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Abstract: Cyber-physical systems (CPSs) are affected by cyberattacks once they are more connected 

to cyberspace. Advanced CPSs are highly complex and susceptible to attacks such as false data 

injection attacks (FDIA) targeted to mislead the systems and make them unstable. Leveraging an 

integration of anomaly detection methods, real-time monitoring, and machine learning (ML) 

algorithms, research workers are developing robust frameworks to recognize and alleviate the effect 

of FDIA. These methods often scrutinize deviations from predictable system behavior, using statistical 

analysis and anomaly detection systems to determine abnormalities that can indicate malicious 

activities. This manuscript offers the design of an election-based optimization algorithm with a deep 

learning-enabled false data injection attack detection (EBODL-FDIAD) method in the CPS 

infrastructure. The purpose of the EBODL-FDIAD technique is to enhance security in the CPS 

environment via the detection of FDIAs. In the EBODL-FDIAD technique, the linear scaling 

normalization (LSN) approach can be used to scale the input data into valuable formats. Besides, the 



15077 

AIMS Mathematics  Volume 9, Issue 6, 15076–15096. 

EBODL-FDIAD system performs ensemble learning classification comprising three classifiers, 

namely the kernel extreme learning machine (KELM), long short-term memory (LSTM), and 

attention-based bidirectional recurrent neural network (ABiRNN) model. For optimal hyperparameter 

selection of the ensemble classifiers, the EBO algorithm can be applied. To validate the enriched 

performance of the EBODL-FDIAD technique, wide-ranging simulations were involved. The 

extensive results highlighted that the EBODL-FDIAD algorithm performed well over other systems 

concerning numerous measures. 

Keywords: cyber-physical system; false data injection attack; deep learning; election-based 

optimization; ensemble learning 

Mathematics Subject Classification: 11Y40 

 

1. Introduction 

Today, cyber-physical systems (CPSs) are a focal point due to the development of network 

communication technology, information technology (IT), control theory, and technological 

developments. Incessantly, the security of CPSs is considered by progressive researchers, and an 

increasing number of attacks against numerous CPSs are performed [1]. In several instances, the CPSs 

have been attacked through false data injection attacks (FDIA). In 2015, the “BlackEnergy” virus 

provoked an electricity failure of the Ukrainian power grids, and later a different version of the virus 

attacked a railway operation system and mining company. It is noticeable that the attacks of the CPSs 

have been tremendously dangerous [2]. Consequently, the security of CPSs will be increasingly 

examined by several researchers. 

Nowadays, the three leading categories of attacks against CPSs are denial of service (DoS) attacks, 

replay attacks, and FDIA [3]. The FDIA interrupts execution or stability by inserting false data without 

identification. Thus, figuring out how to recognize the FDIA is a major exploration domain. FDIA was 

devised reliant on the physical information of the system, which makes it complex for traditional 

identification techniques to detect the attacks [4]. Automatically, while the information of the CPSs is 

changed on FDIA, the connection between the output and input should be modified and what remains 

between actual and ideal outputs must be altered. Various attacks are caused by different false and even 

collapses in every part of CPSs, such as physical parts of the system or cyber modules [5]. In general, 

two important kinds of cyberattacks are denial of service (DoS) and deception attacks. In each category 

of deception attacks, the target of the attacker is to cooperate with the transferred data at the sensor to 

decrease the data packet's integrity [6]. Particularly, a few varieties of deception attacks arise frequently 

in industrial CPSs. Such popular attacks comprise FDIAs where the produced fault data (noise) from the 

attacker is inserted into the communication network to reduce the data authenticity of the system [7], 

replay attacks where the prior time data packets will be stored and transmitted recurrently for 

preventing the submodels from accomplishing the steady-state stage, and time-delay attacks where a 

delay parameter is inserted into the systems for affecting instability in the system's functions [8]. Deep 

learning (DL) methods have presented significant achievements in numerous sectors namely speech 

identification, natural language processing (NLP), and image identification, providing effective 

possibilities to enhance cybersecurity in Industry 5.0 [9]. Transformer, CNNs, and RNN methods are 

among the systems that will automatically learn intricate representations and patterns in the raw data [10]. 
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This ability allows DL methods to identify new and complex attacks that should be avoided by standard 

machine learning (ML) techniques [11]. Additionally, DL methods are modified to deal with the 

challenges related to cybersecurity datasets, like non-stationarity, noise, and imbalance [12]. It will be 

integrated with other artificial intelligence (AI) methods, namely reinforcement learning (RL) and 

adversarial learning, to make highly strong and adaptable attack detection models [13]. DL algorithms 

can be used to considerably increase the identification and avoidance of web-based attacks in the CPS 

platform.  

This manuscript offers the design of an election-based optimization algorithm with a deep 

learning-enabled false data injection attack detection (EBODL-FDIAD) technique in the CPS 

environment. In the EBODL-FDIAD system, the linear scaling normalization (LSN) approach can be 

used to scale the input data into a useful format. Besides, the EBODL-FDIAD method performs 

ensemble learning classification comprising three classifiers, namely the kernel extreme learning 

machine (KELM), long short-term memory (LSTM), and attention-based bidirectional recurrent neural 

network (ABiRNN) model. For optimal hyperparameter selection of the ensemble classifiers, the EBO 

algorithm can be applied. The impact of the presented method, EBODL-FDIAD, lies in its widespread 

manner of detecting FDIA utilizing DL approaches and advanced optimizer models. By combining an 

ensemble of classifiers with the EBO approach for hyperparameter tuning, we can improve the model's 

adaptability and performance, ensuring optimum configuration to generate reliable recognition of and 

correct cyber threats. The extensive results highlighted that the EBODL-FDIAD technique performed 

well over other approaches with respect to diverse measures. The major contributions of the study are 

listed as follows: 

▪ The EBODL-FDIAD methodology provides a widespread solution to FDIA detection by 

integrating ensemble learning and an EBO-based hyperparameter tuning model in the CPS 

platform. As we know it, the EBODL-FDIAD approach has never occurred in previous literature. 

▪ Employing an ensemble model by integrating KELM, LSTM, and ABiRNN enables the model to 

control the unique strengths of all of the methods, enhancing complete recognition performance. 

The inclusion of ABiRNN presents a new model for examining graph-structured data that is most 

relevant for identifying difficult connections and dependencies in CPS networks. 

▪ Deploying the EBO approach for hyperparameter tuning improves the effectiveness and efficacy 

of the model by automatically optimizing main parameters, decreasing the need for manual tuning, 

and enhancing detection accuracy. 

2. Related works 

In [14], a modified red fox optimizer with a DL-based FDIA detection (MRFODL-FDIAD) 

method was developed at the cyber-physical production system (CPPS) infrastructure. This introduced 

MRFODL-FDIAD system primarily identifies and categorizes FDIAs at the CPPS platform. This 

includes a three-phase method of identification, parameter tuning, and preprocessing. For FDIA 

detection, the MRFODL-FDIAD method employs a multihead attention-based LSTM (MBA-LSTM) 

system. In [15], an intelligent attack detection and recognition system was developed that can 

categorize the attack varieties on the physical layer dependent upon the ELM algorithm. Additionally, 

the developed method finds the attack or false to precise features or capacities in the model to support 

cybersecurity experts in alleviating the effects of the attack on the communication networks. 

Liu et al. [16] examined the identification of irregular FDIA under CPSs. Deep-RL (DRL) was 
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implemented to make an FDIA detection. Initially, the uneven attack detection issue was labeled as a 

partially observable Markov decision process (POMDP) and an neural network can be employed to 

analyze the POMDP. At this network, sliding observation windows consisting of the offline fragment 

of previous data have been employed as the input. In [17], a graph convolutional network (GCN) 

algorithm was developed to identify the FDIA. This presented method examined the representational 

features of FDIAs by executing the graphical architecture of the power network to analyze the changing 

state assessment values dependent upon the network topology and identified the position of the FDIAs. 

In [18], a testbed of the process industry was designed that was a hardware-in-the-loop 

environment for simulating real-time industrial manufacturing and implemented an FDIA at this 

infrastructure. A host improved the physical method, and the cyber product was an engineer station or 

real industrial controller. Then, this developed method built an effective FDIA detection system, named 

the DRIF. In [19], an FDIA detection technique dependent upon protected federated DL was developed 

by integrating a transformer, federated learning (FL), and Paillier cryptosystem. The transformer is a 

detector employed for edge nodes, examining deeply the relationship among separate electrical 

measures by employing the multi-class self-attention mechanism. With the help of the FL model, the 

technique exploits the data at every node for collaboratively training a detection system.  

Fu et al. [20] projected an innovative attack technique called the temporal FDI (TFDI) attack. The 

virus created outcomes dependent upon temporal interpretations of the CPPS, and a deep Q network 

(DQN) architecture stimulated the attack. For example, DQN captured vectors of incessant variables 

as input conditions, and the developed technique is allowed to the state space explosion issue. 

Additionally, for implementing time-series measures as quasi-dynamic analysis, LSTM cells could be 

utilized as a layer of the Q network. In [21], an end-wise DL method was established dependent upon 

a huge volume of real-time sensor data. Primarily, an innovative recursive model with multi-lookback 

inputs was developed. An innovative learning method called recursive gradient descent (RGD) was 

made for the designed model for decreasing combined prediction variability. Later, a classification 

method dependent upon temporal convolutions through numerous channels with decay impact was 

developed. 

Tian et al. [22] investigated adversarial example attacks on multi-label FDIA locational detectors 

and presented a common multi-label adversarial attack structure like the multi-label adversarial false 

data injection attack (LESSON). In [23], the authors analyzed the tasks of adversarial attacks against 

DL-based Unmanned Aerial Vehicles (UAVs) and presented two adversarial attack approaches against 

regression methods in UAVs. The investigations exhibited that the presented non-targeted and targeted 

attack models crafted imperceptible adversarial images and presented a significant attack on the 

navigation and control systems of UAVs. Tian et al. [24] examined the joint adversarial example and 

FDIAs (AFDIAs) to discover several attack conditions for state evaluation in power systems. If 

perturbations are directly added to measurements, they are more likely to be identified by BDDs. The 

presented approach of adding perturbations to state variables ensures that the attack is secret to BDDs. 

Afterward, malicious data that are stealthy to both BDDs and DL-based detectors are created.  

3. The proposed method 

In the manuscript, we offer the design of an EBODL-FDIAD technique in the CPS infrastructure. 

The purpose of the EBODL-FDIAD technique is to enhance security in the CPS environment via the 

detection of FDIAs. It contains three different processes namely data preprocessing, ensemble learning, 
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and EBO-based parameter tuning. Figure 1 demonstrates the entire procedure of the EBODL-FDIAD 

technique. 

 

Figure 1. Overall process of the EBODL-FDIAD technique. 

3.1. Data preprocessing 

At the primary level, the EBODL-FDIAD technique applies the LSN approach to be used for 

scaling the input data into valuable formats. The LSN is a data preprocessing method developed for 

improving the comparability of features within a dataset [25]. By converting the values of distinct 

features through linear scaling, LSN confirms that every feature gives proportionally to the overall 

analysis without being disproportionately impacted by variances in scale. This system maps the 

original feature values to a standardized range, normally between 0 and 1, making the data more 

responsive to different ML methods and statistical analyses. LSN is mainly valued in conditions where 

disparate scales among features could skew model efficiency, offering a robust and effectual means to 

standardize datasets for increased interpretability and accuracy in analytical methods.  
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3.2. Ensemble learning 

The EBODL-FDIAD technique performs ensemble learning classification comprising three 

classifiers, namely the KELM, LSTM, and ABiRNN models. 

3.2.1. KELM model 

As an advanced model, KELM is proposed based on the ELM model [26]. The kernel function 

has faster learning ability and better generalization performance. ELM is a feedforward neural network 

that consists of a hidden layer (HL), input layers, and output layers, and it can be mathematically 

modeled by, 

𝐻𝛽 = 𝑇,          (1) 

𝐻(𝑤1, … , 𝑤1, 𝑏1, … , 𝑏1, 𝑥1, … , 𝑥𝑛) = (
𝑔(𝑤1 ∙ 𝑥1 + 𝑏1) … 𝑔(𝑤1 ∙ 𝑥1 + 𝑏1)

⋮ ⋱ ⋮
𝑔(𝑤1 ∙ 𝑥𝑛 + 𝑏1) … 𝑔(𝑤1 ∙ 𝑥𝑛 + 𝑏1)

)   (2) 

In the equation, 𝐻 indicates the output matrix of HL, 𝑤𝑙 shows the weight of the 𝑙𝑡ℎ neurons in 

the HL, 𝑇 indicates the target output matrix,  𝛽 refers to the output weight, and 𝑏𝑙 shows the bias of 

the 𝑙𝑡ℎ neurons in the HL. The learning algorithm of ELM is used to resolve the output weight 𝛽 using 

the least square model: 

𝛽𝐸𝐿𝑀 = 𝐻𝑇(𝐻𝐻𝑇)−1𝑇 = 𝐻+𝑇.        (3) 

In Eq (3), 𝐻+ denotes the generalized inverse matrix of H. Figure 2 shows the structure of the 

KELM model. 

 

Figure 2. Framework of KELM. 

In KELM, the kernel function parameters 𝛾  and regularization coefficient 𝐶  are introduced to 

enhance KELM accuracy, and the kernel function matrix can be formulated by: 

𝛺 = 𝐻𝐻𝑇,           (4) 
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Ωij = h(Xi)h(xj) = K(xi × xj).        (5) 

Next, the least square (LS) solution of 𝛽 values of the KELM is: 

𝛽𝐾𝐸𝐿𝑀 = 𝐻𝑇 (
𝐼

𝐶
+ 𝐻𝐻𝑇)

−1
𝑇.        (6) 

According to the abovementioned equation, the output function of KELM is formulated by: 

𝑓(𝑥) = [
K(𝑥, 𝑥1)
   ⋮
K(𝑥′𝑥𝑛)

] (𝛺 +
𝐼

𝐶
)
−1

𝑇.       (7) 

Additionally, the radial basis function (RBF) is desired as a kernel operation and its formula can 

be written as: 

K(𝑥𝑖 , 𝑥𝑗) = exp (−
||𝑥−𝑥||2

2𝛾2 ).        (8) 

In Eq (8), 𝛾 implies the kernel parameter. 

3.2.2. LSTM model 

LSTM can be a type of RNN. LSTM is used to replace the computation of hidden states with 

multiple gate functions [27]. This allows for capturing long-term dependence in the temporal data 

sequence. The LSTM presents an original flow, the cell state 𝑚𝑡 ∈ ℝ𝑛 revealed at the top of the cell 

structure than traditional RNN. LSTM can add or remove the data to the cell states. The cell state 

retains the LSTM memory. A 3-gating model regulates the data flow in LSTM consisting of the input 

gate 𝑖𝑡 ∈ ℝ𝑛, the forget gate 𝑓𝑡 ∈ ℝ𝑛, and the output gate 𝑜𝑡 ∈ ℝ𝑛. The input gate is used to adjust the 

level of data from the existing input 𝑥𝑡 and the prior HL 𝑠𝑡−1 is fed into the existing state. The forget 

gate regulates what data at the prior cell state 𝑚𝑡−1 must be retained. The output gate regulates what 

amount of data is passed into the existing hidden state 𝑠𝑡. The operation of this gate is given below: 

𝑖𝑡 = 𝜎(𝑉𝑖𝑥𝑡 + 𝑊𝑖𝑠𝑡−1 + 𝑏𝑖),        (9) 

𝑓𝑡 = 𝜎(𝑉𝑓𝑥𝑡 + 𝑊𝑓𝑠𝑡−1 + 𝑏𝑓),        (10) 

𝑜𝑡 = 𝜎(𝑉𝑜𝑥𝑡 + 𝑊𝑜𝑆𝑡−1 + 𝑏𝑜),        (11) 

with the parameters 𝑉𝑖 ,  𝑉𝑓,  𝑉𝑜 ∈ ℝ𝑛×𝑝 ; 𝑊𝑖 ,  𝑊𝑓,  𝑊𝑜 ∈ ℝ𝑛×𝑛 ; and 𝑏𝑖 ,  𝑏𝑓,  𝑏𝑜  ∈ ℝ𝑛×1 . 𝜎  refers to the 

sigmoid activation function. 

Next, the cell state and HL are attained as follows. 

𝑔𝑡 = tanh (𝑉𝑚𝑥𝑡 + 𝑊𝑚𝑠𝑡−1 + 𝑏𝑚),      (12) 

𝑚𝑡 = 𝑓𝑡 ∘ 𝑚𝑡−1 + 𝑖𝑡 ∘ 𝑔𝑡,        (13) 

𝑠𝑡 = 𝑜𝑡 ∘ tanh (𝑚𝑡).         (14) 
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The equation ∘  indicates the component‐wise multiplication.𝑉𝑚 ∈ ℝ𝑛×𝑝 ;𝑊𝑚 ∈ ℝ𝑛×𝑛 ;and 𝑏𝑚 ∈

ℝ𝑛×1. tanh refers to the hyperbolic tangent function.  

The LSTM training is performed by the BPTT by reducing the main function on the set of training 

sequences. This gradient of weight and bias is evaluated at each time step. Next, with the traditional 

optimization approaches (for example, stochastic gradient descent (SGD), root mean square 

propogation (RMSprop), or adaptive moment estimation (Adam)), the optimum parameter is attained. 

3.2.3. ABiRNN model 

RNN can capture temporal patterns in the information [28]. Typical RNN is unidirectional, such 

that the input dataset is processed in a temporal sequence. The shortcoming of RNNs is that they are 

limited to the usage of prior context. A bidirectional recurrent neural network (BRNN) provides a 

solution by performing the data processing in backward and forward directions. The structure of BRNN 

unfolded in time for the 𝑇  time step. The BRNN includes backward and forward layers. The ℎ𝑡
𝑓
 

forward layer can be evaluated by processing the input dataset from 𝑡 = 1,… , 𝑇, and the ℎ𝑡
𝑏 backward 

layer can be evaluated by processing the input dataset from 𝑡 = 𝑇,… ,1 with output from both layers 

combined using the following equations: 

ℎ𝑡
𝑓

= 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ
𝑓
𝑥𝑡 + 𝑊ℎℎ

𝑓
ℎ𝑡−1 + 𝑏ℎ

𝑓
),       (15) 

ℎ𝑡
𝑏 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ

𝑏 𝑥𝑡 + 𝑊ℎℎ
𝑏 ℎ𝑡+1 + 𝑏ℎ

𝑏),       (16) 

𝑦𝑡 = 𝑊ℎ𝑦
𝑓
ℎ𝑡

𝑓
+ 𝑊ℎ𝑦

𝑏 ℎ𝑡
𝑏 + 𝑏𝑦).        (17) 

The output vector 𝑦𝑡 attained by processing the series of input datasets from 𝑡 = 1,… , 𝑇 was later 

fed into the attention layer. The dimensional of the hidden layer in the backward and forward direction 

is 50, with the output at the time step being a 100-size vector.  

Paroxysmal atrial fibrillation (PAF) takes place as an intermittent period of AF scattered with 

episodes of normal sinus rhythm. Therefore, a soft attention module is applied on top of BRNN such 

that more attention (or emphasis) is gained with a high prevalence of AF . The attention model is 

expressed in the following. The output from BRNN [𝑦1, 𝑦2, 𝑦𝑇] is combined into matrix 𝑌, which is of 

𝑁 x 𝑇 size, where 𝑁 denotes the size of output vector 𝑦𝑡 and 𝑇 refers to the length of the input series. 

The weight output vector ℎ𝑎𝑡𝑡 of the attention layer is given below: 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑎𝑡𝑡
𝑇 𝑌),        (18) 

ℎ𝑎𝑡𝑡 = 𝑌𝛼𝑇.          (19) 

𝛼  refers to the weight vector calculated from matrix 𝑦 , and the output ℎ𝑎𝑡𝑡  is computed as a 

weighted sum of the output vector from BRNN (ℎ𝑎𝑡𝑡 is a 100-dimensional vector). 

3.3. Hyperparameter tuning using EBO 

For choosing the optimum hyperparameter for the ensemble classifiers, the EBO algorithm can 

be applied. Trojovsky and Dehghani proposed EBOA as a stochastic-based optimizer [29]. The 
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mathematical modeling of the optimizer is discussed below: 

1) Initialization 

A participant of the community makes up the EBOA, a metaheuristic approach that works in the 

population dynamics manner. In the EBOA population, all individuals have a different method to 

address the issues at hand. A matrix named as a population matrix depicts the EBOA population from 

a mathematical perspective. 

Initial positions of individuals in the search space are randomly allocated as follows: 

𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟 ⋅ (𝑢𝑏𝑗 − 𝑙𝑏𝑗), |𝑖 = 1,2, … ,𝑁, 𝑗 = 1,2, … ,𝑚    (20) 

In Eq (20), a random integer in the range [0,1] is 𝑟, and 𝑙𝑏𝑗 and 𝑢𝑏𝑗 are the upper and lower limits 

of the 𝑗𝑡ℎ variable, correspondingly. According to the value suggested by each participant of EBO, the 

value for the objective function (OF) is evaluated for the problem variable. The vector shows the 

estimated value for the 𝑂𝐹 of the problem: 

𝑂𝐹 =

[
 
 
 
 
 
 
 
 
&𝑂𝐹&1

 &.
 &.
 &.
&𝑂𝐹&𝑖

 &.
 &.
 &.
&𝑂𝐹𝑁 ]

 
 
 
 
 
 
 
 

𝑁×1

=

[
 
 
 
 
 
 
 
 
&𝑂𝐹&1

 &.
 &.
 &.
&𝑂𝐹&𝑖

 &.
 &.
 &.
&𝑂𝐹(𝑋𝑁)]

 
 
 
 
 
 
 
 

𝑁×1

.       (21) 

In Eq (21), 𝑂𝐹 refers to the objective function value of the vector of the EBOA population and 

𝑂𝐹𝑖  is the computed value of 𝑂𝐹  for 𝑖𝑡ℎ  participants of EBOA. Similar to other optimization 

techniques, EBOA has two different stages, namely the mathematical representation and physical 

explanation, which are described in the following section. 

2) Voting and holding elections methods (exploration stage) 

Participants of EBOA vote for a candidate in the election depending upon how well‐informed 

they are. Their awareness may rely on how high quality the 𝑂𝐹𝑠 will be and it can be mathematically 

modeled as follows: 

𝐴𝑖 = {

𝑂𝐹𝑖−𝑂𝐹𝑤𝑜𝑟𝑠𝑡

𝑂𝐹𝑏𝑒𝑠𝑡−𝑂𝐹𝑤𝑜𝑟𝑠𝑡
, | 𝑂𝐹𝑏𝑒𝑠𝑡 ≠ 𝑂𝐹𝑤𝑜𝑟𝑠𝑡;

1, |                𝑒𝑙𝑠𝑒,
      (22) 

In Eq (22), 𝐴𝑖 refers to the level of awareness of 𝑖𝑡ℎ participants and 𝑜𝐹𝑏𝑒𝑠𝑡 and 𝑂𝐹𝑤𝑜𝑟𝑠𝑡 are the 

best and worst values of 𝑂𝐹, correspondingly. In the minimization problem, there is a minimum of two 

people running for choice on the default assumption of EBOA that the minimal candidate number of 

(𝑁𝐶), (viz. , 𝑁𝐶 ≥ 2) is two. 

The voter’s responsiveness is evaluated to be a random integer for determining who gets voted 
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for in EBOA. If the voter’s information is higher than the random integer, then that voter must select 

the fittest candidate (𝐶1). Then, the vote will be randomly distributed among the remaining contenders. 

This voting procedure can be mathematically modeled as follows: 

𝑉𝑖 = {
𝐶1,       𝐴𝑖 > 𝑟;
𝐶𝑘 ,       𝑒𝑙𝑠𝑒.

          (23) 

In Eq (23), 𝑦𝑖 refers to the 𝑖𝑡ℎ voter’s preference, 𝐶1 denotes the top pick, and 𝐶𝑘 indicates the 

𝑘𝑡ℎ candidates, where 𝑘 indicates an integer selected randomly from {2,3, … ,𝑁𝐶}. 

Finally, the winner is determined (leader) when each vote has been counted. Even individuals 

who did not vote for the leader nevertheless sensed the effect of their decisions and policies. Based on 

the elected leader's recommendation, participants of the EBOA are specified new roles and tasks. This 

leader enhances the EBOA’s ability for exploration by guiding the population method to different 

portions of the search space. 

The leader directs the EBOA process with new individuals, and each receives a new role. The 

positions that are generated are recognized to use, thereby increasing the worth of the goal function. 

The participants retain their prior status in the absence of movement. Using Eqs (24) and (25), the 

EBOA process for updating itself is given: 

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃1 = {

𝑥𝑖,𝑗 + 𝑟 ⋅ (𝐿𝑗| − |𝑙| ⋅ |𝑥𝑖,𝑗), 𝑂𝐹𝐿 < 𝑂𝐹𝑖;

𝑥𝑖,𝑗 + 𝑟 ⋅ (𝑥𝑖,𝑗| − |𝐿𝑗),                  𝑒𝑙𝑠𝑒.
      (24) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤.𝑃1,         𝑂𝐹𝑖
𝑛𝑒𝑤,𝑃1 < 𝑂𝐹𝑖;

𝑋𝑖 ,                    𝑒𝑙𝑠𝑒.
       (25) 

where 𝑋𝑖
𝑛𝑒𝑤.𝑃1  is a new location generated for the 𝑖𝑡ℎ  participants, 𝑥𝑖,𝑗

𝑛𝑒𝑤,𝑃1
  refers to the 𝑖𝑡ℎ 

participant of 𝑗𝑡ℎ dimensions, 𝑂𝐹𝑖
𝑛𝑒𝑤,𝑃1

 indicates the value of 𝑂𝐹, 𝐼 shows the random integer within 

[1,2], 𝐿 refers to the leader, 𝐿𝑖 shows the 𝑗𝑡ℎ dimensions, and 𝑂𝐹𝐿 indicates the 𝑂𝐹 value. 

3) Raising awareness via public movement (exploitation stage) 

Person awareness has a big effect on how we make decisions. A restricted search near the 

predicted solution might support determining the best one, to put it mathematically. Increasing the 

values of 𝑂𝐹 makes that individual extra aware and makes them make better decisions in the upcoming 

choice. Eqs (26) and (27) are used for increasing the public awareness of EBOA. 

𝑥𝑖.𝑗
𝑛𝑒𝑤,𝑃2 = 𝑥𝑖,𝑗 + (1 − 2𝑟) ⋅ 𝑅 ⋅ (1 −

𝑡

𝑇
) ⋅ 𝑥𝑖,𝑗,      (26) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑃2, |    𝑂𝐹𝑖
𝑛𝑒𝑤,𝑃2 < 𝑂𝐹𝑖;

𝑋𝑖 , |               𝑒𝑙𝑠𝑒.
       (27) 

where 𝑋𝑖
𝑛𝑒𝑤.𝑃2  indicates a new location for the 𝑖𝑡ℎ  population, 𝑂𝐹𝑖

𝑛𝑒𝑤,𝑃2𝑗  refers to the 𝑗𝑡ℎ 

variable, 𝑂𝐹𝑖
𝑛𝑒𝑤,𝑃2

 refers to the value of 𝑂𝐹, 𝑅 refers to the constant equivalent to 0.02, 𝑡 denotes the 

repetition counter, and 𝑇 indicates the overall performed iterations. 
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The fitness selection is the substantial factor impacting the effectiveness of the EBO methods. 

The hyperparameter selection procedure contains the solution encoding technique for evaluating the 

efficacy of the candidate solutions. The EBO algorithm deliberates accuracy as the important measure 

to develop the fitness function (FF) that can be given in equation form: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max(𝑃),         (28) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.          (29) 

Here, FP denotes the false positive and TP means the true positive values. 

4. Experimental validation 

The FDIA detection results of the EBODL-FDIAD technique are demonstrated in this section. 

The results were tested using two aspects: IEEE-14 and IEEE-39 standard bus systems.  Table 1 reports a 

detailed comparison study of the EBODL-FDIAD technique under the IEEE-14 standard bus system [14].  

Table 1. Comparison outcome of the EBODL-FDIAD technique with other systems on the 

IEEE14 standard system [14]. 

IEEE14 standard system 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑹𝒆𝒄𝒂𝒍 FNR 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

Training Phase 

EBODL-FDIAD 97.97 97.85 2.08 98.79 

MRFODL-FDIAD 96.89 96.85 3.37 97.61 

SVM Model 90.33 91.80 8.43 91.86 

CNN Algorithm 89.71 92.95 7.30 90.96 

MSA Model 90.53 90.48 9.77 89.89 

CDBN Algorithm 91.82 92.75 7.49 93.64 

SVM-GAB 90.82 92.07 8.16 92.30 

Testing Phase 

EBODL-FDIAD 98.60 98.37 1.34 98.73 

MRFODL-FDIAD 97.81 97.57 2.68 97.08 

SVM Model 91.17 90.66 9.57 91.44 

CNN Algorithm 92.21 92.93 7.30 90.96 

MSA Model 90.23 89.44 10.81 91.62 

CDBN Algorithm 93.72 92.95 7.31 90.07 

SVM-GAB 93.79 91.38 8.86 90.30 

Figure 3 provides a brief, comparative 𝑎𝑐𝑐𝑢𝑦 analysis of the EBODL-FDIAD technique on the 

IEEE14 standard system. The figure implies that the SVM, CNN, MSA, CDBN, and SVM-GAB 

techniques reported the least performance and the MRFODL-FDIAD model exhibited slightly boosted 

results. In addition, the results show that the EBODL-FDIAD technique gained increased values of 

𝑎𝑐𝑐𝑢𝑦 . With TRP, the EBODL-FDIAD technique offered a higher 𝑎𝑐𝑐𝑢𝑦  of 97.97%, whereas the 

MRFODL-FDIAD, SVM, CNN, MSA, CDBN, and SVM-GAB models obtained reduced 𝑎𝑐𝑐𝑢𝑦 of 

96.89%, 90.33%, 89.71%, 90.53%, 91.82%, and 90.82%, respectively. 
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Figure 3. 𝐴𝑐𝑐𝑢𝑦 analysis of the EBODL-FDIAD technique on the IEEE14 standard system. 

Figure 4 displays a comprehensive, comparative 𝑟𝑒𝑐𝑎𝑙 analysis of the EBODL-FDIAD system 

on the IEEE14 standard system. The figure shows that the SVM, CNN, MSA, CDBN, and SVM-GAB 

methods described the least performance and the MRFODL-FDIAD system shows somewhat 

increased results. Moreover, the results revealed that the EBODL-FDIAD technique had increased 

values of 𝑟𝑒𝑐𝑎𝑙. With TRP, the EBODL-FDIAD method provided a higher 𝑟𝑒𝑐𝑎𝑙 of 97.85%, whereas 

the MRFODL-FDIAD, SVM, CNN, MSA, CDBN, and SVM-GAB techniques acquired decreased 

𝑟𝑒𝑐𝑎𝑙 of 96.85%, 91.80%, 92.95%, 90.48%, 92.75%, and 92.07%, respectively. 

 

Figure 4. 𝑅𝑒𝑐𝑎𝑙 analysis of the EBODL-FDIAD technique on the IEEE14 standard system. 

Figure 5 offers a brief, comparative 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  analysis of the EBODL-FDIAD method on the 

IEEE14 standard system. The figure exhibits that the SVM, CNN, MSA, CDBN, and SVM-GAB 

algorithms reported decreased performance and the MRFODL-FDIAD method displays slightly 

boosted results. In addition, the outcomes prove that the EBODL-FDIAD method gained increased 

values of 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒. According to TRP, the EBODL-FDIAD system provided a greater 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 

98.79%, but the MRFODL-FDIAD, SVM, CNN, MSA, CDBN, and SVM-GAB algorithms had a 

diminished 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 97.61%, 91.86%, 90.96%, 89.89%, 93.64%, and 92.30%, respectively. 
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Figure 5. 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 analysis of the EBODL-FDIAD technique on the IEEE14 standard system. 

Figure 6 illustrates a wide-ranging comparison of the FNR analysis of the EBODL-FDIAD 

method with the IEEE14 standard system. This figure showcases that the SVM, CNN, MSA, CDBN, 

and SVM-GAB techniques informed poorer performance and the MRFODL-FDIAD system displayed 

moderately improved outcomes. Additionally, the results revealed that the EBODL-FDIAD system had 

higher values of FNR. With TRP, the EBODL-FDIAD system acquired an increased FNR of 2.08, 

however, the MRFODL-FDIAD, SVM, CNN, MSA, CDBN, and SVM-GAB techniques had 

minimized FNR of 3.37, 8.43, 7.30, 9.77, 7.49, and 8.16, respectively. 

 

Figure 6. FNR analysis of the EBODL-FDIAD technique on the IEEE14 standard system. 

The 𝑎𝑐𝑐𝑢𝑦 curves for training (TRA) and validation (VL) shown in Figure 7 for the EBODL-

FDIAD technique on the IEEE14 standard system give valued insights into its effectiveness at varying 

epochs. Mainly, it can be a reliable upgrade in both TRA and TES 𝑎𝑐𝑐𝑢𝑦  with raised epochs, 

representing the proficiency of the model for learnable and recognizable patterns from  TRA and TES 

data. The increased trends in TES 𝑎𝑐𝑐𝑢𝑦 underscore the model flexibility of the TRA dataset and the 

ability to precisely create predictions on unnoticed data, emphasizing capabilities of robust 

generalization. 
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Figure 7. 𝐴𝑐𝑐𝑢𝑦 curve of the EBODL-FDIAD technique on the IEEE14 standard system. 

Figure 8 displays a comprehensive overview of the TRA and TES loss values for the EBODL-

FDIAD algorithm on the IEEE14 standard system at diverse epochs. The TRA loss reliably decreases 

as the model refines weights to diminish the classification errors under both datasets. These loss curves 

explain the arrangement of the model with the TRA data, emphasizing the ability to capture patterns 

effectually. The incessant improvement of parameters in the EBODL-FDIAD system can be significant, 

targeted at lessening differences between predictions and actual TRA labels. 

 

Figure 8. Loss curve of the EBODL-FDIAD technique on the IEEE14 standard system. 

Table 2 reports an extensive comparison outcome of the EBODL-FDIAD technique on the IEEE-

39 standard bus system. Figure 9 represents a wide-ranging, comparative 𝑎𝑐𝑐𝑢𝑦  analysis of the 

EBODL-FDIAD method with the IEEE39 standard system. 
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Table 2. Comparison result of the EBODL-FDIAD model with other algorithms on the 

IEEE-39 standard system [14]. 

IEEE39 standard system 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑹𝒆𝒄𝒂𝒍 FNR 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

Training Phase 

EBODL-FDIAD 98.17 98.56 1.47 97.98 

MRFODL-FDIAD 96.79 97.70 2.55 96.82 

SVM Model 90.72 92.03 8.22 90.72 

CNN Algorithm 94.21 91.11 9.14 93.89 

MSA Model 94.06 89.51 10.73 89.89 

CDBN Algorithm 92.26 94.10 6.13 94.29 

SVM-GAB 91.33 89.83 10.41 90.62 

Testing Phase 

EBODL-FDIAD 98.52 97.96 1.28 98.58 

MRFODL-FDIAD 97.28 96.80 3.15 97.08 

SVM Model 92.46 89.39 7.19 93.04 

CNN Algorithm 92.67 93.65 10.48 89.77 

MSA Model 90.11 91.22 6.41 93.82 

CDBN Algorithm 91.66 90.69 10.75 89.49 

SVM-GAB 89.91 89.64 8.38 91.86 

 

Figure 9. 𝐴𝑐𝑐𝑢𝑦 analysis of the EBODL-FDIAD technique on the IEEE39 standard system. 

This figure indicates that the SVM, CNN, MSA, CDBN, and SVM-GAB techniques described 

minimized performance and the MRFODL-FDIAD method shows moderately improved outcomes. 

Moreover, the results exhibit that the EBODL-FDIAD technique had improved values of 𝑎𝑐𝑐𝑢𝑦. With 

TRP, the EBODL-FDIAD algorithm had boosted 𝑎𝑐𝑐𝑢𝑦  of 98.77%, while the MRFODL-FDIAD, 

SVM, CNN, MSA, CDBN, and SVM-GAB algorithms obtained decreased 𝑎𝑐𝑐𝑢𝑦 of 96.79%, 90.72%, 

94.21%, 94.06%, 92.26%, and 91.33%, respectively. 

Figure 10 illustrates a comprehensive, comparative 𝑟𝑒𝑐𝑎𝑙 analysis of the EBODL-FDIAD system 

on the IEEE39 standard system. This figure shows that the SVM, CNN, MSA, CDBN, and SVM-GAB 

algorithms had the least performance and the MRFODL-FDIAD system reveals somewhat improved 
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results. Meanwhile, the results denoted that the EBODL-FDIAD method achieved greater values of 

𝑟𝑒𝑐𝑎𝑙 . With TRP, the EBODL-FDIAD method provided an increased 𝑟𝑒𝑐𝑎𝑙  of 98.56%, while the 

MRFODL-FDIAD, SVM, CNN, MSA, CDBN, and SVM-GAB approaches acquired lessened 𝑟𝑒𝑐𝑎𝑙 

of 97.70%, 92.03%, 91.11%, 89.51%, 94.10%, and 89.83%, respectively. 

 

Figure 10. 𝑅𝑒𝑐𝑎𝑙 outcome of the EBODL-FDIAD method with the IEEE39 standard system. 

Figure 11 demonstrates an extensive, comparative 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  analysis of the EBODL-FDIAD 

method with the IEEE39 standard system. This figure indicates that the SVM, CNN, MSA, CDBN, 

and SVM-GAB systems stated less performance and the MRFODL-FDIAD system displayed 

moderately boosted outcomes. Additionally, the results presented that the EBODL-FDIAD algorithm 

had greater values of 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 . With TRP, the EBODL-FDIAD technique offered an increased 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 98.79%, whereas the MRFODL-FDIAD, SVM, CNN, MSA, CDBN, and SVM-GAB 

algorithms achieved minimized 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 97.98%, 96.82%, 90.72%, 93.89%, 89.89%, and 94.29%, 

respectively. 

 

Figure 11. 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 outcomes of the EBODL-FDIAD algorithm with the IEEE39 standard system. 

Figure 12 displays a brief comparison of the FNR outcomes of the EBODL-FDIAD method on 

the IEEE39 standard system. The figure implies that the SVM, CNN, MSA, CDBN, and SVM-GAB 
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algorithms reported the least performance and the MRFODL-FDIAD model exhibited somewhat 

boosted results. Simultaneously, the results show that the EBODL-FDIAD method gained raised values 

of FNR. With TRP, the EBODL-FDIAD algorithm provided a higher FNR of 1.47, whereas the 

MRFODL-FDIAD, SVM, CNN, MSA, CDBN, and SVM-GAB techniques obtained reduced FNR of 

2.55, 8.22, 9.14, 10.73, 6.13, and 10.41, respectively. 

 

Figure 12. FNR analysis of the EBODL-FDIAD technique on the IEEE39 standard system. 

The 𝑎𝑐𝑐𝑢𝑦 curves for TRA and VL shown in Figure 13 for the EBODL-FDIAD algorithm with 

the IEEE39 standard system provide valued insights into its efficiency at various epochs. Primarily, it 

can be a consistent upgrade in both TRA and TES 𝑎𝑐𝑐𝑢𝑦  with higher epochs, representing the 

proficiency of the model for learnable and recognizable patterns from both TRA and TES data. The 

raised trends in TES 𝑎𝑐𝑐𝑢𝑦  underscore the model flexibility of the TRA dataset and the ability to 

precisely produce predictions on undetected data, underscoring capabilities of robust generalization. 

 

Figure 13. 𝐴𝑐𝑐𝑢𝑦 curve of the EBODL-FDIAD technique under the IEEE39 standard system. 

Figure 14 provides an extensive outcome of the TRA and TES loss values for the EBODL-FDIAD 

method on the IEEE39 standard system at diverse epochs. The TRA loss is reliably minimized as the 

model refines weights to lessen the classification errors under both datasets. The loss curves represent 
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the model arrangements with the data of TRA, emphasizing the ability to capture patterns successfully. 

The continuous improvement of parameters in the EBODL-FDIAD system can be significant, targeted 

at lessening variances between actual and predicted TRA labels. These accomplished outcomes ensure 

the enhanced performance of the EBODL-FDIAD method on the FDIA detection process. 

 

Figure 14. Loss curve of the EBODL-FDIAD technique with the IEEE39 standard system. 

5. Conclusions 

In this manuscript, we offered the design of an EBODL-FDIAD method in the CPS platform. The 

purpose of the EBODL-FDIAD algorithm was to enhance security in the CPS environment via the 

detection of FDIAs. It contains three different processes, namely data preprocessing, ensemble 

learning, and EBO-based parameter tuning. At the primary level, the EBODL-FDIAD technique 

applies the LSN approach, which can be used for scaling the input data into valuable formats. In 

addition, the EBODL-FDIAD technique performs ensemble learning classification comprising three 

classifiers, namely the KELM, LSTM, and ABiRNN models. For optimal hyperparameter selection of 

the ensemble classifiers, the EBO algorithm was applied. To validate the enriched performance of the 

EBODL-FDIAD method, comprehensive simulations were involved. The extensive results highlighted 

that the EBODL-FDIAD technique performed well over other systems for diverse measures. In future 

work, the EBODL-FDIAD methodology can be provided by integrating methods from adversarial ML 

to improve its robustness against sophisticated attacks. By actively creating adversarial examples and 

training the model to detect and diminish them, this model is optimum for defending against evasion 

and poisoning efforts by adversaries. Also, exploring the application of federated learning methods to 

allow collaborative training across distributed CPS platforms are additional developments of the 

scalability and generalization abilities of the model that can be studied, enabling more effectual 

recognition of FDIAs in large-scale and heterogeneous systems.  

Use of AI tools declaration 

The authors declare that they have not used artificial intelligence (AI) tools in the creation of this 

article. 

 



15094 

AIMS Mathematics  Volume 9, Issue 6, 15076–15096. 

Acknowledgments 

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid 

University for funding this work through a large group research project under grant number 

(RGP2/02/44); Princess Nourah bint Abdulrahman University Researchers Supporting Project number 

(PNURSP2024R384), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia; and 

Research Supporting Project number (RSPD2024R608), King Saud University, Riyadh, Saudi Arabia. 

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border 

University, Arar, KSA, for funding this research work through the project number “NBU-FPEJ-2024- 

2847-01”. This study is partially funded by the Future University in Egypt (FUE). 

Conflict of interest 

The authors declare that they have no conflicts of interest. 

References 

1. K. D. Lu, Z. G. Wu, Multi-objective false data injection attacks of cyber-physical power systems, 

IEEE T. Circuits Syst. II, 69 (2022), 3924–3928. https://doi.org/10.1109/TCSII.2022.3181827 

2. P. L. Bhattar, N. M. Pindoriya, A. Sharma, A combined survey on distribution system state 

estimation and false data injection in cyber-physical power distribution networks, IET Cyber Phys. 

Syst. Theory Appl., 6 (2021), 41–62. https://doi.org/10.1049/cps2.12000 

3. Y. Li, Y. Wang, Developing graphical detection techniques for maintaining state estimation 

integrity against false data injection attack in integrated electric cyber-physical system, J. Syst. 

Architect., 105 (2020), 101705. https://doi.org/10.1016/j.sysarc.2019.101705 

4. Q. Wang, W. Tai, Y. Tang, M. Ni, Review of the false data injection attack against the cyber-

physical power system, IET Cyber Phys. Syst. Theory Appl., 4 (2019), 101–107. 

https://doi.org/10.1049/iet-cps.2018.5022 

5. S. Padhan, A. K. Turuk, Design of false data injection attacks in cyber-physical systems, Inform. 

Sci., 608 (2022), 825–843. https://doi.org/10.1016/j.ins.2022.06.082 

6. T. Zhou, K. Xiahou, L. L. Zhang, Q. H. Wu, Real-time detection of cyber-physical false data 

injection attacks on power systems, IEEE T. Ind. Inform., 17 (2021), 6810–6819. 

https://doi.org/10.1109/TII.2020.3048386 

7. Z. Qu, Y. Dong, N. Qu, H. Li, M. Cui, X. Bo, et al., False data injection attack detection in power 

systems based on cyber-physical attack genes, Front. Energy Res., 9 (2021), 644489. 

https://doi.org/10.3389/fenrg.2021.644489 

8. G. Cao, W. Gu, G. Lou, W. Sheng, K. Liu, Distributed synchronous detection for false data 

injection attack in cyber-physical microgrids, Int. J. Elec. Power Energy Syst., 137 (2022), 107788. 

https://doi.org/10.1016/j.ijepes.2021.107788 

9. J. Li, C. Sun, Q. Su, Analysis of cascading failures of power cyberphysical systems considering 

false data injection attacks, Global Energy Interconnect., 4 (2021), 204–213. 

https://doi.org/10.1016/j.gloei.2021.05.002 

https://doi.org/10.1109/TCSII.2022.3181827
https://doi.org/10.1049/cps2.12000
https://doi.org/10.1016/j.sysarc.2019.101705
https://doi.org/10.1049/iet-cps.2018.5022
https://doi.org/10.1016/j.ins.2022.06.082
https://doi.org/10.3389/fenrg.2021.644489
https://doi.org/10.1016/j.ijepes.2021.107788
https://doi.org/10.1016/j.gloei.2021.05.002


15095 

AIMS Mathematics  Volume 9, Issue 6, 15076–15096. 

10. T. Zou, A. S. Bretas, C. Ruben, S. C. Dhulipala, N. Bretas, Smart grids cyber-physical security: 

Parameter correction model against unbalanced false data injection attacks, Electr. Pow. Syst. Res., 

187 (2020), 106490. https://doi.org/10.1016/j.epsr.2020.106490 

11. M. Mazare, Adaptive optimal secure wind power generation control for variable speed wind 

turbine systems via reinforcement learning, Appl. Energ., 353 (2024), 122034. 

https://doi.org/10.1016/j.apenergy.2023.122034 

12. M. Mazare, M. Taghizadeh, H. Asharioun, Attack‐resilient pitch angle control for variable‐speed 

wind turbine systems under cyber threats, Int. J. Adapt. Control, 37 (2023), 1423–1439. 

https://doi.org/10.1002/acs.3580 

13. M. Mazare, Reinforcement learning-based fixed-time resilient control of nonlinear cyber physical 

systems under false data injection attacks and mismatch disturbances, J. Franklin I., 360 (2023), 

14926–14938. https://doi.org/10.1016/j.jfranklin.2023.10.026 

14. H. Alamro, K. Mahmood, S. S. Aljameel, A. Yafoz, R. Alsini, A. Mohamed, Modified red fox 

optimizer with deep learning enabled false data injection attack detection, IEEE Access, 11 (2023), 

79256–79264. https://doi.org/10.1109/ACCESS.2023.3298056 

15. J. Sakhnini, H. Karimipour, A. Dehghantanha, R. M. Parizi, Physical layer attack identification 

and localization in cyber–physical grid: An ensemble deep learning based approach, Phys. 

Commun., 47 (2021), 101394. https://doi.org/10.1016/j.phycom.2021.101394 

16. K. Liu, H. Zhang, Y. Zhang, C. Sun, False data-injection attack detection in cyber–physical 

systems with unknown parameters: A deep reinforcement learning approach, IEEE T. Cybernetics, 

11 (2023), 7115–7125. https://doi.org/10.1109/TCYB.2022.3225236 

17. E. Vincent, M. Korki, M. Seyedmahmoudian, A. Stojcevski, S. Mekhilef, Detection of false data 

injection attacks in cyber–physical systems using graph convolutional network, Electr. Pow. Syst. 

Res., 217 (2023), 109118. https://doi.org/10.1016/j.epsr.2023.109118 

18. Y. Zhang, W. Deng, K. Huang, C. Yang, False data injection attack testbed of industrial cyber-

physical systems of the process industry and a detection application. In: 2021 IEEE International 

Conference on Recent Advances in Systems Science and Engineering (RASSE), 2021, 1–7. 

https://doi.org/10.1109/RASSE53195.2021.9686839 

19. Y. Li, X. Wei, Y. Li, Z. Dong, M. Shahidehpour, Detection of false data injection attacks in smart 

grid: A secure federated deep learning approach, IEEE T. Smart Grid, 13 (2022), 4862–4872. 

https://doi.org/10.1109/TSG.2022.3204796 

20. W. Fu, Y. Yan, Y. Chen, Z. Wang, D. Zhu, L. Jin, Temporal false data injection attack and 

detection on cyber‐physical power system based on deep reinforcement learning, IET Smart Grid, 

7 (2024), 78–88. https://doi.org/10.1049/stg2.12141 

21. H. Ruan, B. Dorneanu, H. Arellano-Garcia, P. Xiao, L. Zhang, Deep learning-based fault 

prediction in wireless sensor network embedded cyber-physical systems for industrial processes, 

IEEE Access, 10(2022), 10867–10879. https://doi.org/10.1109/ACCESS.2022.3144333 

22. J. Tian, C. Shen, B. Wang, X. Xia, M. Zhang, C. Lin, Q. Li, LESSON: Multi-label adversarial 

false data injection attack for deep learning locational detection, IEEE T. Depend. Secure Comput., 

2024, 1–15. https://doi.org/10.1109/TDSC.2024.3353302 

23. J. Tian, B. Wang, R. Guo, Z. Wang, K. Cao, X. Wang, Adversarial attacks and defenses for deep-

learning-based unmanned aerial vehicles, IEEE Internet Things J., 9 (2021), 22399–22409. 

https://doi.org/10.1109/JIOT.2021.3111024 

https://doi.org/10.1016/j.epsr.2020.106490
https://doi.org/10.1016/j.apenergy.2023.122034
https://doi.org/10.1002/acs.3580
https://doi.org/10.1016/j.jfranklin.2023.10.026
https://doi.org/10.1109/ACCESS.2023.3298056
https://doi.org/10.1016/j.phycom.2021.101394
https://doi.org/10.1109/TCYB.2022.3225236
https://doi.org/10.1016/j.epsr.2023.109118
https://doi.org/10.1109/RASSE53195.2021.9686839
https://doi.org/10.1109/TSG.2022.3204796
https://doi.org/10.1049/stg2.12141
https://doi.org/10.1109/ACCESS.2022.3144333
https://doi.org/10.1109/TDSC.2024.3353302
https://doi.org/10.1109/JIOT.2021.3111024


15096 

AIMS Mathematics  Volume 9, Issue 6, 15076–15096. 

24. J. Tian, B. Wang, Z. Wang, K. Cao, J. Li, M. Ozay, Joint adversarial example and false data 

injection attacks for state estimation in power systems, IEEE T. Cybernetics, 52 (2022), 13699–

13713. https://doi.org/10.1109/TCYB.2021.3125345 

25. S. Sorguli, H. Rjoub, A novel energy accounting model using fuzzy restricted boltzmann 

machine—Recurrent neural network, Energies, 16 (2023), 2844. 

https://doi.org/10.3390/en16062844 

26. Q. Hu, H. Zhou, C. Wang, C. Zhu, J. Shen, P. He, Time-frequency fusion features-based 

GSWOA-KELM model for gear fault diagnosis, Lubricants, 12 (2024), 10. 

https://doi.org/10.3390/lubricants12010010 

27. M. Xia, X. Zheng, M. Imran, M. Shoaib, Data-driven prognosis method using hybrid deep 

recurrent neural network, Appl. Soft Comput., 93 (2020), 106351. 

https://doi.org/10.1016/j.asoc.2020.106351 

28. S. P. Shashikumar, A. J. Shah, G. D. Clifford, S. Nemati, Detection of paroxysmal atrial 

fibrillation using attention-based bidirectional recurrent neural networks, In: Proceedings of the 

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, 

715–723. https://doi.org/10.1145/3219819.3219912 

29. M. Abd Elaziz, M. E. Zayed, H. Abdelfattah, A. Q. Aseeri, E. M. Tag-eldin, M. Fujii, et al., 

Machine learning-aided modeling for predicting freshwater production of a membrane 

desalination system: A long-short-term memory coupled with election-based optimizer, Alex. Eng. 

J., 86 (2024), 690–703. https://doi.org/10.1016/j.aej.2023.12.012 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0). 

 

https://doi.org/10.1109/TCYB.2021.3125345
https://doi.org/10.3390/en16062844
https://doi.org/10.3390/lubricants12010010
https://doi.org/10.1016/j.asoc.2020.106351
https://doi.org/10.1145/3219819.3219912
https://doi.org/10.1016/j.aej.2023.12.012

