Research article Special Issues

Utilization of the Crank-Nicolson technique to investigate thermal enhancement in 3D convective Walter-B fluid by inserting tiny nanoparticles on a circular cylinder

  • The current study is based on the mechanism of mixed convection and solar thermal radiation in Walters'-B fluid considering tera-hybrid nano-structures using convective boundary constraints (CBC) and (CHF) constant heat flux. The heat transmission phenomenon of the current study is taken into account under the influence of triple-suspended nanoparticles. The current problem has several potential applications, including improvements in solar thermal energy systems, nanofluids, aerospace, cooling processes, automotive engineering, and numerical modeling methods. A numerical approach, namely Crank-Nicolson, is utilized in the modeling of 3D Walter's B fluid past over a 3D circular cylinder whose radius varies sinusoidally for evaluation of velocity and temperature distributions. For mathematical modeling, the Cartesian coordinate system was used for the current study. Comparative analysis between constant heat flux (CHF) and convective boundary constraints (CBC) was demonstrated graphically against multifarious parameters towards the temperature profile and velocity profiles along the x-axis and in the y-axis. Moreover, comparative analysis for dissimilar parameters was manifested for Nusselt number through tables, and graphically for skin friction co-efficient and Nusselt number and has shown excellent accuracy. It was estimated that by enhancing values of Qsr, C, Hs and Ec, it was addressed that temperature curve increases for CHF and CBC cases.

    Citation: Fu Zhang Wang, Muhammad Sohail, Umar Nazir, Emad Mahrous Awwad, Mohamed Sharaf. Utilization of the Crank-Nicolson technique to investigate thermal enhancement in 3D convective Walter-B fluid by inserting tiny nanoparticles on a circular cylinder[J]. AIMS Mathematics, 2024, 9(4): 9059-9090. doi: 10.3934/math.2024441

    Related Papers:

    [1] Raweerote Suparatulatorn, Wongthawat Liawrungrueang, Thanasak Mouktonglang, Watcharaporn Cholamjiak . An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction. AIMS Mathematics, 2025, 10(2): 2541-2561. doi: 10.3934/math.2025118
    [2] Salman khan, Muhammad Naeem, Muhammad Qiyas . Deep intelligent predictive model for the identification of diabetes. AIMS Mathematics, 2023, 8(7): 16446-16462. doi: 10.3934/math.2023840
    [3] Federico Divina, Miguel García-Torres, Francisco Gómez-Vela, Domingo S. Rodriguez-Baena . A stacking ensemble learning for Iberian pigs activity prediction: a time series forecasting approach. AIMS Mathematics, 2024, 9(5): 13358-13384. doi: 10.3934/math.2024652
    [4] Hend Khalid Alkahtani, Nuha Alruwais, Asma Alshuhail, Nadhem NEMRI, Achraf Ben Miled, Ahmed Mahmud . Election-based optimization algorithm with deep learning-enabled false data injection attack detection in cyber-physical systems. AIMS Mathematics, 2024, 9(6): 15076-15096. doi: 10.3934/math.2024731
    [5] Turki Althaqafi . Mathematical modeling of a Hybrid Mutated Tunicate Swarm Algorithm for Feature Selection and Global Optimization. AIMS Mathematics, 2024, 9(9): 24336-24358. doi: 10.3934/math.20241184
    [6] Olfa Hrizi, Karim Gasmi, Abdulrahman Alyami, Adel Alkhalil, Ibrahim Alrashdi, Ali Alqazzaz, Lassaad Ben Ammar, Manel Mrabet, Alameen E.M. Abdalrahman, Samia Yahyaoui . Federated and ensemble learning framework with optimized feature selection for heart disease detection. AIMS Mathematics, 2025, 10(3): 7290-7318. doi: 10.3934/math.2025334
    [7] Mohammed Abdul Kader, Muhammad Ahsan Ullah, Md Saiful Islam, Fermín Ferriol Sánchez, Md Abdus Samad, Imran Ashraf . A real-time air-writing model to recognize Bengali characters. AIMS Mathematics, 2024, 9(3): 6668-6698. doi: 10.3934/math.2024325
    [8] Jiawen Ye, Lei Dai, Haiying Wang . Enhancing sewage flow prediction using an integrated improved SSA-CNN-Transformer-BiLSTM model. AIMS Mathematics, 2024, 9(10): 26916-26950. doi: 10.3934/math.20241310
    [9] Bao Ma, Yanrong Ma, Jun Ma . Adaptive robust AdaBoost-based kernel-free quadratic surface support vector machine with Universum data. AIMS Mathematics, 2025, 10(4): 8036-8065. doi: 10.3934/math.2025369
    [10] Kun Liu, Chunming Tang . Privacy-preserving Naive Bayes classification based on secure two-party computation. AIMS Mathematics, 2023, 8(12): 28517-28539. doi: 10.3934/math.20231459
  • The current study is based on the mechanism of mixed convection and solar thermal radiation in Walters'-B fluid considering tera-hybrid nano-structures using convective boundary constraints (CBC) and (CHF) constant heat flux. The heat transmission phenomenon of the current study is taken into account under the influence of triple-suspended nanoparticles. The current problem has several potential applications, including improvements in solar thermal energy systems, nanofluids, aerospace, cooling processes, automotive engineering, and numerical modeling methods. A numerical approach, namely Crank-Nicolson, is utilized in the modeling of 3D Walter's B fluid past over a 3D circular cylinder whose radius varies sinusoidally for evaluation of velocity and temperature distributions. For mathematical modeling, the Cartesian coordinate system was used for the current study. Comparative analysis between constant heat flux (CHF) and convective boundary constraints (CBC) was demonstrated graphically against multifarious parameters towards the temperature profile and velocity profiles along the x-axis and in the y-axis. Moreover, comparative analysis for dissimilar parameters was manifested for Nusselt number through tables, and graphically for skin friction co-efficient and Nusselt number and has shown excellent accuracy. It was estimated that by enhancing values of Qsr, C, Hs and Ec, it was addressed that temperature curve increases for CHF and CBC cases.



    Let E be a real Banach space and let A and B be single-valued and multi-valued operators, respectively, on E. Consider the variational inclusion problem:

     find uE such that 0(A+B)u. (1.1)

    Problem (1.1) has been of interest to many authors largely due to its several applications in convex minimization, variational inequalities and split feasibility problems (see, e.g., [20,25,28]). Interestingly, the convex minimization problems arising from image restoration, signal processing and machine learning can be transformed to an inclusion of the form (1.1) (see, e.g., [11,18,19,31] and the referees therein). This interesting connection between problem (1.1) and concrete problems arising from applications have made the problem of approximating zeros of sum of two (monotone or accretive) operators a contemporary problem of interest (see, e.g., [1,17,29,36]).

    Many iterative algorithms have been proposed for approximating solutions of problem (1.1) in the setting of Hilbert spaces and Banach spaces (see, e.g., [2,3,18,20,26]). Of interest to us is the forward-backward splitting algorithm (FBSA) which was studied by Passty [32] defined by:

    {x1H,xn+1=(I+λnB)1(xnλnAxn),n1, (1.2)

    in the setting of a real Hilbert space, H. Under the assumption that A is α-inverse strongly monotone, B is maximal monotone and {λn} is a sequence of positive real numbers satisfying some appropriate conditions, Passty [32] proved that the sequence generated by (1.2) converges weakly to a solution of problem (1.1). He also remarked that for the special case when B is the indicator function of a nonempty closed and convex set, Lions [27] also proved weak convergence of the sequence generated by (1.2) to a solution of problem (1.1).

    Since strong convergence results are more desirable, in the literature, modifications of the FBSA (1.2) by introducing a projection or Halpern or viscosity approximation techniques have been proposed by many authors which guarantee strong convergence of the modified version of the FBSA (1.2) to a solution of problem (1.1) in the setting of Hilbert spaces and Banach spaces more general than Hilbert spaces see e.g., [3,21,39,40,41] and the references therein.

    Due to its simplicity, the Halpern-type modification of the FBSA (1.2) proposed by Takahashi et al. [39] captured our interest. Their algorithm is defined in the following manner: given x1 and u in H, the next iterate is generated by

    {yn=αnu+(1αn)(I+λnB)1(IλnA)xn,xn+1=βnxn+(1βn)yn,n1, (1.3)

    where A:HH is α-inverse strongly monotone, B:H2H is set-valued maximal monotone and, {αn},{βn}(0,1), {λn}(0,) are sequences satisfying some appropriate conditions. Later, in 2016, Pholasa et al. [33] extended the theorem of Takahashi et al. [39] to Banach spaces. They proved the following theorem:

    Theorem 1.1. Let X be a uniformly convex and q-uniformly smooth Banach space. Let A:XX be an α-inverse strongly accretive of order q and B:X2X be an m-accretive operator. Assume that Ω=(A+B)10. We define a sequence {xn} by the iterative scheme: for any x1X,

    xn+1=βnxn+(1βn)(αnu+(1αn)JBλn(xnλnAxn), (1.4)

    for each n1, where uX,JBλn=(I+λnB)1, {αn}(0,1),{βn}[0,1) and {λn}(0,) are sequences satisfying some appropriate conditions. Then the sequence {xn} converges strongly to a solution of (1.1).

    Now, let us recall the inertial acceleration method which is based on a discrete version of a second order dissipative dynamical system (see, e.g., [6,7,30] for more about the discretization of the system). The inertial procedure can be regarded as a method of speeding up the convergence properties of existing iterative algorithms (see, e.g., [5,14,15,16,22,34,37]). Recently, the inertial procedure is of interest to many researchers with motivations varying from the fact that the method accelerates convergence or for the purpose of academic exercise. For example, it is known that inertial acceleration strategy published by Nesterov improves the theoretical rate of convergence of the forward-backward Algorithm (1.2) (see [11]).

    In 2018, Cholamjiak et al. [20] incorporated the inertial acceleration strategy in a Halpern-type FBSA to accelerate the convergence of the sequence to a solution of problem (1.1). They proved the following theorem:

    Theorem 1.2. Let H be a real Hilbert space. Let A:HH be an α-inverse strongly monotone operator and B:H2H be a maximal monotone operator such that Ω==(A+B)10. Let {xn} be a sequence generated by u,x0,x1H and

    {yn=xn+θn(xnxn1),xn+1=αnu+βnyn+γnJBλn(ynAyn),n1, (1.5)

    where {θn},{αn},{βn},{γn} and {λn} are real sequences satisfying some appropriate conditions. Then the sequence {xn} converges strongly to a solution of (1.1).

    Recently, Adamu et al. [4] extended the result of Cholamjiak et al. [20] to 2-uniformly convex and uniformly Banach spaces and proved a strong convergence theorem. Furthermore, some applications to convex minimization and image restoration problems were presented in their paper to support the results with numerical experiments.

    Another acceleration strategy which is currently of interest is the relaxation technique. This method is based on a convex combination of the "xn+1" term in the existing algorithm and "xn". The influence of this convex combination is what is called the relaxation technique. Interested readers may see, for example, [8,24] for motivation about this technique. This strategy has been used to accelerate the convergence of the FBSA and some of its modified versions which guarantee strong convergence (see, e.g., [2,8,9,18] and the references therein). Recently, in 2021, Cholamjiak [18] combined the inertial and relaxation acceleration strategies in a modified FBSA. They proved the following theorems:

    Theorem 1.3. Let H be a real Hilbert space and let A:HH be monotone and Lipschitz continuous and B:H2H be maximal monotone. Suppose the solution set of the VIP (1.1) (A+B)10 is nonempty. Let x1H, let {xn} be a sequence generated by

    {yn=(I+λnB)1(xnλnAxn),xn+1=(1θn)xn+θnyn+θnλn(AxnAyn),λn+1=min{λn,μnxnynAxnByn}, (1.6)

    where λ1>0, {θn}[a,b](0,1),{μn}[c,d](0,1). Then the sequence generated by (1.6) converges weakly to a solution of problem (1.1).

    Theorem 1.4. Under the same hypothesis as in Theorem 1.3 above, given x0, x1H, let {xn} be a sequence generated by

    {wn=xn+α(xnxn1),yn=(I+λnB)1(wnλnAwn),xn+1=(1θn)wn+θnyn+θnλn(AwnAyn),λn+1=min{λn,μnwnynAwnByn}, (1.7)

    where λ0>0, θ(0,1], μ(0,1), α[0,1) such that

    θ(1μ2)(2θ+μθ)2+1θθ>α(1+α)(1α)2.

    Then the sequence {xn} converges weakly to a solution of problem (1.1).

    Recently, Adamu et al. [2] used the idea of Halpern approximation technique and also combined the inertial and relaxation acceleration strategies in a modified FBSA to obtain strong convergence. They proved the following theorems:

    Theorem 1.5. Let E be a 2-uniformly convex and uniformly smooth real Banach space with dual space, E. Let A:EE be a monotone and L-Lipschitz continuous mapping, B:E2E be a maximal monotone mapping and T:EE be a relatively nonexpansive mapping. Assume the solution set Ω=(A+B)10F(T), given x1E, let {xn} be a sequence defined by:

    {yn=JBλnJ1(JxnλnAxn),zn=J1(Jynλn(AynAxn)),un=J1(βnJzn+(1βn)JTzn),xn+1=J1((1θn)Jxn+θn(γnJu+(1γn)Jun)), (1.8)

    where JBλn=(J+λnB)1J, J is the normalized duality map, {θn},{βn}(0,1], {γn}(0,1) are sequences that satisfy some appropriate conditions. Then, {xn} converges strongly to a solution of problem (1.1).

    Theorem 1.6. Under the same setting as in Theorem 1.5, given x0,x1E, let {xn} be a sequence defined by:

    {wn=J1(Jxn+αn(JxnJxn1)),yn=JBλnJ1(JwnλnAwn),zn=J1(Jynλn(AynAwn)),un=J1(βnJzn+(1βn)JTzn),xn+1=J1((1θn)Jwn+θn(γnJu+(1γn)Jun)), (1.9)

    where {αn} is a real sequence that satisfies some appropriate conditions. The remaining parameters are the same as in Theorem 1.5. Then, {xn} converges strongly to a solution of problem (1.1).

    Remark 1.1. Looking at the results of Cholamjiak et al. [18] and Adamu et al. [2] with their competitive numerical illustrations, it is natural to ask the following question:

    Question 1. Can the idea of combining inertial and relaxation acceleration strategies be incorporated in an existing algorithm involving accretive operators?

    Motivated by Question 1, our contribution in this paper are the following:

    (1) We incorporate the inertial and relaxation acceleration strategies in Algorithm (1.4) of Pholasa et al. [33] to get a relaxed inertial Halpern-type forward-backward splitting algorithm involving accretive operators in Banach spaces for solving problem (1.1).

    (2) Unlike in the results of Cholamjiak et al. [18] and Adamu et al. [2], in this paper, we study the effect of the inertia and relaxation parameters and provided the best choice for these parameters in the examples we considered.

    The paper is structured as follows. In the next section, we recall some basic concepts on operators in Banach spaces. In Section 3, we prove strong convergence results for relaxed inertial Halpern-type forward-backward splitting algorithm. In the last section, a numerical example is given to illustrate the performance of the proposed algorithms.

    The following definitions and lemmas are needed in the proof of our main theorem. Assume that E is a real normed space with dual space E and C is a nonempty closed and convex subset of E. For any aE and r>0, the notation B(a,r) means the set {xE:xar}. The notation Jq is the generalized duality mapping defined, for any xE, by

    Jq(x):={xE:x,x=xq,x=xq1}.

    Observe that when q=2, J2 is the duality mapping denoted by J. Analytic representations of the generalized duality mapping on some classical Banach spaces can be found in [10].

    Let T:E2E be a set-valued operator. Recall that the operator T is said to be

    ● a contraction if there exists k(0,1) such that for all x,yE,

    ηζkxy,

    where ηTx,ζTy. If 0<k1, then T is called nonexpansive.

    ● accretive if for all x,yE, there exists jq(xy)Jq(xy) such that

    ηζ,jq(xy)0,

    where ηTx,ζTy.

    ● strongly accretive if there exists γ>0 and for all x,yE, there exists jq(xy)Jq(xy) such that

    ηζ,jq(xy)γxy,

    where ηTx,ζTy.

    α-inverse strongly accretive (α-isa) of order q, if there exist α>0,q>1 and for all x,yE, there exists jq(xy)Jq(xy) such that

    ηζ,jq(xy)αηζq,

    where ηTx,ζTy.

    m-accretive} if T is accretive and R(I+λT)=E, for all λ>0.

    Lemma 2.1. [12] For q>1, let Jq be the generalized duality mapping. Then, for all x,yE, there exists jq(x+y)Jq(x+y) such that

    x+yqxq+qy,jq(x+y).

    Lemma 2.2. [42] Let E be a uniformly convex real Banach space and let q>1 and r>0. Then there exist strictly increasing continuous and convex functions ϕ,ψ:[0,)[0,) with ϕ(0)=0 and ψ(0)=0 such that, for all x,yB(0,r),

    (i) λx+(1λ)yqλxq+(1λ)yqλ(1λ)ϕ(xy), for any λ[0,1],

    (ii) ψ(xy)xqqx,jq(y)+(q1)yq,

    where jq(x+y)Jq(x+y).

    Lemma 2.3. [28] Let E be a q-uniformly smooth real Banach space and let A:CE be an α-isa of order q. Then the following inequality holds for all x,yC

    (IλA)x(IλA)yqxyqλ(αqκqλq1)AxAyq,

    where κq>0 is the q-uniform smoothness coefficient of E (see, e.g., [42] for an explicit definition of κq). In particular, if 0<λ<αqκqλq1 then (IλA) is nonexpansive.

    Remark 2.1. Let A:E2E be an m-accretive map. The resolvent JAλ:E2E of A is defined by

    JAλx:={uE:xu+λAu}.

    It is well-known that JAλ is single valued with F(JAλ):=A10 and JAλ is firmly nonexpansive. In the sequel we adopt the following notation:

    WA,Bλ:=JBλ(IλA)=(IλB)1(IλA),λ>0.

    The following statements are true (see [28]),

    (i) for λ>0, F(WA,Bλ)=(A+B)10,

    (ii) for 0<λε and xE, xWA,Bλx2xWA,Bεx.

    Lemma 2.4. [28] Let E be a uniformly convex and q-uniformly smooth real Banach space and let A:EE be an α-isa mapping of order q and B:EE be an m-accretive mapping. Then given r>0, there exists a continuous, strictly increasing and convex function φ:[0,)[0,) with φ(0)=0 such that for all x,yB(0,r),

    WA,BλxWA,Bλyqxyqλ(αqλq1κq)AxAyqφ((IJλ)(IλA)x(IJλ)(IλA)y).

    Lemma 2.5. [23] Let {dn} be a sequence of a nonnegative real numbers such that

    dn+1(1ϑn)dn+ϑnτnanddn+1dnηn+ρn,

    where {ϑn} is a sequence in (0,1), {ηn} is a sequence of nonnegative real numbers, {ρn} and {τn} are real sequences. Then limndn=0 if

    (i) n=1ϑn=,

    (ii) limnρn=0,

    (iii) limkηnk=0 implies lim supkτnk0, for any subsequence {nk}{n}.

    Lemma 2.6. [38] Suppose that {an} and {bn} are two sequences of nonnegative numbers such that

    an+1an+bnfor alln1.

    If n=1bn converges, then limnan exists.

    The following assumption is central in the proof of our results.

    Assumption 3.1.

    (i) For q>1, let E be a real Banach space that is uniformly convex and q-uniformly smooth and let A:EE be an α-isa of order q, and B:E2E be a set-valued m-accretive operator such that Ω:=(A+B)10={xE:0(Ax+Bx)} is nonempty.

    (ii) Let {βn}(0,1) be a sequence such that limnβn=0 and n=1βn=.

    (iii) Let {λn}(0,) be a sequence such that 0<λκqλq1n<αq.

    (iv) Let {γn}(0,1) be a sequence with limnγn=0.

    (v) Let {θn}(0,1] be an increasing sequence.

    (vi) Let {εn}(0,) be a sequence such that with n=1εn<.

    Algorithm 3.1. Relaxed inertial Halpern-type forward-backward splitting algorithm.

    Step 0. Choose arbitrary points x0, x1E, α(0,1) and set n=1.

    Step 1. Choose αn such that 0αn¯αn, where

    ¯αn={min{α,εnxnxn1}, where xnxn1,α, otherwise. (3.1)

    Step 2. Compute

    {yn=xn+αn(xnxn1),vn=βnu+(1βn)JBλn(ynλnAyn),xn+1=(1θn)xn+θn(γnyn+(1γn)vn).

    Step 2. Update n=n+1.

    Remark 3.1. By Assumption 3.1, (vi) and Step 1, we deduce that

    limnαnxnxn1=0.

    Lemma 3.1. Let {xn} be the sequence generated by Algorithm 3.1, then {xn} is bounded.

    Proof. Let Wn:=JBλn(IλnA) and zΩ. Then, Wn is nonexpansive (see [13], page 8). Using the nonexpansivity of Wn and Remark 2.1, we get

    vnz=βnu+(1βn)Wnynz=βn(uz)+(1βn)(Wnynz)βnuz+(1βn)Wnynz=βnuz+(1βn)WnynWnzβnuz+(1βn)ynz. (3.2)

    Using the Inequality (3.2), and the fact that θn(0,1], we get

    xn+1z=(1θn)xn+θn(γnyn+(1γn)vn)z(1θn)xnz+θn(γnyn+(1γn)vn)z(1θn)xnz+θn(γnynz+(1γn)vnz)=(1θn)xnz+θnγnynz+θn(1γn)vnz(1θn)xnz+θnγnynz+θn(1γn)(βnuz+(1βn)ynz)=(1θn)xnz+θnγnynz+βnθn(1γn)uz+θn(1γn)(1βn)ynz=(1θn)xnz+(θnγn+θn(1γn)(1βn))ynz+βnθn(1γn)uz=(1θn)xnz+(θnβnθn(1γn))ynz+βnθn(1γn)uz=(1θn)xnz+(θnβnθn(1γn))xn+αn(xnxn1)z+βnθn(1γn)uz(1θn)xnz+(θnβnθn(1γn))(xnz+αnxnxn1)+βnθn(1γn)uz=(1βnθn(1γn))xnz+(θnβnθn(1γn))αnxnxn1+βnθn(1γn)uz(1βnθn(1γn))xnz+(1βnθn(1γn))αnxnxn1+βnθn(1γn)uz=(1βnθn(1γn))(xnz+αnxnxn1)+βnθn(1γn)uzmax{xnz+αnxnxn1,uz}.

    If max{xnz+αnxnxn1,uz}=uz, we have that {xn} is bounded. Otherwise, there exists n01 such that

    xn+1zxnz+αnxnxn1,nn0.

    From the Eq (3.1), we note that αnεnxnxn1, for all n1. Thus,

    n=1αnxnxn1n=1εn<.

    By Lemma 2.6, {xnz} has a limit. Therefore, {xn} is bounded.

    Next, we prove strong convergence theorem for the sequence generated by our proposed Algorithm 3.1.

    Theorem 3.1. Let {xn} be a sequence generated by Algorithm 3.1. Then {xn} converges strongly to zΩ.

    Proof. Let zΩ. Using Lemmas 2.1 and 2.4, we have

    vnzq=βnu+(1βn)JBλn(ynλnAyn)zq=βnu+(1βn)Wnynzq(1βn)qWnynWnzq+qβnuz,jq(vnz)(1βn)q(ynzqλn(αqλq1nκq)AynAzqφ(ynλn(AynAz)Wnyn))+qβnuz,jq(vnz)=(1βn)qynzqλn(1βn)q(αqλq1nκq)AynAzq(1βn)qφ(ynλn(AynAz)Wnyn)+qβnuz,jq(vnz). (3.3)

    Next, using Inequality (3.3), Lemma 2.2 and the fact that q>1, we get that

    xn+1zq=(1θn)xn+θn(γnyn+(1γn)vn)zq=(1θn)(xnz)+θn((γnyn+(1γn)vn)z)q(1θn)xnzq+θn(γnyn+(1γn)vn)zq(1θn)xnzq+θn(γnynzq+(1γn)vnzq)=(1θn)xnzq+θnγnynzq+θn(1γn)vnzq(1θn)xnzq+θnγnynzq+θn(1γn)((1βn)qynzqλn(1βn)q(αqλq1nκq)AynAzq(1βn)qφ(ynλn(AynAz)Wnyn)+qβnuz,jq(vnz))=(1θn)xnzq+θnγnynzq+θn(1γn)(1βn)qynzqθn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)=(1θn)xnzq+(θnγn+θn(1γn)(1βn)q)ynzqθn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)(1θn)xnzq+(θnθnβn(1γn))ynzqθn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)=(1θn)xnzq+(θnθnβn(1γn))xn+αn(xnxn1)zqθn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)=(1θn)xnzq+(θnθnβn(1γn))(xnz)+αn(xnxn1)qθn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)(1θn)xnzq+(θnθnβn(1γn))(xnzq+qαnxnxn1,jq(ynz))θn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)=(1θn)xnzq+(θnθnβn(1γn))xnzq+qαn(θnθnβn(1γn))xnxn1,jq(ynz)θn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)=(1θn+(θnθnβn(1γn)))xnzq+qαn(θnθnβn(1γn))xnxn1,jq(ynz)θn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz)=(1θnβn(1γn))xnzq+qαn(θnθnβn(1γn))xnxn1,jq(ynz)θn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+θn(1γn)qβnuz,jq(vnz).

    Now, we have

    xn+1zq(1θnβn(1γn))xnzq+qαn(θnθnβn(1γn))xnxn1,jq(ynz)+θn(1γn)qβnuz,jq(vnz) (3.4)

    for each nn0, and

    xn+1zqxnzqθn(1γn)λn(1βn)q(αqλq1nκq)AynAzqθn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn)+qαn(θnθnβn(1γn))xnxn1,jq(ynz)+θn(1γn)qβnuz,jq(vnz). (3.5)

    for each nn0. We define the following sequences

    dn:=xn+1zq,ϑn:=(1γn)θnβn,τn:=qαn(1βn(1γn))βn(1γn)xnxn1,jq(ynz)+quz,jq(vnz),ηn:=θn(1γn)λn(1βn)q(αqλq1nκq)AynAzq+θn(1γn)(1βn)qφ(ynλn(AynAz)Wnyn),ρn:=qαn(θnθnβn(1γn))xnxn1,jq(ynz)+θn(1γn)qβnuz,jq(vnz).

    From the Inequalities (3.4) and (3.5), it means that we have

    dn+1(1ϑn)dn+ϑnτn and dn+1dnηn+ρn.

    By Assumptions 3.1 (ii), (iv) and (v), it follows that

    n=1ϑn=n=1(1γn)θnβn=.

    Using boundedness of {yn}, {vn} and {θn}, Assumption 3.1 (ii) and Remark 3.1, we obtain

    limnρn=limn(qαn(θnθnβn(1γn))xnxn1,jq(ynz)+θn(1γn)qβnuz,jq(vnz))=0.

    Lastly, by Lemma 2.5, we assume that limkηnk=0 for any subsequence {nk}{n}. That is,

    limk(θnk(1γnk)λnk(1βnk)q(αqλq1nkκq)AynkAzq+θnk(1γnk)(1βnk)qφ(ynkλnk(AynkAz)Wnkynk))=0.

    By property of φ, it can be seen that

    limkAynkAz=limkynkλnk(AynkAz)Wnkynk=0.

    That is

    0=limkynkλnk(AynkAz)Wnkynk=limk(Wnkynkynk)+λnk(AynkAz)limk(Wnkynkynk+λnkAynkAz)=limkWnkynkynk+limkλnkAynkAz.

    By Assumption 3.1 (iv), and limkAynkAz=0, we can write

    limkWnkynkynk=0. (3.6)

    In addition, we notice that

    Wnkynkxnk=Wnkynkynk+ynkxnk=Wnkynkynk+xnk+αnk(xnkxnk1)xnk=Wnkynkynk+αnkxnkxnk1.

    From Remark 3.1, it implies that

    Wnkynkxnk0,k. (3.7)

    Also, it should be noted that

    ynkvnk=xnkvnk+αnkxnkxnk1=xnk(βnku+(1βnk)JBλnk(ynkλnkAynk))+αnkxnkxnk1=xnk(βnku+(1βnk)JBλnk(IλnkA)ynk)+αnkxnkxnk1=xnk(βnku+(1βnk)Wnkynk)+αnkxnkxnk1=xnk(βnku+(1βnk)Wnkynk)+βnkxnkβnkxnk+αnkxnkxnk1=βnk(xnku)+(1βnk)(xnkWnkynk)+αnkxnkxnk1βnkxnku+(1βnk)xnkWnkynk+αnkxnkxnk1.

    By boundedness of {xnk}, Assumption 3.1 (ii), Remarks 3.1 and 3.7, we have

    limkynkvnk=0. (3.8)

    By Assumption 3.1 (iii), there exists λ>0 such that λλn, for all n1. Using Remark 2.1, we obtain that

    WA,Bλynkynk2Wnkynkynk.

    This implies that

    lim supkWA,Bλynkynklim supk2Wnkynkynk.

    By (3.6), we get lim supk2Wnkynkynk=0 which it follows that

    0lim supkWA,Bλynkynk0,

    i.e., lim supkWA,Bλynkynk=0. By the fact that

    0lim infkWA,Bλynkynklim supkWA,Bλynkynk=0

    then we have lim infkWA,Bλynkynk=0. Observe that

    WA,BλynkvnkWA,Bλynkynk+ynkvnk

    which implies, by (3.8), that

    limkWA,Bλynkvnk=0. (3.9)

    Moreover, we have that

    WA,BλvnkvnkWA,BλvnkWA,Bλynk+WA,Bλynkvnkvnkynk+WA,Bλynkvnk

    by using the fact that Wn is nonexpansive. From (3.8) and (3.9), we get

    limkWA,Bλvnkvnk=0. (3.10)

    We now construct zt=tu+(1t)WA,Bλzt where t(0,1). Using theorem of Reich (see [35]), zt converges strongly to the unique fixed point zF(WA,Bλ)=(A+B)10. By the fact that WA,Bλ is nonexpansive, using Lemma 2.1, it follows that

    ztvnkq=tu+(1t)WA,Bλztvnkq=tu+(1t)WA,Bλztvnk+tvnktvnkq=t(uvnk)+(1t)(WA,Bλztvnk)q(1t)qWA,Bλztvnkq+qtuvnk,jq(ztvnk)(1t)q(WA,BλztWA,Bλvnk+WA,Bλvnkvnk)q+qtuvnk,jq(ztvnk)(1t)q(ztvnk+WA,Bλvnkvnk)q+qtuvnk,jq(ztvnk)=(1t)q(ztvnk+WA,Bλvnkvnk)q+qtuvnk+ztzt,jq(ztvnk)=(1t)q(ztvnk+WA,Bλvnkvnk)q+qtuzt,jq(ztvnk)+qtztvnk,jq(ztvnk)=(1t)q(ztvnk+WA,Bλvnkvnk)qqtztu,jq(ztvnk)+qtztvnk,jq(ztvnk)(1t)q(ztvnk+WA,Bλvnkvnk)qqtztu,jq(ztvnk)+qtztvnkq.

    It implies that

    ztu,jq(ztvnk)(1t)qqt(ztvnk+WA,Bλvnkvnk)q+(qt1)qtztvnkq.

    Hence, we have

    lim supkztu,jq(ztvnk)(1t)qqtCq+(qt1)qtCq=((1t)q+qt1qt)Cq (3.11)

    where C=lim supkztvnk. Observe that limt0(1t)q+qt1qt=0. By the uniform continuity of jq on bounded sets and the fact that ztz as t0, i.e.,

    limt0ztz=0, (3.12)

    we get

    limt0jq(ztvnk)jq(zvnk)=0. (3.13)

    Thus, by (3.12) and (3.13), we have

    |ztu,jq(ztvnk)zu,jq(zvnk)|=|(ztz)+(zu),jq(ztvnk)zu,jq(zvnk)|=|ztz,jq(ztvnk)+zu,jq(ztvnk)zu,jq(zvnk)|=|ztz,jq(ztvnk)+zu,jq(ztvnk)jq(zvnk)||ztz,jq(ztvnk)|+|zu,jq(ztvnk)jq(zvnk)|ztzztvnkq1+zujq(ztvnk)jq(zvnk).

    Hence, limt0ztu,jq(ztvnk)=zu,jq(zvnk). From (3.11), it can be seen that

    lim supkzu,jq(zvnk)0. (3.14)

    Furthermore, note that, by boundedness of {yn}, and Remark 3.1, it can be seen that

    lim supkqαnk(1βnk(1γnk))βnk(1γnk)xnkxnk1ynkzq10. (3.15)

    Now, we obtain, by (3.14) and (3.15), that

    lim supk(qαnk(1βnk(1γnk))βnk(1γnk)xnkxnk1,jq(ynkz)+quz,jq(vnkz))=lim supkqαnk(1βnk(1γnk))βnk(1γnk)xnkxnk1,jq(ynkz)+qlim supkuz,jq(vnkz)lim supkqαnk(1βnk(1γnk))βnk(1γnk)xnkxnk1ynkzq1+qlim supkuz,jq(vnkz)0.

    That is, lim supkτnk0. By Lemma 2.5, we can conclude that limndn=0. Therefore,

    limnxn=z(A+B)10,

    which completes the proof.

    Corollary 3.1. Setting αn=0 in Algorithm 3.1, we get a relaxed Halpern-type forward-backward splitting algorithm.

    In this section, we give a numerical example to illustrate the performance of our proposed Algorithm 3.1 in the setting of l4(R). Furthermore, we shall study the effect of the relaxation parameter and inertial parameter in the performance of our proposed algorithm. We consider the classical Banach space:

    l4(R)={{xn}R:n=1|xn|4<} with norm x=(n=1|xn|4)14.

    For the purpose of numerical illustration, we considered the subspace of l4(R) consisting of finite nonzero terms

    Dk:={{xn}R:{xn}={x1,x2,,xk,0,0,0,}}, for some k1.

    This is to enable us compute the norm of a vector xl4(R).

    Consider the space D4. Let A,B:D4D4 be defined by

    Ax:=5x+(12,23,34,45,0,0,), and Bx:=32x.

    Then it is easy to show that A is 5-inverse strongly accretive and B is m-accretive. Furthermore, the set Ω=16.5(12,23,34,45,0,0,). In Algorithm 3.1, we choose βn=11000n+1,γn=1(n+1)3,λn=0.5 and we study the performance of the algorithm as we vary θn as presented in Table 1. In addition, we initialized the vector u to be zeros and choose x0=(2,1,3,0,0,0,0,) and x1=(2,0,1,1,0,0,). We set maximum number of iterations n=200 using a tolerance of 105. The results of the experiment are presented in Tables 1 and 2.

    Table 1.  Numerical results for different values of the θn.
    θn n xn+1s
    nn+1 26 7.12E-06
    2n3n+1 9 9.00E-06
    n2n+1 9 9.68E-06
    n4n+1 22 8.47E-06
    n8n+1 48 9.64E-06

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results for the varied inertial parameter αn.
    αn θn n xn+1s
    nn+1 2n3n+1 26 7.12E-06
    ¯αn 2n3n+1 6 8.95E-06
    0.9 2n3n+1 199 2.27E14
    0.5 2n3n+1 55 9.01E-06
    0.1 2n3n+1 10 8.80E-06
    0.001 2n3n+1 9 9.01E-06

     | Show Table
    DownLoad: CSV

    Remark 4.1. The results from the experiment presented in Table 1 above suggests that as the relaxation parameter θn increases to one but NOT one, we have a better approximation with less number of iterations.

    From Table 1, we saw that choosing the relaxation parameter θn=2n3n+1 gave the best approximation. So, in the next table, with this choice of θn=2n3n+1, we shall investigate the performance of Algorithm 3.1 as we vary the inertial parameter, αn. From Step 1, first choose αn=¯αn. Then, we choose ¯αn=α and vary αn be a constant less than α. Choosing ϵn=1(n+1)6 and α=0.999 we obtain the following results:

    Remark 4.2. The results presented in Table 2 above suggest that the choice of the inertial parameter defined in Step 1 of Algorithm 3.1 as αn=¯αn gives better approximation and satisfies the tolerance in fewer number of iterations. Also, we observed that in this example as that as we choose the inertial parameter close to one the algorithm diverges.

    This paper presents a relaxed inertial Halpern-type forward-backward splitting algorithm involving accretive operators in the setting of uniformly convex and q-uniformly smooth real Banach spaces. Strong convergence of the sequence generated by the proposed method is proved to a solution of the variational inclusion problem (1.1). Furthermore, a relaxed Halpern-type forward-backward splitting algorithm for solving the variational inclusion problem (1.1) is obtained as a corollary. Finally, a numerical example that demonstrates the effect of the inertial and relaxation parameters is presented.

    The authors acknowledge the financial support provided by Mid-Career Research Grant (N41A640089). Finally, the authors would like to express their gratitude to the anonymous referees for their valuable comments and suggestions which improve this paper.

    The authors declare that they have no conflict of interest.



    [1] A. Shafiq, Z. Hammouch, H. F. Oztop, Radiative MHD flow of third-grade fluid towards a stretched cylinder, In: 4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019), Springer International Publishing, 4 (2020), 166−185. https://doi.org/10.1007/978-3-030-39112-6_12
    [2] H. Vaidya, R. Choudhari, F. Mebarek‐Oudina, I. L. Animasaun, K. V. Prasad, O. D. Makinde, Combined effects of homogeneous and heterogeneous reactions on peristalsis of Ree‐Eyring liquid: Application in hemodynamic flow, Heat Transf., 50 (2021), 2592−2609. https://doi.org/10.1002/htj.21995 doi: 10.1002/htj.21995
    [3] A. Shafiq, F. Mebarek-Oudina, T. N. Sindhu, G. Rasool, Sensitivity analysis for Walters-B nano liquid flow over a radiative Riga surface by RSM, Sci. Iran., 29 (2022), 1236−1249. https://doi.org/10.24200/sci.2021.58293.5662 doi: 10.24200/sci.2021.58293.5662
    [4] I. Khan, F. Ali, N. A. Shah, Interaction of magnetic field with heat and mass transfer in free convection flow of a Walters'-B fluid, Eur. Phys. J. Plus, 131 (2016), 77. https://doi.org/10.1140/epjp/i2016-16077-7 doi: 10.1140/epjp/i2016-16077-7
    [5] T. Hayat, A. Shafiq, M. Mustafa, A. Alsaedi, Boundary-layer flow of Walters' B fluid with Newtonian heating, Z. Naturforsch. A, 70 (2015), 333−341. https://doi.org/10.1515/zna-2014-0280 doi: 10.1515/zna-2014-0280
    [6] Q. Al-Mdallal, K. A. Abro, I. Khan, Analytical solutions of fractional Walter's B fluid with applications, Complexity, 2018 (2018), 1−10. https://doi.org/10.1155/2018/8131329 doi: 10.1155/2018/8131329
    [7] A. Tanveer, M. Khan, T. Salahuddin, B. Al Alwan, A. Amari, Dynamics of Walters' B fluid due to periodic wave in a convectively heated channel with internal heat generation, Math. Comput. Simul., 199 (2022), 374−393. https://doi.org/10.1016/j.matcom.2022.03.018 doi: 10.1016/j.matcom.2022.03.018
    [8] R. Mahat, M. Saqib, I. Khan, S. Shafie, N. A. M. Noor, Thermal radiation effect on Viscoelastic Walters'-B nanofluid flow through a circular cylinder in convective and constant heat flux, Case Stud. Therm. Eng., 39 (2022), 102394. https://doi.org/10.1016/j.csite.2022.102394 doi: 10.1016/j.csite.2022.102394
    [9] N. A. Shah, K. A. Abro, I. Siddique, Thermography of ferromagnetic Walter's-B fluid thermal stratification, South Afr. J. Chem. Eng., 36 (2021), 118−126. https://doi.org/10.1016/j.sajce.2020.12.004 doi: 10.1016/j.sajce.2020.12.004
    [10] A. B. Johnson, B. I. Olajuwon, Impact of radiation and heat generation/absorption in a Walters' B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction, Int. J. Model. Simul., 43 (2023), 87−100. https://doi.org/10.1080/02286203.2022.2035948 doi: 10.1080/02286203.2022.2035948
    [11] P. K. Asifa, T. Anwar, Z. Shah, W. Watthayu, Analysis and modeling of fractional electro-osmotic ramped flow of chemically reactive and heat absorptive/generative Walters' B fluid with ramped heat and mass transfer rates, AIMS Math., 6 (2021), 5942−5976. https://doi.org/10.3934/math.2021352 doi: 10.3934/math.2021352
    [12] A. Shafiq, A. B. Çolak, T. N. Sindhu, Optimization of bioconvective magnetized Walter's B nanofluid flow towards a cylindrical disk with artificial neural networks, Lubricants, 10 (2022), 209. https://doi.org/10.3390/lubricants10090209 doi: 10.3390/lubricants10090209
    [13] M. I. Khan, F. Alzahrani, Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: Numerical computations, Int. J. Mod. Phys. B, 34 (2020), 2050132. https://doi.org/10.1142/S0217979220501325 doi: 10.1142/S0217979220501325
    [14] C. K. Damala, V. Bhumarapu, O. D. Makinde, Radiative MHD Walter's liquid-B flow past a semi-infinite vertical plate in the presence of viscous dissipation with a heat source, Eng. T., 69 (2021), 373−401. https://doi.org/10.24423/EngTrans.1370.20211215 doi: 10.24423/EngTrans.1370.20211215
    [15] G. P. Vanitha, U. S. Mahabaleshwar, Z. Liu, X. Yang, B. Sundén, Magnetohydrodynamic Marangoni boundary layer flow of nanoparticles with thermal radiation and heat transfer in a porous sheet, Case Stud. Therm. Eng., 44 (2023), 102815. https://doi.org/10.1016/j.csite.2023.102815 doi: 10.1016/j.csite.2023.102815
    [16] H. Waqas, M. Alghamdi, T. Muhammad, M. A. Khan, Bioconvection transport of magnetized Walter's B nanofluid across a cylindrical disk with nonlinear radiative heat transfer, Case Stud. Therm. Eng., 26 (2021), 101097. https://doi.org/10.1016/j.csite.2021.101097 doi: 10.1016/j.csite.2021.101097
    [17] O. D. Makinde, M. G. Reddy, K. V. Reddy, Effects of thermal radiation on MHD peristaltic motion of Walters-B fluid with heat source and slip conditions, J. Appl. Fluid Mech., 10 (2017), 1105−1112. https://doi.org/10.18869/acadpub.jafm.73.241.27082 doi: 10.18869/acadpub.jafm.73.241.27082
    [18] M. V. Krishna, Hall and ion slip effects on MHD laminar flow of an elastico‐viscous (Walter's‐B) fluid, Heat Transf., 49 (2020), 2311−2329. https://doi.org/10.1002/htj.21722 doi: 10.1002/htj.21722
    [19] G. Chakraborty, P. R. Sengupta, MHD flow of unsteady viscoelastic (Walters liquid B') conducting fluid between two porous concentric circular cylinders, In: Proceedings of the National Academy of Sciences, Section A: Physical Sciences, India, 64 (1994).
    [20] P. Y. Huang, J. Feng, Wall effects on the flow of viscoelastic fluids around a circular cylinder, J. Non-Newton. Fluid, 60 (1995), 179−198. https://doi.org/10.1016/0377-0257(95)01394-2 doi: 10.1016/0377-0257(95)01394-2
    [21] G. M. Moatimid, M. H. Zekry, Nonlinear stability of electro-visco-elastic Walters' B type in porous media, Microsyst. Technol., 26 (2020), 2013−2027. https://doi.org/10.1007/s00542-020-04752-6 doi: 10.1007/s00542-020-04752-6
    [22] A. R. M. Kasim, N. F. Mohammad, S. Shafie, Effect of heat generation on free convection boundary layer flow of a viscoelastic fluid past a horizontal circular cylinder with constant surface heat flux, In: AIP Conference Proceedings, American Institute of Physics, 1450 (2012), 286−292.
    [23] S. Nadeem, N. S. Akbar, Influence of heat and chemical reactions on Walter's B fluid model for blood flow through a tapered artery, J. Taiwan Inst. Chem. Eng., 42 (2011), 67−75. https://doi.org/10.1016/j.jtice.2010.03.012 doi: 10.1016/j.jtice.2010.03.012
    [24] R. P. Bharti, R. P. Chhabra, V. Eswaran, Steady flow of power law fluids across a circular cylinder, Can. J. Chem. Eng., 84 (2006), 406−421. https://doi.org/10.1002/cjce.5450840402 doi: 10.1002/cjce.5450840402
    [25] R. Naz, S. Tariq, H. Alsulami, Inquiry of entropy generation in stratified Walters' B nanofluid with swimming gyrotactic microorganisms, Alex. Eng. J., 59 (2020), 247−261. https://doi.org/10.1016/j.aej.2019.12.037 doi: 10.1016/j.aej.2019.12.037
    [26] M. I. Khan, M. Tamoor, T. Hayat, A. Alsaedi, MHD boundary layer thermal slip flow by nonlinearly stretching cylinder with suction/blowing and radiation, Results Phys., 7 (2017), 1207−1211. https://doi.org/10.1016/j.rinp.2017.03.009 doi: 10.1016/j.rinp.2017.03.009
    [27] Y. M. Chu, N. Khan, M. I. Khan, K. Al-Khaled, N. Abbas, S. U. Khan, et al., Thermophoresis particle deposition analysis for nonlinear thermally developed flow of Magneto-Walter's B nanofluid with buoyancy forces, Alex. Eng. J., 60 (2021), 1851−1860. https://doi.org/10.1016/j.aej.2020.11.033 doi: 10.1016/j.aej.2020.11.033
    [28] F. Alzahrani, M. I. Khan, Significance of heat conduction in binary reactive flow of Walter's B fluid with radiative flux and activation energy, Mod. Phys. Lett. B, 35 (2021), 2140024. https://doi.org/10.1142/S0217984921400248 doi: 10.1142/S0217984921400248
    [29] C. Ragavan, S. Munirathinam, M. Govindaraju, A. K. Abdul-Hakeem, B. Ganga, Elastic deformation and inclined magnetic field on entropy generation forwalter's liquid B fluid over a stretching sheet, J. Appl. Math. Comput. Mech., 18 (2019). https://doi.org/10.17512/jamcm.2019.2.08 doi: 10.17512/jamcm.2019.2.08
    [30] A. R. M. Kasim, Free and mixed convective boundary layer flow of a viscoelastic fluid past a horizontal circular cylinder, Universiti Teknologi Malaysia, 2011.
    [31] L. Ahmad, S. Javed, M. I. Khan, M. R. Khan, E. R. El-Zahar, A. A. A. Mousa, Non-axisymmetric Homann stagnation-point flow of unsteady Walter's B nanofluid over a vertical cylindrical disk, P. I. Mech. Eng. E-J. Pro., 2021. https://doi.org/10.1177/09544089211064480 doi: 10.1177/09544089211064480
    [32] T. Hayat, Y. Wang, A. M. Siddiqui, K. Hutter, S. Asghar, Peristaltic transport of a third-order fluid in a circular cylindrical tube, Math. Mod. Meth. Appl. S., 12 (2002), 1691−1706. https://doi.org/10.1142/S0218202502002288 doi: 10.1142/S0218202502002288
    [33] B. J. Akinbo, Influence of convective boundary condition on heat and mass transfer in a Walters' B fluid over a vertical stretching surface with thermal-diffusion effect, J. Therm. Eng., 7 (2021), 1784−1796. https://doi.org/10.18186/thermal.1026001 doi: 10.18186/thermal.1026001
    [34] I. Khan, F. Ali, S. Shafie, M. Qasim, Unsteady free convection flow in a Walters-B fluid and heat transfer analysis, B. Malays. Math. Sci. Soc., 37 (2014), 437−448.
    [35] D. Qaiser, Z. Zheng, M. R. Khan, Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer, Therm. Sci. Eng. Prog., 22 (2021), 100801. https://doi.org/10.1016/j.tsep.2020.100801 doi: 10.1016/j.tsep.2020.100801
    [36] K. Gangadhar, R. E. Nayak, M. V. S. Rao, T. Kannan, Nodal/Saddle stagnation point slip flow of an aqueous convectional magnesium oxide-gold hybrid nanofluid with viscous dissipation, Arab. J. Sci. Eng., 46 (2021), 2701−2710. https://doi.org/10.1007/s13369-020-05195-x doi: 10.1007/s13369-020-05195-x
    [37] K. Gangadhar, M. A. Kumari, A. J. Chamkha, EMHD flow of radiative second-grade nanofluid over a Riga Plate due to convective heating: Revised Buongiorno's nanofluid model, Arab. J. Sci. Eng., 47 (2022), 8093−8103. https://doi.org/10.1007/s13369-021-06092-7 doi: 10.1007/s13369-021-06092-7
    [38] K. Gangadhar, M. A. Kumari, M. V. S. Rao, A. J. Chamkha, Oldroyd-B nanoliquid flow through a triple stratified medium submerged with gyrotactic bioconvection and nonlinear radiations, Arab. J. Sci. Eng., 47 (2022), 8863–8875. https://doi.org/10.1007/s13369-021-06412-x doi: 10.1007/s13369-021-06412-x
    [39] G. Kotha, V. R. Kolipaula, M. V. S. Rao, S. Penki, A. J. Chamkha, Internal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms, Eur. Phys. J. Plus, 135 (2020), 1−19. https://doi.org/10.1140/epjp/s13360-020-00606-2 doi: 10.1140/epjp/s13360-020-00606-2
    [40] K. Gangadhar, K. B. Lakshmi, T. Kannan, A. J. Chamkha, Bioconvective magnetized oldroyd-B nanofluid flow in the presence of Joule heating with gyrotactic microorganisms, Wave. Random Complex, 2022, 1−21. https://doi.org/10.1080/17455030.2022.2050441 doi: 10.1080/17455030.2022.2050441
    [41] K. Gangadhar, A. J. Chamkha, Entropy minimization on magnetized Boussinesq couple stress fluid with non-uniform heat generation, Phys. Scripta, 96 (2021), 095205. https://doi.org/10.1088/1402-4896/ac03de doi: 10.1088/1402-4896/ac03de
    [42] K. Gangadhar, K. B. Lakshmi, S. El-Sapa, M. V. S. Rao, A. J. Chamkha, Thermal energy transport of radioactive nanofluid flow submerged with microorganisms with zero mass flux condition, Wave. Random Complex, 2022, 1−23. https://doi.org/10.1080/17455030.2022.2072536
    [43] K. Gangadhar, E. M. Victoria, A. J. Chamkha, Hydrothermal features in the swirling flow of radiated graphene-Fe3O4 hybrid nanofluids through a rotating cylinder with exponential space-dependent heat generation, Wave. Random Complex, 2022, 1−24. https://doi.org/10.1080/17455030.2022.2100004 doi: 10.1080/17455030.2022.2100004
    [44] K. Gangadhar, M. Prameela, A. J. Chamkha, Exponential space-dependent heat generation on Powell-Eyring hybrid nanoliquid under nonlinear thermal radiation, Indian J. Phys., 97 (2023), 2461–2473. https://doi.org/10.1007/s12648-022-02585-9 doi: 10.1007/s12648-022-02585-9
    [45] K. Gangadhar, P. M. Seshakumari, M. V. S. Rao, A. J. Chamkha, Biconvective transport of magnetized couple stress fluid over a radiative paraboloid of revolution, P. I. Mech. Eng. E-J. Pro., 236 (2022), 1661−1670. https://doi.org/10.1177/09544089211072715 doi: 10.1177/09544089211072715
    [46] K. Gangadhar, R. E. Nayak, M. V. S. Rao, A. J. Chamkha, Nonlinear radiations in chemically reactive Walter's B nanoliquid flow through a rotating cone, P. I. Mech. Eng. E-J. Pro., 237 (2023), 731−739. https://doi.org/10.1177/09544089221105932 doi: 10.1177/09544089221105932
    [47] D. N. Bhargavi, K. Gangadhar, A. J. Chamkha, Graphene-gold/PDMS Maxwell hybrid nanofluidic flow in a squeezed channel with linear and irregular radiations, P. I. Mech. Eng. E-J. Pro., 2022. https://doi.org/10.1177/09544089221139696 doi: 10.1177/09544089221139696
    [48] H. Hanif, W. Jamshed, M. R. Eid, S. Shafie, R. W. Ibrahim, N. A. A. M. Nasir, et al., Thermal description and entropy evaluation of magnetized hybrid nanofluid with variable viscosity via Crank-Nicolson method, Case Stud. Therm. Eng., 47 (2023), 103132. https://doi.org/10.1016/j.csite.2023.103132 doi: 10.1016/j.csite.2023.103132
    [49] H. Hanif, W. Jamshed, M. R. Eid, R. W. Ibrahim, S. Shafie, A. A. Raezah, et al., Numerical Crank-Nicolson methodology analysis for hybridity aluminium alloy nanofluid flowing based-water via stretchable horizontal plate with thermal resistive effect, Case Stud. Therm. Eng., 42 (2023), 102707. https://doi.org/10.1016/j.csite.2023.102707 doi: 10.1016/j.csite.2023.102707
    [50] M. D. Shamshuddin, A. Saeed, S. R. Mishra, R. Katta, M. R. Eid, Homotopic simulation of MHD bioconvective flow of water-based hybrid nanofluid over a thermal convective exponential stretching surface, Int. J. Numer. Method. H., 34 (2024), 31−53. https://doi.org/10.1108/HFF-03-2023-0128 doi: 10.1108/HFF-03-2023-0128
    [51] Y. Li, M. Imtiaz, W. Jamshed, S. Rehman, M. R. Eid, N. A. A. M. Nasir, et al., Nonlinear thermal radiation and the slip effect on a 3D bioconvection flow of the Casson nanofluid in a rotating frame via a homotopy analysis mechanism, Nanotechnol. Rev., 12 (2023), 20230161. https://doi.org/10.1515/ntrev-2023-0161 doi: 10.1515/ntrev-2023-0161
    [52] I. Ullah, W. A. Khan, W. Jamshed, A. Abd-Elmonem, N. S. E. Abdalla, R. W. Ibrahim, et al., Heat generation (absorption) in 3D bioconvection flow of Casson nanofluid via a convective heated stretchable surface, J. Mol. Liq., 392 (2023), 123503. https://doi.org/10.1016/j.molliq.2023.123503 doi: 10.1016/j.molliq.2023.123503
    [53] J. Bouslimi, A. A. Alkathiri, T. M. Althagafi, W. Jamshed, M. R. Eid, Thermal properties, flow and comparison between Cu and Ag nanoparticles suspended in sodium alginate as Sutterby nanofluids in solar collector, Case Stud. Therm. Eng., 39 (2022), 102358. https://doi.org/10.1016/j.csite.2022.102358 doi: 10.1016/j.csite.2022.102358
    [54] A. D. Aldabesh, I. Tlili, Thermal enhancement and bioconvective analysis due to chemical reactive flow viscoelastic nanomaterial with modified heat theories: Bio-fuels cell applications, Case Stud. Therm. Eng., 52 (2023), 103768. https://doi.org/10.1016/j.csite.2023.103768 doi: 10.1016/j.csite.2023.103768
    [55] Q. H. Le, K. Smida, Z. Abdelmalek, I. Tlili, Removal of heavy metals by polymers from wastewater in the industry: A molecular dynamics approach, Eng. Anal. Bound. Elem., 155 (2023), 1035−1042. https://doi.org/10.1016/j.enganabound.2023.07.034 doi: 10.1016/j.enganabound.2023.07.034
    [56] R. Sajjad, M. Hussain, S. U. Khan, A. Rehman, M. J. Khan, I. Tlili, et al., CFD analysis for different nanofluids in fin prolonged heat exchanger for waste heat recovery, South Afr. J. Chem. Eng., 47 (2024), 9−14. https://doi.org/10.1016/j.sajce.2023.10.005 doi: 10.1016/j.sajce.2023.10.005
    [57] Z. Hussain, Z. U. Rehman, T. Abbas, K. Smida, Q. H. Le, Z. Abdelmalek, et al., Analysis of bifurcation and chaos in the traveling wave solution in optical fibers using the Radhakrishnan-Kundu-Lakshmanan equation, Results Phys., 55 (2023), 107145. https://doi.org/10.1016/j.rinp.2023.107145 doi: 10.1016/j.rinp.2023.107145
    [58] M. M. Bhatti, O. A. Bég, S. Kuharat, Electromagnetohydrodynamic (EMHD) convective transport of a reactive dissipative carreau fluid with thermal ignition in a non-Darcian vertical duct, Numer. Heat Tr. A-Appl., 2023, 1−31. https://doi.org/10.1080/10407782.2023.2284333 doi: 10.1080/10407782.2023.2284333
    [59] M. M. Bhatti, S. Jun, C. M. Khalique, A. Shahid, L. Fasheng, M. S. Mohamed, Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model, Appl. Math. Comput., 421 (2022), 126936. https://doi.org/10.1016/j.amc.2022.126936 doi: 10.1016/j.amc.2022.126936
    [60] K. Smida, M. U. Sohail, I. Tlili, A. Javed, Numerical thermal study of ternary nanofluid influenced by thermal radiation towards convectively heated sinusoidal cylinder, Heliyon, 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e20057 doi: 10.1016/j.heliyon.2023.e20057
    [61] I. Tlili, T. A. Alkanhal, A. Rebey, M. B. Henda, A. Sa'ed, Nanofluid bioconvective transport for non-Newtonian material in bidirectional oscillating regime with nonlinear radiation and external heat source: Applications to storage and renewable energy, J. Energy Storage, 68 (2023), 107839. https://doi.org/10.1016/j.est.2023.107839 doi: 10.1016/j.est.2023.107839
    [62] C. Li, I. Tlili, Novel study of perovskite materials and the use of biomaterials to further solar cell application in the built environment: A molecular dynamic study, Eng. Anal. Bound. Elem., 155 (2023), 425−431. https://doi.org/10.1016/j.enganabound.2023.06.018 doi: 10.1016/j.enganabound.2023.06.018
    [63] Q. H. Le, F. Neila, K. Smida, Z. Li, Z. Abdelmalek, I. Tlili, pH-responsive anticancer drug delivery systems: Insights into the enhanced adsorption and release of DOX drugs using graphene oxide as a nanocarrier, Eng. Anal. Bound. Elem., 157 (2023), 157−165. https://doi.org/10.1016/j.enganabound.2023.09.008 doi: 10.1016/j.enganabound.2023.09.008
    [64] A. Abd-Elmonem, S. Kanwal, M. Imtiaz, K. Ali, S. Ahmad, W. Jamshed, et al., Case study of heat generation/absorption and activation energy on MHD hybrid nanofluid (GO-MoS2/water) flow owing to a rotatfing disk, Case Stud. Therm. Eng., 51 (2023), 103632. https://doi.org/10.1016/j.csite.2023.103632 doi: 10.1016/j.csite.2023.103632
    [65] M. R. Eid, W. Jamshed, A. Abd-Elmonem, A. F. Al-Hossainy, N. Almutlaq, A. Amjad, et al., Energy bandgap and thermal characteristics of non-Darcian MHD rotating hybridity nanofluid thin film flow: Nanotechnology application, Nanotechnol. Rev., 12 (2023), 20230159. https://doi.org/10.1515/ntrev-2023-0159 doi: 10.1515/ntrev-2023-0159
    [66] N. Ullah, S. Nadeem, A. U. Khan, R. U. Haq, I. Tlili, Influence of metallic nanoparticles in water driven along a wavy circular cylinder, Chinese J. Phys., 63 (2020), 168−185. https://doi.org/10.1016/j.cjph.2019.11.012 doi: 10.1016/j.cjph.2019.11.012
    [67] Z. Raizah, A. Saeed, M. Bilal, A. M. Galal, E. Bonyah, Parametric simulation of stagnation points flows of motile microorganism hybrid nanofluid across a circular cylinder with sinusoidal radius, Open Phys., 21 (2023), 20220205. https://doi.org/10.1515/phys-2022-0205 doi: 10.1515/phys-2022-0205
    [68] M. Gholinia, K. Hosseinzadeh, D. D. Ganji, Investigation of different base fluids suspend by CNTs hybrid nanoparticle over a vertical circular cylinder with sinusoidal radius, Case Stud. Therm. Eng., 21 (2020), 100666. https://doi.org/10.1016/j.csite.2020.100666 doi: 10.1016/j.csite.2020.100666
    [69] S. Dinarvand, R. Hosseini, E. Damangir, I. Pop, Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation, Meccanica, 48 (2013), 643−652. https://doi.org/10.1007/s11012-012-9621-7 doi: 10.1007/s11012-012-9621-7
    [70] P. Sunthrayuth, A. Alderremy, S. Aly, R. Shah, A. Akgül, Exact analysis of electro-osmotic flow of Walters'-B fluid with non-singular kernel, Pramana, 95 (2021), 1−10. https://doi.org/10.1007/s12043-021-02224-8 doi: 10.1007/s12043-021-02224-8
    [71] U. O. Mehmood, N. Mustapha, S. Shafie, Nonlinear peristaltic flow of Walter's B fluid in an asymmetric channel with heat transfer and chemical reactions, Therm. Sci., 18 (2014), 1095−1107. https://doi.org/10.2298/TSCI110921096M doi: 10.2298/TSCI110921096M
    [72] M. Arif, P. Kumam, W. Kumam, I. Khan, M. Ramzan, A fractional model of Casson fluid with ramped wall temperature: engineering applications of engine oil, Comput. Math. Method., 3 (2021), e1162. https://doi.org/10.1002/cmm4.1162 doi: 10.1002/cmm4.1162
    [73] M. H. Esfe, F. Zabihi, H. Rostamian, S. Esfandeh, Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes, J. Mol. Liq., 249 (2018), 677−687. https://doi.org/10.1016/j.molliq.2017.11.020 doi: 10.1016/j.molliq.2017.11.020
    [74] T. Sajid, A. A. Gari, W. Jamshed, M. R. Eid, N. Islam, K. Irshad, et al., Case study of autocatalysis reactions on tetra hybrid binary nanofluid flow via Riga wedge: Biofuel thermal application, Case Stud. Therm. Eng., 47 (2023), 103058. https://doi.org/10.1016/j.csite.2023.103058 doi: 10.1016/j.csite.2023.103058
    [75] Z. A. Qureshi, S. Bilal, I. A. Shah, A. Akgül, R. Jarrar, H. Shanak, et al., Computational analysis of the morphological aspects of triadic hybridized magnetic nanoparticles suspended in liquid streamed in coaxially swirled disks, Nanomaterials, 12 (2022), 671. https://doi.org/10.3390/nano12040671 doi: 10.3390/nano12040671
    [76] A. Hussain, M. Arshad, A. Hassan, A. Rehman, H. Ahmad, J. Baili, et al., Heat transport investigation of engine oil based rotating nanomaterial liquid flow in the existence of partial slip effect, Case Stud. Therm. Eng., 28 (2021), 101500. https://doi.org/10.1016/j.csite.2021.101500 doi: 10.1016/j.csite.2021.101500
    [77] F. A. Soomro, R. U. Haq, M. Hamid, Brownian motion and thermophoretic effects on non-Newtonian nanofluid flow via Crank-Nicolson scheme, Arch. Appl. Mech., 91 (2021), 3303−3313. https://doi.org/10.1007/s00419-021-01966-6 doi: 10.1007/s00419-021-01966-6
    [78] M. Ghani, Y. Norasia, I. Anggriani, M. Tafrikan, Z. Zulaikha, Numerical results of Crank-Nicolson scheme on unsteady nano fluid under the effect of Prandtl, Mixed Convection, and Magnetohydrodynamics, Int. J. Comput. Sci. Appl. Math., 8 (2022), 71−78. https://doi.org/10.12962/j24775401.v8i2.14155 doi: 10.12962/j24775401.v8i2.14155
    [79] F. Waseem, M. Sohail, N. Ilyas, E. M. Awwad, M. Sharaf, M. J. Khan, et al., Entropy analysis of MHD hybrid nanoparticles with OHAM considering viscous dissipation and thermal radiation, Sci. Rep., 14 (2024), 1096. https://doi.org/10.1038/s41598-023-50865-z doi: 10.1038/s41598-023-50865-z
    [80] F. Wang, J. Zhang, S. Algarni, M. N. Khan, T. Alqahtani, S. Ahmad, Numerical simulation of hybrid Casson nanofluid flow by the influence of magnetic dipole and gyrotactic microorganism, Wave. Random Complex, 2022, 1−16. https://doi.org/10.1080/17455030.2022.2032866 doi: 10.1080/17455030.2022.2032866
    [81] F. Wang, M. Awais, R. Parveen, M. K. Alam, S. Rehman, N. A. Shah, Melting rheology of three-dimensional Maxwell nanofluid (Graphene-Engine-Oil) flow with slip condition past a stretching surface through Darcy-Forchheimer medium, Results Phys., 51 (2023), 106647. https://doi.org/10.1016/j.rinp.2023.106647 doi: 10.1016/j.rinp.2023.106647
    [82] S. Li, M. Sohail, U. Nazir, E. Sherif, A. Hassan, Statistical investigations and morphological aspects of cross-rheological material suspended in transportation of alumina, silica, titanium, and ethylene glycol via the Galerkin algorithm, Nanotechnol. Rev., 12 (2023), 20230169. https://doi.org/10.1515/ntrev-2023-0169 doi: 10.1515/ntrev-2023-0169
    [83] F. Wang, Z. Iqbal, J. Zhang, M. A. Abdelmohimen, A. H. Almaliki, A. M. Galal, Bidirectional stretching features on the flow and heat transport of Burgers nanofluid subject to modified heat and mass fluxes, Wave. Random Complex, 2022, 1−18. https://doi.org/10.1080/17455030.2022.2055203 doi: 10.1080/17455030.2022.2055203
  • This article has been cited by:

    1. Alireza Khastan, Juan J. Nieto, Rosana Rodríguez-López, Existence of solutions to uncertain differential equations of nonlocal type via an extended Krasnosel’skii fixed point theorem, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03447-3
    2. Aftab Hussain, Fractional Differential Boundary Value Equation Utilizing the Convex Interpolation for Symmetry of Variables, 2023, 15, 2073-8994, 1189, 10.3390/sym15061189
    3. Hasanen A. Hammad, Doha A. Kattan, Strong tripled fixed points under a new class of F-contractive mappings with supportive applications, 2025, 10, 2473-6988, 5785, 10.3934/math.2025266
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1375) PDF downloads(105) Cited by(7)

Figures and Tables

Figures(19)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog