Research article Special Issues

Design and experimentation of sampled-data controller in T-S fuzzy systems with input saturation through the use of linear switching methods

  • Received: 30 October 2023 Revised: 22 November 2023 Accepted: 26 November 2023 Published: 25 December 2023
  • MSC : 34A07, 34D20, 93D20

  • In this study, the stability and stabilization analyses are discussed for Takagi-Sugeno (T-S) fuzzy systems with input saturation. A fuzzy-based sampled-data control is designed to stabilize the T-S fuzzy systems. Based on the Lyapunov method and some integral inequality techniques, a set of sufficient conditions is obtained as linear matrix inequality (LMI) constraints to guarantee the asymptotic stability of the considered system. In this process, the linear switching method is utilized to design a controller that is dependent on the membership function, and an integral inequality is utilized. Additionally, determination of the controller parameters is achieved by resolving a series of LMI constraints. The effectiveness of these criteria is demonstrated through a real system that is modeled by the T-S system.

    Citation: YeongJae Kim, YongGwon Lee, SeungHoon Lee, Palanisamy Selvaraj, Ramalingam Sakthivel, OhMin Kwon. Design and experimentation of sampled-data controller in T-S fuzzy systems with input saturation through the use of linear switching methods[J]. AIMS Mathematics, 2024, 9(1): 2389-2410. doi: 10.3934/math.2024118

    Related Papers:

  • In this study, the stability and stabilization analyses are discussed for Takagi-Sugeno (T-S) fuzzy systems with input saturation. A fuzzy-based sampled-data control is designed to stabilize the T-S fuzzy systems. Based on the Lyapunov method and some integral inequality techniques, a set of sufficient conditions is obtained as linear matrix inequality (LMI) constraints to guarantee the asymptotic stability of the considered system. In this process, the linear switching method is utilized to design a controller that is dependent on the membership function, and an integral inequality is utilized. Additionally, determination of the controller parameters is achieved by resolving a series of LMI constraints. The effectiveness of these criteria is demonstrated through a real system that is modeled by the T-S system.



    加载中


    [1] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE T. Syst. Man Cy., 15 (1985), 116–132. http://dx.doi.org/10.1109/Tsmc.1985.6313399 doi: 10.1109/Tsmc.1985.6313399
    [2] Y. Liu, S. M. Lee, Stability and stabilization of Takagi-Sugeno fuzzy systems via sampled-data and state quantized controller, IEEE T. Fuzzy Syst., 24 (2016), 635–644. http://dx.doi.org/10.1109/Tfuzz.2015.2469099 doi: 10.1109/Tfuzz.2015.2469099
    [3] O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, Stability and stabilization of T-S fuzzy systems with time-varying delays via augmented Lyapunov-Krasovskii functionals, Inform. Sci., 372 (2016), 1–15. http://dx.doi.org/10.1016/j.ins.2016.08.026 doi: 10.1016/j.ins.2016.08.026
    [4] Y. J. Liu, J. H. Park, B. Z. Guo, Y. J. Shu, Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control, IEEE T. Fuzzy Syst., 26 (2018), 1040–1045. http://dx.doi.org/10.1109/Tfuzz.2017.2686364 doi: 10.1109/Tfuzz.2017.2686364
    [5] L. K. Wang, H. K. Lam, A new approach to stability and stabilization analysis for continuous-time Takagi-Sugeno fuzzy systems with time delay, IEEE T. Fuzzy Syst., 26 (2018), 2460–2465. http://dx.doi.org/10.1109/Tfuzz.2017.2752723 doi: 10.1109/Tfuzz.2017.2752723
    [6] S. H. Lee, M. J. Park, O. M. Kwon, R. Sakthivel, A sampled-data control problem of neural-network-based systems using an improved free-matrix-based inequality, J. Franklin I., 356 (2019), 8344–8365. http://dx.doi.org/10.1016/j.jfranklin.2019.08.001 doi: 10.1016/j.jfranklin.2019.08.001
    [7] C. Briat, A. Seuret, A looped-functional approach for robust stability analysis of linear impulsive systems, Syst. Control Lett., 61 (2012), 980–988. http://dx.doi.org/10.1016/j.sysconle.2012.07.008 doi: 10.1016/j.sysconle.2012.07.008
    [8] L. Hetel, J. Daafouz, S. Tarbouriech, C. Prieur, Stabilization of linear impulsive systems through a nearly-periodic reset, Nonlinear Anal.-Hybri., 7 (2013), 4–15. http://dx.doi.org/10.1016/j.nahs.2012.06.001 doi: 10.1016/j.nahs.2012.06.001
    [9] E. Fridman, A. Seuret, J. P. Richard, Robust sampled-data stabilization of linear systems: An input delay approach, Automatica, 40 (2004), 1441–1446. http://dx.doi.org/10.1016/j.automatica.2004.03.003 doi: 10.1016/j.automatica.2004.03.003
    [10] P. Naghshtabrizi, J. P. Hespanha, A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Syst. Control Lett., 57 (2008), 378–385. http://dx.doi.org/10.1016/j.sysconle.2007.10.009 doi: 10.1016/j.sysconle.2007.10.009
    [11] E. Fridman, A refined input delay approach to sampled-data control, Automatica, 46 (2010), 421–427. http://dx.doi.org/10.1016/j.automatica.2009.11.017 doi: 10.1016/j.automatica.2009.11.017
    [12] K. Liu, E. Fridman, Wirtinger's inequality and Lyapunov-based sampled-data stabilization, Automatica, 48 (2012), 102–108. http://dx.doi.org/10.1016/j.automatica.2011.09.029 doi: 10.1016/j.automatica.2011.09.029
    [13] A. Seuret, A novel stability analysis of linear systems under asynchronous samplings, Automatica, 48 (2012), 177–182. http://dx.doi.org/10.1016/j.automatica.2011.09.033 doi: 10.1016/j.automatica.2011.09.033
    [14] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. http://dx.doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [15] A. Seuret, C. Briat, Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals, Automatica, 55 (2015), 274–278. http://dx.doi.org/10.1016/j.automatica.2015.03.015 doi: 10.1016/j.automatica.2015.03.015
    [16] H. B. Zeng, J. H. Park, S. P. Xiao, Y. J. Liu, Further results on sampled-data control for master-slave synchronization of chaotic Lur'e systems with time delay, Nonlinear Dynam., 82 (2015), 851–863. http://dx.doi.org/10.1007/s11071-015-2199-6 doi: 10.1007/s11071-015-2199-6
    [17] T. H. Lee, J. H. Park, Stability analysis of sampled-data systems via free-matrix-based time-dependent discontinuous Lyapunov approach, IEEE T. Automat. Contr., 62 (2017), 3653–3657. http://dx.doi.org/10.1109/Tac.2017.2670786 doi: 10.1109/Tac.2017.2670786
    [18] H. B. Zeng, K. L. Teo, Y. He, A new looped-functional for stability analysis of sampled-data systems, Automatica, 82 (2017), 328–331. http://dx.doi.org/10.1016/j.automatica.2017.04.051 doi: 10.1016/j.automatica.2017.04.051
    [19] T. H. Lee, J. H. Park, Improved criteria for sampled-data synchronization of chaotic Lur'e systems using two new approaches, Nonlinear Anal.-Hybri., 24 (2017), 132–145. http://dx.doi.org/10.1016/j.nahs.2016.11.006 doi: 10.1016/j.nahs.2016.11.006
    [20] T. Li, R. T. Yuan, S. M. Fei, Z. T. Ding, Sampled-data synchronization of chaotic lur'e systems via an adaptive event-triggered approach, Inform. Sci., 462 (2018), 40–54. http://dx.doi.org/10.1016/j.ins.2018.06.012 doi: 10.1016/j.ins.2018.06.012
    [21] N. Gunasekaran, G. S. Zhai, Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit, Neurocomputing, 413 (2020), 499–511. http://dx.doi.org/10.1016/j.neucom.2020.05.060 doi: 10.1016/j.neucom.2020.05.060
    [22] K. Tanaka, T. Hori, H. O. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE T. Fuzzy Syst., 11 (2003), 582–589. http://dx.doi.org/10.1109/Tfuzz.2003.814861 doi: 10.1109/Tfuzz.2003.814861
    [23] B. J. Rhee, S. Won, A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design, Fuzzy Set. Syst., 157 (2006), 1211–1228. http://dx.doi.org/10.1016/j.fss.2005.12.020 doi: 10.1016/j.fss.2005.12.020
    [24] L. K. Wang, H. K. Lam, New stability criterion for continuous-time Takagi-Sugeno fuzzy systems with time-varying delay, IEEE T. Cybernetics, 49 (2019), 1551–1556. http://dx.doi.org/10.1109/Tcyb.2018.2801795 doi: 10.1109/Tcyb.2018.2801795
    [25] R. M. Zhang, D. Q. Zeng, J. H. Park, Y. J. Liu, S. M. Zhong, A new approach to stabilization of chaotic systems with nonfragile fuzzy proportional retarded sampled-data control, IEEE T. Cybernetics, 49 (2019), 3218–3229. http://dx.doi.org/10.1109/Tcyb.2018.2831782 doi: 10.1109/Tcyb.2018.2831782
    [26] J. R. Zhao, S. Y. Xu, J. H. Park, Improved criteria for the stabilization of T-S fuzzy systems with actuator failures via a sampled-data fuzzy controller, Fuzzy Set. Syst., 392 (2020), 154–169. http://dx.doi.org/10.1016/j.fss.2019.09.004 doi: 10.1016/j.fss.2019.09.004
    [27] L. Yang, J. Y. Zhang, C. Ge, W. Li, Z. W. Zhao, Stability and stabilization for uncertain fuzzy system with sampled-data control and state quantization, Appl. Intell., 51 (2021), 7469–7483. http://dx.doi.org/10.1007/s10489-021-02206-8 doi: 10.1007/s10489-021-02206-8
    [28] Y. H. Zhang, H. Y. Li, J. Sun, W. He, Cooperative adaptive event-triggered control for multiagent systems with actuator failures, IEEE T. Syst. Man Cy., 49 (2019), 1759–1768. http://dx.doi.org/10.1109/Tsmc.2018.2883907 doi: 10.1109/Tsmc.2018.2883907
    [29] Y. M. Li, J. X. Zhang, W. Liu, S. C. Tong, Observer-based adaptive optimized control for stochastic nonlinear systems with input and state constraints, IEEE T. Neur. Net. Lear., 33 (2022), 7791–7805. http://dx.doi.org/10.1109/Tnnls.2021.3087796 doi: 10.1109/Tnnls.2021.3087796
    [30] L. K. Wang, H. K. Lam, J. H. Gu, Stability and stabilization for fuzzy systems with time delay by applying polynomial membership function and iteration algorithm, IEEE T. Cybernetics, 52 (2022), 11604–11613. http://dx.doi.org/10.1109/Tcyb.2021.3072797 doi: 10.1109/Tcyb.2021.3072797
    [31] H. B. Zeng, K. L. Teo, Y. He, W. Wang, Sampled-data stabilization of chaotic systems based on a T-S fuzzy model, Inform. Sci., 483 (2019), 262–272. http://dx.doi.org/10.1016/j.ins.2019.01.046 doi: 10.1016/j.ins.2019.01.046
    [32] P. Y. Tang, Y. C. Ma, Non-fragile sampled-date dissipative analysis for uncertain T-S fuzzy time delay system with actuator saturation, ISA T., 106 (2020), 109–123. http://dx.doi.org/10.1016/j.isatra.2020.07.006 doi: 10.1016/j.isatra.2020.07.006
    [33] R. Sakthivel, R. Sakthivel, O. M. Kwon, P. Selvaraj, Disturbance rejection for singular semi-markov jump neural networks with input saturation, Appl. Math. Comput., 407 (2021), 126301. http://dx.doi.org/10.1016/j.amc.2021.126301 { doi: 10.1016/j.amc.2021.126301
    [34] H. K. Lam, F. H. F. Leung, Stabilization of chaotic systems using linear sampled-data controller, Int. J. Bifurcat. Chaos, 17 (2007), 2021–2031. https://dx.doi.org/10.1142/S0218127407018191 doi: 10.1142/S0218127407018191
    [35] X. L. Zhu, B. Chen, D. Yue, Y. Wang, An improved input delay approach to stabilization of fuzzy systems under variable sampling, IEEE T. Fuzzy Syst., 20 (2012), 330–341. https://dx.doi.org/10.1109/TFUZZ.2011.2174242 doi: 10.1109/TFUZZ.2011.2174242
    [36] Z. G. Wu, P. Shi, H. Su, J. Chu, Sampled-data fuzzy control of chaotic systems based on T-S fuzzy model, IEEE T. Fuzzy Syst., 22 (2014), 153–163. https://dx.doi.org/10.1109/TFUZZ.2013.2249520 doi: 10.1109/TFUZZ.2013.2249520
    [37] Z. P. Wang, H. N. Wu, On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach, IEEE T. Cybernetics, 45 (2015), 819–829. https://dx.doi.org/10.1109/TCYB.2014.2336976 doi: 10.1109/TCYB.2014.2336976
    [38] T. H. Lee, J. H. Park, New methods of fuzzy sampled-data control for stabilization of chaotic systems, IEEE T. Syst. Man Cy. Syst., 48 (2018), 2026–2034. https://dx.doi.org/10.1109/TSMC.2017.2690803 doi: 10.1109/TSMC.2017.2690803
    [39] Q. Inc, Inverted pendulum experiment-SRV02 RTOPEN user manual, Ontario, Canada, 2012. Available from: https://www.quanser.com/products/rotary-inverted-pendulum/.
    [40] K. J. Åström, K. Furuta, Swinging up a pendulum by energy control, Automatica, 36 (2000), 287–295. http://dx.doi.org/10.1016/S0005-1098(99)00140-5 doi: 10.1016/S0005-1098(99)00140-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(864) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog