Let $ p $ be an odd prime with $ p\equiv 7\pmod{12} $, $ \frac{p-1}2 $ be the least integer such that $ 2^{\frac{p-1}2}\equiv 1\pmod p $, and $ q = 2^{\frac{p-1}2} $. Let $ \alpha $ be a primitive element of the finite field $ \Bbb F_{q} $ and $ \beta = \alpha^{\frac{q-1}{p}} $. Suppose that $ \sigma = \sum_{i = 0}^2\beta^{m\zeta_3^i}\in \Bbb F_q^* $, where $ m\in \Bbb F_p^* $ and $ \zeta_3 $ is a $ 3 $rd root of unity in $ \Bbb F_p $. Let $ \{u_i\} = (\operatorname{Tr}_{q/2}(\sigma\beta^i))_{i = 0}^{q-2} $ be a binary sequence of period $ q-1 $. In this paper, we obtained the cross correlation distribution between two sequences $ \{u_i\} $ and its $ \frac{q-1}p $-decimation sequence, which is two-valued.
Citation: Jianying Rong, Ting Li, Rui Hua, Xuemei Wang. A class of binary sequences with two-valued cross correlations[J]. AIMS Mathematics, 2024, 9(4): 9091-9106. doi: 10.3934/math.2024442
Let $ p $ be an odd prime with $ p\equiv 7\pmod{12} $, $ \frac{p-1}2 $ be the least integer such that $ 2^{\frac{p-1}2}\equiv 1\pmod p $, and $ q = 2^{\frac{p-1}2} $. Let $ \alpha $ be a primitive element of the finite field $ \Bbb F_{q} $ and $ \beta = \alpha^{\frac{q-1}{p}} $. Suppose that $ \sigma = \sum_{i = 0}^2\beta^{m\zeta_3^i}\in \Bbb F_q^* $, where $ m\in \Bbb F_p^* $ and $ \zeta_3 $ is a $ 3 $rd root of unity in $ \Bbb F_p $. Let $ \{u_i\} = (\operatorname{Tr}_{q/2}(\sigma\beta^i))_{i = 0}^{q-2} $ be a binary sequence of period $ q-1 $. In this paper, we obtained the cross correlation distribution between two sequences $ \{u_i\} $ and its $ \frac{q-1}p $-decimation sequence, which is two-valued.
[1] | H. Cohen, A course in computational algebraic number theory, Heidelberg: Springer, 1996. https://doi.org/10.1007/978-3-662-02945-9 |
[2] | A. Canteaut, P. Charpin, H. Dobbertin, Binary $m$-sequences with three-valued crosscorrelation: a proof of Welch's conjecture, IEEE T. Inform. Theory, 46 (2000), 4–8. http://doi.org/10.1109/18.817504 doi: 10.1109/18.817504 |
[3] | T. W. Cusick, H. Dobbertin, Some new three-valued crosscorrelation functions for binary $m$-sequences, IEEE T. Inform. Theory, 42 (1996), 1238–1240. https://doi.org/10.1109/18.508848 doi: 10.1109/18.508848 |
[4] | S. T. Choi, J. Y. Kim, J. S. No, On the cross-correlation of a $p$-ary $m$-sequence and its decimated sequences by $d = \frac{p^m+1}{p^k+1}+\frac{p^m-1} 2 $, IEICE T. Commun., E96.B (2013), 2190–2197. https://doi.org/10.1587/transcom.E96.B.2190 doi: 10.1587/transcom.E96.B.2190 |
[5] | H. Dobbertin, P. Felke, T. Helleseth, P. Rosendahl, Niho type crosscorrelation functions via Dickson polynomials and Kloosterman sums, IEEE T. Inform. Theory, 52 (2006), 613–627. https://doi.org/10.1109/TIT.2005.862094 doi: 10.1109/TIT.2005.862094 |
[6] | H. Dobbertin, T. Helleseth, P. V. Kumar, H. Martinsen, Ternary $m$-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type, IEEE T. Inform. Theory, 47 (2001), 1473–1481. https://doi.org/10.1109/18.923728 doi: 10.1109/18.923728 |
[7] | C. Ding, J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434–446. https://doi.org/10.1016/j.disc.2012.11.009 doi: 10.1016/j.disc.2012.11.009 |
[8] | S. W. Golomb, G. Gong, Signal design for good correlation: for wireless communication, cryptography, and radar, Cambridge: Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511546907 |
[9] | T. Helleseth, A. Kholosha, Crosscorrelation of $m$-sequences, exponential sums, bent functions and Jacobsthal sums, Cryptogr. Commun., 3 (2011), 281–291. https://doi.org/10.1007/s12095-011-0048-0 doi: 10.1007/s12095-011-0048-0 |
[10] | Z. Hu, X. Li, D. Mills, E. Müller, W. Sun, W. Willems, et al., On the cross correlation of sequences with the decimation factor, Appl. Algebr. Eng. Comm., 12 (2001), 255–263. https://doi.org/10.1007/s002000100073 doi: 10.1007/s002000100073 |
[11] | T. Helleseth, P. Rosendahl, New pairs of $m$-sequences with $4$-level cross-correlation, Finite Fields Th. App., 11 (2005), 674–683. https://doi.org/10.1016/j.ffa.2004.09.001 doi: 10.1016/j.ffa.2004.09.001 |
[12] | D. J. Katz, Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth, J. Comb. Theory A, 119 (2012), 1644–1659. https://doi.org/10.1016/j.jcta.2012.05.003 doi: 10.1016/j.jcta.2012.05.003 |
[13] | E. Lehmer, On the number of solutions of $u^k+D\equiv w^2\pmod p$, Pacific J. Math., 5 (1955), 103–118. |
[14] | J. Luo, Binary sequences with three-valued cross correlations of different lengths, IEEE T. Inform. Theory, 62 (2016), 7532–7537. https://doi.org/10.1109/TIT.2016.2620432 doi: 10.1109/TIT.2016.2620432 |
[15] | R. Lidl, H. Niederreiter, Finite fields, Cambridge: Cambridge University Press, 1996. https://doi.org/10.1017/CBO9780511525926 |
[16] | G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251–264. https://doi.org/10.4064/AA-39-3-251-264 doi: 10.4064/AA-39-3-251-264 |
[17] | E. N. Müller, On the cross correlation of sequences over $GF (p)$ with short periods, IEEE T. Inform. Theory, 45 (1999), 289–295. https://doi.org/10.1109/18.746820 doi: 10.1109/18.746820 |
[18] | G. L. Mullen, D. Panario, Handbook of finite fields, 1 Eds., New York: Chapman and Hall/CRC, 2013. https://doi.org/10.1201/b15006 |
[19] | B. Shcmidt, C. White, All two-weight irreducible cyclic codes, Finite Fields Th. App., 8 (2002), 1–17. https://doi.org/10.1006/ffta.2000.0293 doi: 10.1006/ffta.2000.0293 |
[20] | Y. Wu, Q. Yue, X. Shi, X. Zhu, Binary and ternary sequences with a few cross correlations, Cryptogr. Commun., 12 (2020), 511–525. https://doi.org/10.1007/s12095-019-00376-4 doi: 10.1007/s12095-019-00376-4 |
[21] | Y. Xia, C. Li, X. Zeng, T. Helleseth, Some results on cross-correlation distribution between a $p$-ary $m$-sequence and its decimated sequences, IEEE T. Inform. Theory, 60 (2014), 7368–7381. https://doi.org/10.1109/TIT.2014.2350775 doi: 10.1109/TIT.2014.2350775 |
[22] | Y. Xia, X. Zeng, L. Hu, Further cross correlation properties of sequences with the decimation factor, Appl. Algebr. Eng. Comm., 21 (2010), 329–342. https://doi.org/10.1007/s00200-010-0128-y doi: 10.1007/s00200-010-0128-y |
[23] | J. Yang, L. Xia, Complete solving of explicit evaluation of Gauss sums in the index 2 case, Sci. China Math., 53 (2010), 2525–2542. https://doi.org/10.1007/s11425-010-3155-z doi: 10.1007/s11425-010-3155-z |
[24] | T. Zhang, S. Li, T. Feng, G. Ge, Some new results on the cross correlation of $m$-sequences, IEEE T. Inform. Theory, 60 (2014), 3062–3068. https://doi.org/10.1109/TIT.2014.2311113 doi: 10.1109/TIT.2014.2311113 |
[25] | X. Zeng, J. Q. Liu, L. Hu, Generalized Kasami sequences: the large set, IEEE T. Inform. Theory, 53 (2007), 2587–2598. https://doi.org/10.1109/TIT.2007.899528 doi: 10.1109/TIT.2007.899528 |