

S _ -1
(Tip) = | %qm p(r)dr,
1 “(c—r)! ! (d—r)!
T = _Cll b ; T{)q(r, p(r))dr + b, | Tg)q(r, p(r))dr]
(aic + bid) — (a; + by)s “(c—r)2 4 (d - r)?
" a0+ bo)ar + by) [“0 |, ez o [ S P(”))d’] ~

For py, p» € B, we have,

S(s=r)t! (c—r)f 1 fd(d—rf !
'Tlp”%pz S””” f o “ta +b1 f rQ) rQ) r]
|(alc +b1d) — (a; + bl)s| — )2 e
——dr+b ——dr
(a0 + bo)ar + by) [“" o TC- T2 r@—l) “

<||u|lg < .

Therefore, 71 p; + T2p> € B,. Since ¢ is continuous, 7 is continuous.
Additionally,
]}

rZ+1)

Tip <

and for s¢, 55 € [0, d] we have

H(‘ﬂp)(so —Tp)so)|| = fo (s = P = (52— PEVg(r, p(r)dr

" f Sz(Sz - ) q(r, p(r)dr]|,

qmax

I+

As s, approaches s;, the norm will tend to zero. Therefore, we proved that the operator is uniformly
bounded on B, and is relatively compact on B,. Theorem 2.1 implies the compactness of 77.

[2(sy — 51)° + sf - sg].

H(‘ﬂp)(so — (T <
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9056

Finally, 7 is a contraction mapping for

L b]dév + alc-( + (ajc + bld){(aoc§_1 + bodg_l)
I{+D] a+b (ao + bo)(ar + by)

Thus, Theorem 2.2 is satisfied, which implies that FBVP (1.1) has at least one solution in [0,d]. O

4. Examples

Example 4.1. Consider the following classical antiperiodic FDE:

{chp(S) = —sm(27rp) + 1|+”|L)|, s € [0, 1], @.1)

p0) = —p(1), p'(0) = —p'(1).

Clearly, |g(s, p)| < 1|p| + 1, where ¢(s, p) = —szn(27rp) + 1|f|| i withO < u =

Theorem 3.2 implies that problem (4.1) has at least one solution on [0,1].

Example 4.2. Consider the following NFDE:

Dip(s) = 2V [p +In(p + \p? + D]+ (s + 1% s€[0,1],
p(0.01) = —p(1), p'(0.01) = —p'(D).

1< Sﬁ,andO': 1. Thus,

4.2)

In this problem we have ¢(s, p) = 2?2%‘?[;7 +In(p + \p* + ) + (s + 1)? for 0 < p; < pa, lg(s, p2) —
q(s, po)l < T2 = pil, with K = ST Also, since ¢ = 53, we have, K ~ 0.9777701 < 1. Thus,

Theorem 3.1 implies that problem (4.2) has at least one solution on [0,1].

Example 4.3. Consider the following FDE:

<D p(s) = (H%)}tan‘l(p) +In(s+1), sel0,1],
p0) = -1pD), p'(0)=-1p'(D).

Clearly, |g(s, p2) — q(s, p1)| < 2—17|p2 - pil, with K = % Also, since 8§ =

4.3)

ﬁ, where, g(s,p) =

tan~'(p) + In(s + 1), and we have, K# = W < 1. Thus, Theorem 3.1 implies that problem (4.3)

1
(s+3)° _
has at least one solution on [0,1].

5. Conclusions

This paper explored a novel type of FDE. For a point ¢ € [0,d) in problem (1.1), Theorem 3.1
is reduced to Theorem 3.1 in [10]. While when ¢ = 0 Theorem 3.2 is an extension of Theorem 3.1
n [8]. Considering NFDEs and comparing them with classical FDEs, additional terms will be added
to the solution of (1.1). A shift in the position of nonlocal phenomena takes place at the left-end of the
interval [0, d] while maintaining a fixed relationship with d. Finally, the obtained results in this paper
we consider for i = 0, 1, a;, b; need to be positive real numbers to find the maximum of the operator.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.

AIMS Mathematics Volume 9, Issue 4, 9049-9058.



9057

Acknowledgments

The researcher would like to thank the Deanship of Scientific Research, Qassim University, for
funding the publication of this project. Additionally, I would like to extend my sincere gratitude to
the editor and reviewers for their insightful comments, which strengthened the overall impact of this
manuscript.

Conflict of interest

The author does not have any conflict of interest.

References

1. L. Podlubny, Fractional differential equations, In: Mathematics in science and engineering,
Elsevier, 198 (1999).

2. S. Abbas, M. Benchohra, G. M. N’Guerekata, Topics in fractional differential equations, New
York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4036-9

D. R. Smart, Fixed point theorems, Cambridge University Press, 1980.

4. Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Academic Press,
2016. https://doi.org/10.1016/C2015-0-00813-9

5. A. Ali, I. Suwan, T. Abdeljawad, Abdullah, Numerical simulation of time partial
fractional diffusion model by Laplace transform, AIMS Mathematics, 7 (2022), 2878-2890.
https://doi.org/10.3934/math.2022159

6. M. M. Al-Sawalha, O. Y. Ababneh, R. Shah, N. A. Shah, K. Nonlaopon, Combination
of Laplace transform and residual power series techniques of special fractional-order
non-linear partial differential equations, AIMS Mathematics, 8 (2023), 5266-5280.
https://doi.org/10.3934/math.2023264

7. X.Zuo, W. Wang, Existence of solutions for fractional differential equation with periodic boundary
condition, AIMS Mathematics, 7 (2022), 6619-6633. https://doi.org/10.3934/math.2022369

8. B. Ahmad, J. J. Nieto, Existence of solutions for anti-periodic boundary value problems involving
fractional differential equations via leray-Schauder degree theory, Topol. Methods Nonlinear Anal.,
35 (2010), 295-304.

9. B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions
with antiperiodic boundary conditions, Bound. Value Probl., 2009 (2009), 625347.
https://doi.org/10.1155/2009/625347

10. R. P. Agarwal, B. Ahmad, J. J. Nieto, Fractional differential equations with nonlocal (parametric
type) anti-periodic boundary conditions, Filomat, 31 (2017), 1207-1214.

11. A. Hyder, M. A. Barakat, D. Rizk, R. Shah, K. Nonlaopon, Study of HIV model via recent
improved fractional differential and integral operators, AIMS Mathematics, 8 (2023), 1656—1671.
https://doi.org/10.3934/math.2023084

AIMS Mathematics Volume 9, Issue 4, 9049-9058.


http://dx.doi.org/https://doi.org/10.1007/978-1-4614-4036-9
http://dx.doi.org/https://doi.org/10.1016/C2015-0-00813-9
http://dx.doi.org/https://doi.org/10.3934/math.2022159
http://dx.doi.org/https://doi.org/10.3934/math.2023264
http://dx.doi.org/https://doi.org/10.3934/math.2022369
http://dx.doi.org/https://doi.org/10.1155/2009/625347
http://dx.doi.org/https://doi.org/10.3934/math.2023084

9058

12. M. D. Johansyah, A. K. Supriatna, E. Rusyaman, J. Saputra, Application of fractional differential
equation in economic growth model: A systematic review approach, AIMS Mathematics, 6 (2021),
10266-10280. https://doi.org/10.3934/math.2021594

13. C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal
fractional integro-differential boundary conditions via topological degree theory, AIMS
Mathematics, 5 (2020), 2694-2709. https://doi.org/10.3934/math.2020174

14. M. Manjula, K. Kaliraj, T. Botmart, K. S. Nisar, C. Ravichandran, Existence, uniqueness and
approximation of nonlocal fractional differential equation of sobolev type with impulses, AIMS
Mathematics, 8 (2023), 4645-4665. https://doi.org/10.3934/math.2023229

% AIMS Press

AIMS Mathematics

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 9, Issue 4, 9049-9058.


http://dx.doi.org/https://doi.org/10.3934/math.2021594
http://dx.doi.org/https://doi.org/10.3934/math.2020174
http://dx.doi.org/https://doi.org/10.3934/math.2023229
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries

	Materials and methods
	Results
	Examples
	Conclusions

