Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Election-based optimization algorithm with deep learning-enabled false data injection attack detection in cyber-physical systems

  • Cyber-physical systems (CPSs) are affected by cyberattacks once they are more connected to cyberspace. Advanced CPSs are highly complex and susceptible to attacks such as false data injection attacks (FDIA) targeted to mislead the systems and make them unstable. Leveraging an integration of anomaly detection methods, real-time monitoring, and machine learning (ML) algorithms, research workers are developing robust frameworks to recognize and alleviate the effect of FDIA. These methods often scrutinize deviations from predictable system behavior, using statistical analysis and anomaly detection systems to determine abnormalities that can indicate malicious activities. This manuscript offers the design of an election-based optimization algorithm with a deep learning-enabled false data injection attack detection (EBODL-FDIAD) method in the CPS infrastructure. The purpose of the EBODL-FDIAD technique is to enhance security in the CPS environment via the detection of FDIAs. In the EBODL-FDIAD technique, the linear scaling normalization (LSN) approach can be used to scale the input data into valuable formats. Besides, the EBODL-FDIAD system performs ensemble learning classification comprising three classifiers, namely the kernel extreme learning machine (KELM), long short-term memory (LSTM), and attention-based bidirectional recurrent neural network (ABiRNN) model. For optimal hyperparameter selection of the ensemble classifiers, the EBO algorithm can be applied. To validate the enriched performance of the EBODL-FDIAD technique, wide-ranging simulations were involved. The extensive results highlighted that the EBODL-FDIAD algorithm performed well over other systems concerning numerous measures.

    Citation: Hend Khalid Alkahtani, Nuha Alruwais, Asma Alshuhail, Nadhem NEMRI, Achraf Ben Miled, Ahmed Mahmud. Election-based optimization algorithm with deep learning-enabled false data injection attack detection in cyber-physical systems[J]. AIMS Mathematics, 2024, 9(6): 15076-15096. doi: 10.3934/math.2024731

    Related Papers:

    [1] K. Kefi, Jian Liu . Triple solutions for a Leray-Lions p(x)-biharmonic operator involving Hardy potential and indefinite weight. AIMS Mathematics, 2024, 9(8): 22697-22711. doi: 10.3934/math.20241106
    [2] Jia Li, Changchun Bi . Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems. AIMS Mathematics, 2022, 7(11): 19758-19769. doi: 10.3934/math.20221083
    [3] Lulu Tao, Rui He, Sihua Liang, Rui Niu . Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth. AIMS Mathematics, 2023, 8(2): 3026-3048. doi: 10.3934/math.2023156
    [4] Xiaomin Wang, Zhong Bo Fang . New Fujita type results for quasilinear parabolic differential inequalities with gradient dissipation terms. AIMS Mathematics, 2021, 6(10): 11482-11493. doi: 10.3934/math.2021665
    [5] Khaled Kefi, Mohammed M. Al-Shomrani . On multiple solutions for an elliptic problem involving Leray–Lions operator, Hardy potential and indefinite weight with mixed boundary conditions. AIMS Mathematics, 2025, 10(3): 5444-5455. doi: 10.3934/math.2025251
    [6] José L. Díaz . Non-Lipschitz heterogeneous reaction with a p-Laplacian operator. AIMS Mathematics, 2022, 7(3): 3395-3417. doi: 10.3934/math.2022189
    [7] Jia Li, Zhipeng Tong . Local Hölder continuity of inverse variation-inequality problem constructed by non-Newtonian polytropic operators in finance. AIMS Mathematics, 2023, 8(12): 28753-28765. doi: 10.3934/math.20231472
    [8] Shulin Zhang . Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent. AIMS Mathematics, 2022, 7(6): 9748-9766. doi: 10.3934/math.2022543
    [9] Huashui Zhan, Yuan Zhi, Xiaohua Niu . On a non-Newtonian fluid type equation with variable diffusion coefficient. AIMS Mathematics, 2022, 7(10): 17747-17766. doi: 10.3934/math.2022977
    [10] Dengming Liu, Luo Yang . Extinction behavior for a parabolic p-Laplacian equation with gradient source and singular potential. AIMS Mathematics, 2022, 7(1): 915-924. doi: 10.3934/math.2022054
  • Cyber-physical systems (CPSs) are affected by cyberattacks once they are more connected to cyberspace. Advanced CPSs are highly complex and susceptible to attacks such as false data injection attacks (FDIA) targeted to mislead the systems and make them unstable. Leveraging an integration of anomaly detection methods, real-time monitoring, and machine learning (ML) algorithms, research workers are developing robust frameworks to recognize and alleviate the effect of FDIA. These methods often scrutinize deviations from predictable system behavior, using statistical analysis and anomaly detection systems to determine abnormalities that can indicate malicious activities. This manuscript offers the design of an election-based optimization algorithm with a deep learning-enabled false data injection attack detection (EBODL-FDIAD) method in the CPS infrastructure. The purpose of the EBODL-FDIAD technique is to enhance security in the CPS environment via the detection of FDIAs. In the EBODL-FDIAD technique, the linear scaling normalization (LSN) approach can be used to scale the input data into valuable formats. Besides, the EBODL-FDIAD system performs ensemble learning classification comprising three classifiers, namely the kernel extreme learning machine (KELM), long short-term memory (LSTM), and attention-based bidirectional recurrent neural network (ABiRNN) model. For optimal hyperparameter selection of the ensemble classifiers, the EBO algorithm can be applied. To validate the enriched performance of the EBODL-FDIAD technique, wide-ranging simulations were involved. The extensive results highlighted that the EBODL-FDIAD algorithm performed well over other systems concerning numerous measures.



    The presence of singularities and degeneracies in elliptic equations introduces significant challenges in analyzing the behavior of solutions. These singularities, especially near the origin or boundary, can profoundly affect the properties of the operator, making solutions more sensitive to changes in the domain. For instance, when 1<p<N, it is known that ˜u/|y|Lp(RN) if ˜uW1,p(RN), or ˜u/|y|Lp(Ω) when ˜uW1,p(Ω), where Ω is a bounded domain (see Lemma 2.1 in [12] for further details). In this context, the solution under consideration is ˜u, and such behavior leads to the development of Hardy-type inequalities, which are crucial for controlling the singularities of solutions near critical points, particularly when the equation includes singular potential terms (see, e.g., [1,12,17,18,20]).

    Furthermore, the presence of an indefinite weight in the source term creates several challenges, mainly because it can change sign or behave irregularly. This complicates the application of standard methods for proving the existence of solutions, such as ensuring the necessary properties of the energy functional. The irregular behavior of the weight also makes it difficult to use common mathematical tools like Sobolev embeddings and variational methods. To overcome these difficulties, this manuscript employs a more flexible approach based on critical point theory [4], which allows establishing the existence of solutions despite the complexities introduced by the indefinite weight.

    Finally, the degeneracy of differential operators, such as p-Laplacian or p(x)-Laplacian, when coupled with a weight function ω(x) inside the divergence, introduces additional complexity to the problem. The presence of ω(x), whether it is singular or merely bounded, requires a shift in the selection of appropriate functional spaces. Traditional Sobolev spaces like W1,p(Ω) or W1,p(x)(Ω) may no longer be adequate in such cases. To properly handle the singularities or degeneracies, it becomes necessary to consider alternative Sobolev spaces, such as W1,p(x)(ω,Ω) (see section 2 for the definition of W1,p(ω,Ω)), which are specifically designed to accommodate the weight function (see [6] for further details). The most recent contribution to the study of the p Laplacian in a bounded domain and in the whole space can be found in respectively in [5] and [3], furthermore, the degenerate p-Laplacian operator combined with a Hardy potential can be found in [16].

    This paper tackles the challenges posed by degeneracy, Hardy-type singularities, and sign-changing source terms, which are common in applied mathematical models, by examining a class of weighted quasilinear elliptic Dirichlet problem involving a variable exponent p(x) and an indefinite source term. The main objective is to prove the existence of three weak solutions, using a critical point theorem introduced by Bonanno and Moranno in [4] while accounting for the complexities introduced by the operator's degeneracy and the singularities in the equation.

    This manuscript explores the multiplicity of weak solutions to a weighted elliptic equations of the form:

    {Δp(x),a(x,u)u+b(x)|u|q2u|x|q=λk(x)|u|s(x)2uin Ω,u=0on Ω, (1.1)

    where λ is a positive parameter, 1<q<N, and ΩRN (with N2) is a bounded open subset with smooth boundary Ω. The function u is a solution to a weighted quasilinear elliptic equation involving a variable exponent p(x)C+(¯Ω)(see, the beginning of Section 2) and the nonlinear source term of the form k(x)|u|s(x)2u which involves a weight function k(x) and may exhibit singularities on Ω and can change sign, belongs to a nonstandard Lebesgue space Lγ(x)(Ω).

    The operator Δp(x),a(x,u)u represents a nonlinear generalization of the classical Laplacian, defined by:

    Δp(x),a(x,u)u=div(a(x,u)|u|p(x)2u),

    here a(x,u) denotes a Carathéodory function satisfying the inequality:

    a1ω(x)a(x,u)a2ω(x),

    with a1,a2 are two positive constants, the function ω(x) is assumed to belongs to the local Lebesgue space L1loc(Ω), and it satisfies additional growth conditions, such as ωh(x)L1(Ω), where h(x) satisfies certain bounds related to the variable exponent p(x). Specifically, we assume that

    (ω)ωh(x)L1(Ω),forh(x)C(¯Ω)andh(x)(Np(x),+)[1p(x)1,+).

    The nonlinearity in the equation involves the functions k(x) and s(x), which are assumed to satisfy the following inequality for almost every xΩ

    (k)1<s(x)<ph(x)<N<γ(x),

    where ph(x)=h(x)p(x)h(x)+1.

    Set, S(Ω), the space that contains all measurable functions in Ω and

    C+(¯Ω)={p(x)|p(x)C(¯Ω), p(x)>1, x¯Ω},
    p+=maxx¯Ωp(x),p=minx¯Ωp(x).

    For τ>0, and p(x)C+(¯Ω), we use the following notations

    τˆp=max{τp, τp+},  τˇp=min{τp, τp+}.

    In the sequel, we define the space Lp(x)(ω,Ω) as follows

    Lp(x)(ω,Ω)={uS(Ω)Ωω(x)|u(x)|p(x)dx<},

    where p(x) is a variable exponent, and ω(x) is a weight function. The space is endowed with a Luxemburg-type norm, given by:

    Next, we define the corresponding variable exponent Sobolev space, which incorporates the variable exponent p(x) in the functional setting.

    W^{1,p(x) }( \Omega ) = \big\{ u\in L^{p(x) }( \Omega ):\ | \nabla u| \in L^{p(x) }( \Omega) \big\},

    with the norm

    \|u\|_{W^{1,p(x)}( \Omega )} = \|\nabla u\|_{p(x)}+\|u\|_{p(x)},

    where \|\nabla u\|_{p(x)} = \||\nabla u| \|_{p(x)}, |\nabla u| = (\sum\limits_{i = 1}^N \big|\frac{\partial u}{\partial x_{i}}\big|^{2})^{\frac{1}{2}}, \nabla u = \Big(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, ..., \frac{\partial u}{\partial x_{N}}\Big) is the gradient of u at (x_{1}, x_{2}, ..., x_{N}).

    Denote, by

    W^{1,p(x)}(\omega,\Omega) = \{u\in L^{p(x)}(\Omega):\omega^{\frac{1}{p(x)}}|\nabla u|\in L^{p(x)}(\Omega)\}

    the weighted Sobolev space and by W^{1, p(x)}_0(\omega, \Omega) as the closure of C_{0}^{\infty}(\Omega) in the space W^{1, p(x)}(\omega, \Omega) endowed with the norm

    \begin{gather*} \|u\| = \inf\Big\{\nu > 0: \int_\Omega\omega(x)\big| \frac{\nabla u(x)}{\nu}\big|^{p(x)} dx \leq 1\Big\}. \end{gather*}

    Lemma 2.1. [8] If p_1(x), p_2(x)\in C_+(\overline\Omega) such that p_1(x) \leq p_2(x) a.e. x\in \Omega, then there exists the continuous embedding W^{1, p_{2}(x)}(\Omega)\hookrightarrow W^{1, p_{1}(x)}(\Omega) .

    Proposition 2.1 ([9]) For p(x)\in C_+(\overline\Omega), u, u_n \in L^{p(x)}(\Omega), one has

    \min \big\{ \| u\| _{p(x)}^{p^{-}},\| u\| _{p(x) }^{p^{+}}\big\} \leq \int_\Omega|u(x)|^{p(x)}dx \leq \max\big\{ \| u\| _{p(x) }^{p^{-}},\| u\| _{p(x) }^{p^{+}}\text{ }\big\}.

    Let 0 < d(x) \in S(\Omega) , and define the space

    L^{p(x)}(d, \Omega) : = L^{p(x)}_{d(x)}(\Omega) = \left\{ u \in S(\Omega) \mid \int_{\Omega} d(x) |u(x)|^{p(x)} \, dx < \infty \right\},

    where p(x) is a variable exponent, and d(x) is a weight function. The space is equipped with a Luxemburg-type norm, defined by

    \|u\|_{L^{p(x)}_{d(x)}(\Omega)} = \|u\|_{(p(x), d(x))} : = \inf \left\{ \nu > 0 \mid \int_{\Omega} d(x) \left| \frac{u(x)}{\nu} \right|^{p(x)} \, dx \leq 1 \right\}.

    Proposition 2.2 ([10]) If p\in C_+(\overline\Omega). Then

    \min \big\{ \|u\|_{(p(x),d(x))}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\} \leq \int_\Omega d(x)|u(x)|^{p(x)}dx \leq \max\big\{ \| u\|_{ {(p(x),d(x))}}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\}

    for every u\in L^{p(x)}_{d(x)}(\Omega) and for a.e. x\in \Omega .

    Combining Proposition 2.1 with Proposition 2.2, one has

    Lemma 2.2. Let

    \rho_{\omega}(u) = \int_\Omega \omega(x)\big| \nabla u(x)\big|^{p(x)}dx.

    For p\in C_+(\overline\Omega), u \in W^{1, p(x) }(\omega, \Omega), we have

    \min \big\{ \| u\|^{p^{-}},\| u\|^{p^{+}}\big\} \leq \rho_{\omega}(u) \leq \max\big\{ \| u\| ^{p^{-}},\| u\|^{p^{+}}\mathit{\text{}}\big\}.

    From Proposition 2.4 of [20], if (\omega) holds, W^{1, p(x)}(\omega, \Omega) is a reflexive separable Banach space.

    From Theorem 2.11 of [15], if (\omega) holds, the following embedding

    \begin{equation} \begin{aligned}W^{1,p(x)}(\omega,\Omega)\hookrightarrow W^{1,p_{h}(x)}(\Omega)\end{aligned} \end{equation} (2.1)

    is continuous, where

    p_{h}(x) = \frac{p(x)h(x)}{h(x)+1} < p(x).

    Combining (2.1) with Proposition 2.7 and Proposition 2.8 in [11], we get the following embedding

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow L^{r(x)}(\Omega)

    is continuous, where

    \ 1\leq r(x) \leq p_{h}^{*}(x) = \frac{Np_{h}(x)}{N-p_{h}(x)} = \frac{Np(x)h(x)}{Nh(x)+N-p(x)h(x)}.

    Furthermore, the following embedding

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{t(x)}(\Omega)

    is compact, when 1\leq t(x) < p_{h}^{*}(x).

    In what follows, and for any p(x)\in C_+(\overline\Omega) , let us denote by p'(x): = \frac{p(x)}{p(x)-1} , the conjugate exponent of p(x) .

    Remark 2.1. Under Condition (k) , one has

    1 < \beta(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \beta(x): = \frac{\gamma(x) s(x)}{\gamma(x)-s(x)} , consequently

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\beta(x)}(\Omega)

    is compact.

    1 < \alpha(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \alpha(x) = \gamma'(x)s(x) , consequently

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\alpha(x)}(\Omega)

    is compact.

    Lemma 2.3 (Hölder type inequality [2,11]). Let p_1, p_2, t\geq 1 three functions that belong in \mathcal{S}(\Omega) such that

    \frac{1}{t( x) } = \frac{1}{p_1( x) }+\frac{1}{p_2(x) },\quad \mathit{\text{for almost every}}\ x\in \Omega.

    If f\in L^{p_1(x) }(\Omega) and g\in L^{p_2(x) }(\Omega) , then fg\in L^{t(x) }(\Omega) , moreover

    \| fg\| _{t( x ) }\leq 2\|f\| _{p_1(x) }\| g\| _{p_2(x ) }.

    Similarly, if \frac{1}{t(x) }+\frac{1}{p_1(x) }+\frac{1}{p_2(x) } = 1 , for a.e. x\in \Omega , then

    \int_{\Omega}|f(x)g(x)h(x)|dx\leq 3\|f\|_{t(x)}\|g\|_{p_1(x)}\|h\|_{p_2(x)}.

    Lemma 2.4 ([7]). Let r_1(x) and r_2(x) be measurable functions such that r_1(x)\in L^{\infty}(\Omega) , and 1\leq r_1(x)r_2(x)\leq\infty , for a.e. x\in\Omega . Let w\in L^{r_2(x)}(\Omega) , w\neq0 . Then

    \|w\|^{\check{r_1}}_{r_1(x)r_2(x)} \leq \||w|^{p(x)}\|_{r_2(x)} \leq \|w\|^{\hat{p}}_{r_1(x)r_2(x)}.

    Let's define the functional \mathcal{I}_{\lambda}\colon W^{1, p(x)}_0(\omega, \Omega)\to \mathbb{R} as

    \mathcal{I}_{\lambda}(u): = \mathcal{L}(u)-\lambda\mathcal{M}(u),

    where

    \begin{eqnarray} \mathcal{L}(u): = \int_{\Omega} \frac{a(x,u)}{p(x)}|\nabla u|^{p(x)}dx+\frac{1}{q}\int_{\Omega}\frac{b(x)|u|^{q}}{|x|^{q}} dx, \end{eqnarray} (2.2)

    and

    \begin{eqnarray} \mathcal{M}(u): = \int_{\Omega}\frac{1}{s(x)}k(x)|u|^{s(x)} dx. \end{eqnarray} (2.3)

    It is noted that, based on Remark 2.1 and Lemma 2.4, the aforementioned functionals are both well-defined and continuously Gâteaux differentiable (see [14] for further details). The Gâteaux derivatives are as follows

    \langle\mathcal{L}'(u),v\rangle = \int_{\Omega} a(x,u) |\nabla u|^{p(x)-2} \nabla u \cdot \nabla v \, dx + \int_{\Omega} \frac{b(x) |u|^{q-2} u v}{|x|^q} \, dx,

    and

    \langle\mathcal{M}'(u),v\rangle = \int_{\Omega} k(x) |u|^{s(x)-2} u v \, dx.

    Furthermore, \mathcal{M}'(u) is compact in the dual space (W^{1, p(x)}_0(\omega, \Omega))^* (see [14]).

    u\in W^{1, p(x)}_0(\omega, \Omega) is said to be a weak solution of the problem (1.1) if, the following holds for every v\in W^{1, p(x)}_0(\omega, \Omega) .

    \langle\mathcal{I}'_{\lambda}(u),v\rangle = \langle\mathcal{L}'(u),v\rangle-\lambda\langle\mathcal{M}'(u),v\rangle = 0.

    Lemma 2.5. \mathcal{L}' is a strictly monotone coercive functional that belongs in (W^{1, p(x)}_{0}(\omega, \Omega))^*.

    Proof. For any u \in W^{1, p(x)}_{0}(\omega, \Omega)\setminus {\{0\}} , by Lemma 2.2, one has

    \begin{align*} \mathcal{L}'(u)(u)& = \int_{\Omega}a(x,u) |\nabla u|^{p(x)-2}\nabla u \nabla udx +\int_{\Omega}\frac{b(x)|u|^{q-2}u^{2}}{|x|^{q}}dx\\& \geq a_{1}\rho_{\omega}(u)\\&\geq a_{1}\cdot\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}, \end{align*}

    thus

    \lim\limits_{\|u\|\to \infty}\frac{\mathcal{L}'(u)(u)}{\|u\|}\geq a_{1}\cdot \lim\limits_{\|u\|\to \infty}\frac{\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}}{\|u\|} = +\infty,

    then \mathcal{L}' is coercive in view of p(x)\in C_+(\overline\Omega) .

    According to (2.2) of [13], for all x, y \in \mathbb{R}^{N} , there is a positive constant C_{p} such that

    \langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq C_{p}|x-y|^{p},\ \text{if}\ p\geq 2,

    and

    \langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq \frac{C_{p}|x-y|^{2}}{(|x|+|y|)^{2-p}},\ \text{if}\ 1 < p < 2,\ \text{and}\ (x,y)\neq(0,0),

    where \langle., .\rangle is the usual inner product in \mathbb{R}^{N}. Thus, for any u, v\in X satisfying u\neq v, by standard arguments we can obtain

    \begin{align*} \langle\mathcal{L}'(u)-\mathcal{L}'(v),u-v\rangle& = \int_{\Omega} a(x,u)(|\nabla u|^{p(x)-2}\nabla u -|\nabla v|^{p(x)-2}\nabla v)(\nabla u -\nabla v)dx \\& \ \ \ \\&\ \ \ +\int_{\Omega}\frac{b(x)}{{|x|^{q}}}(|u|^{q-2}u-|v|^{q-2}v)(u-v))dx\\& > 0, \end{align*}

    hence, one has \mathcal{L}' is strictly monotone in W^{1, p(x)}_0(\omega, \Omega) .

    Lemma 2.6. The functional \mathcal{L}' is a mapping of (S_{+}) -type, i.e. if u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u)\rangle\leq 0, then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega).

    Proof. Let u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u\rangle\leq 0.

    Noting that \mathcal{L}' is strictly monotone in W^{1, p(x)}_{0}(\omega, \Omega), we have

    \lim\limits_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle = 0,

    while

    \begin{align*} \langle\mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle& = \int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \\&\ \ \ +\int_{\Omega}\Big(\frac{b(x)|u_{n}|^{q-2}}{|x|^{q}} u_{n}(u_{n}-u)-\frac{b(x)|u|^{q-2}}{|x|^{q}} u(u_{n}-u)\Big )dx , \end{align*}

    thus we get

    \overline{\lim}_{n\rightarrow \infty}\int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0.

    Further, by (1.2) one has

    \overline{\lim}_{n\rightarrow \infty}\int_{\Omega} \omega(x)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0,

    then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega) via Lemma 3.2 in [19].

    Lemma 2.7. \mathcal{L}' is an homeomorphism.

    Proof. The strict monotonicity of \mathcal{L}' implies that it is injective. Since \mathcal{L}' is coercive, it is also surjective, and hence \mathcal{L}' has an inverse mapping.

    Next, we show that the inverse mapping (\mathcal{L}')^{-1} is continuous.

    Let \tilde{f}_n, \tilde{f} \in (W^{1, p(x)}_0(\omega, \Omega))^* such that \tilde{f}_n \to \tilde{f} . We aim to prove that (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) .

    Indeed, let (\mathcal{L}')^{-1}(\tilde{f}_n) = u_n and (\mathcal{L}')^{-1}(\tilde{f}) = u , so that \mathcal{L}'(u_n) = \tilde{f}_n and \mathcal{L}'(u) = \tilde{f} . By the coercivity of \mathcal{L}' , the sequence u_n is bounded. Without loss of generality, assume u_n \rightharpoonup u_0 , which implies

    \lim\limits_{n \to \infty} \left( \mathcal{L}'(u_n) - \mathcal{L}'(u), u_n - u_0 \right) = \lim\limits_{n \to \infty} \left( \tilde{f}_n - \tilde{f}, u_n - u_0 \right) = 0.

    Thus, u_n \to u_0 because \mathcal{L}' is of (S_+) -type, which ensures that \mathcal{L}'(u_n) \to \mathcal{L}'(u_0) . Combining this with \mathcal{L}'(u_n) \to \mathcal{L}'(u) , we deduce that \mathcal{L}'(u) = \mathcal{L}'(u_0) . Since \mathcal{L}' is injective, it follows that u = u_0 , and hence u_n \to u . Therefore, we have (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) , proving that (\mathcal{L}')^{-1} is continuous.

    The following critical point theorems constitute the principal tools used to obtain our result.

    Theorem 2.1. ([4, Theorem 3.6]). Let X be a reflexive real Banach space and assume the following

    \mathcal{L}: X \to \mathbb{R} be a coercive functional that is continuously Gateaux differentiable and weakly lower semicontinuous in the sequential sense

    The Gateaux derivative of \mathcal{L} has a continuous inverse on the dual space X^* .

    \mathcal{M}: X \to \mathbb{R} is a continuously Gateaux differentiable functional whith a compact Gateaux derivative.

    Furthermore, suppose that

    (a_0) \quad \inf\limits_X \mathcal{L} = \mathcal{L}(0) = 0\ and\ \mathcal{M}(0) = 0.

    There exist a positive constant d and a point \overline{v} \in X such that d 06 \mathcal{L}(\overline{v}) , and the following conditions are satisfied:

    (a_1) \quad \frac{\sup\nolimits_{\mathcal{L}(x) < d} \mathcal{M}(x)}{d} < \frac{\mathcal{M}(\overline{v})}{\mathcal{L}(\overline{v})},
    (a_2) \quad \mathit{\text{For each}}\ \lambda \in \Lambda_d : = \left( \frac{\mathcal{L}(\overline{v})}{\mathcal{M}(\overline{v})}, \frac{d}{\sup\nolimits_{\mathcal{L}(x) \leq d} \mathcal{M}(x)} \right), \mathit{\text{the functional}}\ I_{\lambda} : = \mathcal{L} - \lambda \mathcal{M}\ \mathit{\text{is coercive.}}

    Then, for any \lambda \in \Lambda_d , \mathcal{L} - \lambda \mathcal{M} has at least three distinct critical points in X .

    In this section, a theorem about the existence of at least three weak solutions to the problem (1.1) is obtained.

    Recall the Hardy inequality (refer to Lemma 2.1 in [12] for more details), which asserts that for 1 < t < N , the following inequality holds:

    \int_{\Omega} \frac{|u(x)|^t}{|x|^t} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^t \, dx, \quad \forall u \in W^{1,t}_0(\Omega),

    where the optimal constant \mathcal{H} is given by:

    \mathcal{H} = \left( \frac{N-t}{t} \right)^t.

    By combining this with Lemma 2.1 and using the fact that 1 < q < p_h(x) < N , we deduce the continuous embeddings

    W^{1,p(x)}_0(\omega, \Omega) \hookrightarrow W^{1,p_h(x)}_0(\Omega) \hookrightarrow W^{1,q}_0(\Omega),

    which leads to the inequality

    \int_{\Omega} \frac{|u(x)|^q}{|x|^q} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^q \, dx, \quad \forall u \in W^{1,p(x)}_0(\omega, \Omega),

    where \mathcal{H} = \left(\frac{N-q}{q} \right)^q .

    We are now ready to present our primary result. To this end, we define

    \tilde{\mathfrak{D}}(x) : = \sup \left\{ \tilde{\mathfrak{D}} > 0 \mid B(x, \tilde{\mathfrak{D}}) \subseteq \Omega \right\}

    for each x \in \Omega , here B(x, \tilde{\mathfrak{D}}) denotes a ball centered at x with radius \tilde{\mathfrak{D}} . It is clear that there exists a point x^0 \in \Omega such that B(x^0, R) \subseteq \Omega , where

    R = \sup\limits_{x \in \Omega} \tilde{\mathfrak{D}}(x).

    In the remainder, assume that k(x) , fulfill this requirement

    k(x): = \left\{ \begin{array}{l} {\leq 0,} & {\mbox{ for}\, x\in \Omega\setminus B(x^0,R),}\\{\geq k_0,} & {\mbox{ for}\, x\in B(x^0,\frac{R}{2}),}\\{ > 0, } & { \mbox{ for } \, x\in B(x^0,R)\setminus B(x^0,\frac{R}{2}),} \end{array} \right.

    where k_0 is a positive constant, the symbol \tilde{m} will represent the constant

    \tilde{m} = \frac{\pi^{\frac{N}{2}}}{\frac{N}{2} \Gamma\left( \frac{N}{2} \right)},

    with \Gamma denoting the Gamma function.

    Theorem 3.1. Assume that p^- > s^+ , and, there exist two positive constants d and \delta > 0 , such that

    \frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{{\check{p}}}\|w\|_{L^1(\mathfrak{B})} = d,

    and

    A_{\delta}: = \frac{\frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right)}{ \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N}} < B_{d}: = \frac{d}{\frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}},

    then for any \lambda \in] A_{\delta}, B_{d}[ , problem (1.1) has at least three weak solutions.

    Proof. It is worth noting that the functional \mathcal{L} and \mathcal{M} associated with problem (1.1) and defined in (2.2) and (2.3), satisfy the regularity assumptions outlined in Theorem 2.1. We will now establish the fulfillment of conditions (a_1) and (a_2) . To this end, let's consider

    \frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} = d

    and consider v_d \in X such that

    v_{\delta}(x): = \begin{cases}0 & x \in \Omega \backslash B\left(x^{0}, R\right) \\ \frac{2 \delta}{R}\left(R-\left|x-x^{0}\right|\right) & x \in \mathfrak{B}: = \overline{B}\left(x^{0}, R\right) \backslash B\left(x^{0}, \frac{R}{2}\right), \\ \delta & x \in \overline{B}\left(x^{0}, \frac{R}{2}\right) .\end{cases}

    Then, by the definition of \mathcal{L} , we have

    \begin{aligned} & \frac{1}{{p^+}}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} \\ & \quad < \mathcal{L}(v_{\delta}) \\ & \quad \leq \frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right) \end{aligned}

    Therefore, \mathcal{L}(v_{\delta}) > d . However, it is important to consider the following

    \begin{eqnarray} \mathcal{M}\left(v_{\delta}\right) \geq \int_{B\left(x_{0}, \frac{R}{2}\right)} \frac{k(x)}{s(x)}\left|v_{\delta}\right|^{\gamma(x)} d x \geq \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N} \end{eqnarray} (3.1)

    In addition, for each u\in\mathcal{L}^{-1}(]-\infty, d]) , we have

    \begin{equation} \frac{1}{p^+}\|u\|^{\check{p}}\leq d. \end{equation} (3.2)

    therefore,

    \|u\| \leq \Big({p}^{+}\mathcal{L}(u)\Big)^{\frac{1}{\check{p}}} < \Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}.

    Furthermore, we can deduce using Lemmas 2.3, 2.4 and Remark 2.1 the following

    \begin{eqnarray} \mathcal{M}(u) \leq \frac{1}{s^{-}}\|k\|_{\gamma(x)} \||u|^{s(x)}\|_{\gamma'(x)} \leq \frac{1}{s^{-}}\|k\|_{s(x)}(c_{\gamma' s}\|u\|)^{\hat{s}}, \end{eqnarray} (3.3)

    where c_{\gamma' s} is the constant from the continuous embedding of W^{1, p(x)}_0(\omega, \Omega) into W^{1, \gamma'(x) s(x)}(\Omega) .

    This leads to the following result

    \begin{eqnarray*} \sup\limits_{\mathcal{L}(u) < d}\mathcal{M}(u)&\leq& \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}, \end{eqnarray*}

    and

    \begin{aligned} \frac{1}{d} \sup _{\mathcal{L}(u) < d} \mathcal{M}(u) < \frac{1}{\lambda} . \end{aligned}

    Furthermore, we can establish the coerciveness of \mathcal{I}_{\lambda} for any positive value of \lambda by employing inequality (3.1) once more. This yields the following result

    \mathcal{M}(u)\leq \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} .

    When \|u\| is great enough, the following can be inferred

    \mathcal{L}(u)-\lambda \mathcal{M}(u) \geq \frac{1}{p^+}\|u\|^{p^-}-\lambda \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} .

    By considering the fact that p^- > s^+ , we can reach the desired conclusion. In conclusion, considering the aforementioned fact that

    \bar{\Lambda}_d: = \left(A_{ \delta}, B_d\right) \subseteq\left(\frac{\mathcal{L}\left(v_{\delta}\right)}{\mathcal{M}\left(v_{\delta}\right)}, \frac{d}{\sup\nolimits_{\mathcal{L}(u) < d} \mathcal{M}(u)}\right),

    since all assumptions of Theorem 2.1 are fulfilled, it can be deduced that for any \lambda \in \bar{\Lambda}_d , the function \mathcal{L}-\lambda \mathcal{M} possesses at least three critical points that belong in X: = W^{1, p}_0(\omega, \Omega) . Consequently these critical points are exactly weak solutions of problem (1.1) .

    Khaled Kefi: Conceptualization, Methodology, Writing–original draft, Supervision; Nasser S. Albalawi: Conceptualization, Methodology, Writing–original draft, Supervision. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number NBU-FPEJ-2025-1706-01.

    The authors declare that they have no conflicts of interest.



    [1] K. D. Lu, Z. G. Wu, Multi-objective false data injection attacks of cyber-physical power systems, IEEE T. Circuits Syst. Ⅱ, 69 (2022), 3924–3928. https://doi.org/10.1109/TCSⅡ.2022.3181827 doi: 10.1109/TCSⅡ.2022.3181827
    [2] P. L. Bhattar, N. M. Pindoriya, A. Sharma, A combined survey on distribution system state estimation and false data injection in cyber-physical power distribution networks, IET Cyber Phys. Syst. Theory Appl., 6 (2021), 41–62. https://doi.org/10.1049/cps2.12000 doi: 10.1049/cps2.12000
    [3] Y. Li, Y. Wang, Developing graphical detection techniques for maintaining state estimation integrity against false data injection attack in integrated electric cyber-physical system, J. Syst. Architect., 105 (2020), 101705. https://doi.org/10.1016/j.sysarc.2019.101705 doi: 10.1016/j.sysarc.2019.101705
    [4] Q. Wang, W. Tai, Y. Tang, M. Ni, Review of the false data injection attack against the cyber-physical power system, IET Cyber Phys. Syst. Theory Appl., 4 (2019), 101–107. https://doi.org/10.1049/iet-cps.2018.5022 doi: 10.1049/iet-cps.2018.5022
    [5] S. Padhan, A. K. Turuk, Design of false data injection attacks in cyber-physical systems, Inform. Sci., 608 (2022), 825–843. https://doi.org/10.1016/j.ins.2022.06.082 doi: 10.1016/j.ins.2022.06.082
    [6] T. Zhou, K. Xiahou, L. L. Zhang, Q. H. Wu, Real-time detection of cyber-physical false data injection attacks on power systems, IEEE T. Ind. Inform., 17 (2021), 6810–6819. https://doi.org/10.1109/TⅡ.2020.3048386 doi: 10.1109/TⅡ.2020.3048386
    [7] Z. Qu, Y. Dong, N. Qu, H. Li, M. Cui, X. Bo, et al., False data injection attack detection in power systems based on cyber-physical attack genes, Front. Energy Res., 9 (2021), 644489. https://doi.org/10.3389/fenrg.2021.644489 doi: 10.3389/fenrg.2021.644489
    [8] G. Cao, W. Gu, G. Lou, W. Sheng, K. Liu, Distributed synchronous detection for false data injection attack in cyber-physical microgrids, Int. J. Elec. Power Energy Syst., 137 (2022), 107788. https://doi.org/10.1016/j.ijepes.2021.107788 doi: 10.1016/j.ijepes.2021.107788
    [9] J. Li, C. Sun, Q. Su, Analysis of cascading failures of power cyberphysical systems considering false data injection attacks, Global Energy Interconnect., 4 (2021), 204–213. https://doi.org/10.1016/j.gloei.2021.05.002 doi: 10.1016/j.gloei.2021.05.002
    [10] T. Zou, A. S. Bretas, C. Ruben, S. C. Dhulipala, N. Bretas, Smart grids cyber-physical security: Parameter correction model against unbalanced false data injection attacks, Electr. Pow. Syst. Res., 187 (2020), 106490. https://doi.org/10.1016/j.epsr.2020.106490 doi: 10.1016/j.epsr.2020.106490
    [11] M. Mazare, Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning, Appl. Energ., 353 (2024), 122034. https://doi.org/10.1016/j.apenergy.2023.122034 doi: 10.1016/j.apenergy.2023.122034
    [12] M. Mazare, M. Taghizadeh, H. Asharioun, Attack‐resilient pitch angle control for variable‐speed wind turbine systems under cyber threats, Int. J. Adapt. Control, 37 (2023), 1423–1439. https://doi.org/10.1002/acs.3580 doi: 10.1002/acs.3580
    [13] M. Mazare, Reinforcement learning-based fixed-time resilient control of nonlinear cyber physical systems under false data injection attacks and mismatch disturbances, J. Franklin I., 360 (2023), 14926–14938. https://doi.org/10.1016/j.jfranklin.2023.10.026 doi: 10.1016/j.jfranklin.2023.10.026
    [14] H. Alamro, K. Mahmood, S. S. Aljameel, A. Yafoz, R. Alsini, A. Mohamed, Modified red fox optimizer with deep learning enabled false data injection attack detection, IEEE Access, 11 (2023), 79256–79264. https://doi.org/10.1109/ACCESS.2023.3298056 doi: 10.1109/ACCESS.2023.3298056
    [15] J. Sakhnini, H. Karimipour, A. Dehghantanha, R. M. Parizi, Physical layer attack identification and localization in cyber–physical grid: An ensemble deep learning based approach, Phys. Commun., 47 (2021), 101394. https://doi.org/10.1016/j.phycom.2021.101394 doi: 10.1016/j.phycom.2021.101394
    [16] K. Liu, H. Zhang, Y. Zhang, C. Sun, False data-injection attack detection in cyber–physical systems with unknown parameters: A deep reinforcement learning approach, IEEE T. Cybernetics, 11 (2023), 7115–7125. https://doi.org/10.1109/TCYB.2022.3225236 doi: 10.1109/TCYB.2022.3225236
    [17] E. Vincent, M. Korki, M. Seyedmahmoudian, A. Stojcevski, S. Mekhilef, Detection of false data injection attacks in cyber–physical systems using graph convolutional network, Electr. Pow. Syst. Res., 217 (2023), 109118. https://doi.org/10.1016/j.epsr.2023.109118 doi: 10.1016/j.epsr.2023.109118
    [18] Y. Zhang, W. Deng, K. Huang, C. Yang, False data injection attack testbed of industrial cyber-physical systems of the process industry and a detection application. In: 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), 2021, 1–7. https://doi.org/10.1109/RASSE53195.2021.9686839
    [19] Y. Li, X. Wei, Y. Li, Z. Dong, M. Shahidehpour, Detection of false data injection attacks in smart grid: A secure federated deep learning approach, IEEE T. Smart Grid, 13 (2022), 4862–4872. https://doi.org/10.1109/TSG.2022.3204796 doi: 10.1109/TSG.2022.3204796
    [20] W. Fu, Y. Yan, Y. Chen, Z. Wang, D. Zhu, L. Jin, Temporal false data injection attack and detection on cyber‐physical power system based on deep reinforcement learning, IET Smart Grid, 7 (2024), 78–88. https://doi.org/10.1049/stg2.12141 doi: 10.1049/stg2.12141
    [21] H. Ruan, B. Dorneanu, H. Arellano-Garcia, P. Xiao, L. Zhang, Deep learning-based fault prediction in wireless sensor network embedded cyber-physical systems for industrial processes, IEEE Access, 10(2022), 10867–10879. https://doi.org/10.1109/ACCESS.2022.3144333 doi: 10.1109/ACCESS.2022.3144333
    [22] J. Tian, C. Shen, B. Wang, X. Xia, M. Zhang, C. Lin, Q. Li, LESSON: Multi-label adversarial false data injection attack for deep learning locational detection, IEEE T. Depend. Secure Comput., 2024, 1–15. https://doi.org/10.1109/TDSC.2024.3353302 doi: 10.1109/TDSC.2024.3353302
    [23] J. Tian, B. Wang, R. Guo, Z. Wang, K. Cao, X. Wang, Adversarial attacks and defenses for deep-learning-based unmanned aerial vehicles, IEEE Internet Things J., 9 (2021), 22399–22409. https://doi.org/10.1109/JIOT.2021.3111024 doi: 10.1109/JIOT.2021.3111024
    [24] J. Tian, B. Wang, Z. Wang, K. Cao, J. Li, M. Ozay, Joint adversarial example and false data injection attacks for state estimation in power systems, IEEE T. Cybernetics, 52 (2022), 13699–13713. https://doi.org/10.1109/TCYB.2021.3125345 doi: 10.1109/TCYB.2021.3125345
    [25] S. Sorguli, H. Rjoub, A novel energy accounting model using fuzzy restricted boltzmann machine—Recurrent neural network, Energies, 16 (2023), 2844. https://doi.org/10.3390/en16062844 doi: 10.3390/en16062844
    [26] Q. Hu, H. Zhou, C. Wang, C. Zhu, J. Shen, P. He, Time-frequency fusion features-based GSWOA-KELM model for gear fault diagnosis, Lubricants, 12 (2024), 10. https://doi.org/10.3390/lubricants12010010 doi: 10.3390/lubricants12010010
    [27] M. Xia, X. Zheng, M. Imran, M. Shoaib, Data-driven prognosis method using hybrid deep recurrent neural network, Appl. Soft Comput., 93 (2020), 106351. https://doi.org/10.1016/j.asoc.2020.106351 doi: 10.1016/j.asoc.2020.106351
    [28] S. P. Shashikumar, A. J. Shah, G. D. Clifford, S. Nemati, Detection of paroxysmal atrial fibrillation using attention-based bidirectional recurrent neural networks, In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018,715–723. https://doi.org/10.1145/3219819.3219912
    [29] M. Abd Elaziz, M. E. Zayed, H. Abdelfattah, A. Q. Aseeri, E. M. Tag-eldin, M. Fujii, et al., Machine learning-aided modeling for predicting freshwater production of a membrane desalination system: A long-short-term memory coupled with election-based optimizer, Alex. Eng. J., 86 (2024), 690–703. https://doi.org/10.1016/j.aej.2023.12.012 doi: 10.1016/j.aej.2023.12.012
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1293) PDF downloads(51) Cited by(1)

Figures and Tables

Figures(14)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog