Research article Special Issues

Using computational techniques of fixed point theory for studying the stationary infinite horizon problem from the financial field

  • Received: 18 November 2023 Revised: 12 December 2023 Accepted: 14 December 2023 Published: 22 December 2023
  • MSC : 47H10, 90C39, 91B06

  • In this article, we will solve optimization problems from the financial and economic field with constants, infinite-horizon iterative techniques and elements from fixed point theory. We will resort to Ćirić contractions in Banach space and the main result consists of the existence of a fixed point to solve an important class of infinite-horizon iterative schemes for optimization problems with state constraints for which the value function is merely lower semi-continuous. The developed tools allowed us to solve the stationary infinite-horizon optimization problems, especially for the maximization of the utility of households. We present some fixed point results that are fundamental for the development of our contributions: Notably, existence, monotonicity, attainability and results in the Ćirić contribution. We show the convergence in norm with probability for an iterative procedure defined for our problem under the stated assumptions. By using the Ćirić operator and the Reich-Rus type $ \psi F $-contraction, we prove the existence of the results of the optional cost function of an infinite horizon problem in a complete metric space. For a particular case, we realize a numerical simulation in C++. The conclusions are that the convergence, the existence and the uniqueness results of an optimal cost function of an infinite horizon problem in a Banach space can be treated by resorting to the Ćirić operator.

    Citation: Abdelkader Belhenniche, Amelia Bucur, Liliana Guran, Adrian Nicolae Branga. Using computational techniques of fixed point theory for studying the stationary infinite horizon problem from the financial field[J]. AIMS Mathematics, 2024, 9(1): 2369-2388. doi: 10.3934/math.2024117

    Related Papers:

  • In this article, we will solve optimization problems from the financial and economic field with constants, infinite-horizon iterative techniques and elements from fixed point theory. We will resort to Ćirić contractions in Banach space and the main result consists of the existence of a fixed point to solve an important class of infinite-horizon iterative schemes for optimization problems with state constraints for which the value function is merely lower semi-continuous. The developed tools allowed us to solve the stationary infinite-horizon optimization problems, especially for the maximization of the utility of households. We present some fixed point results that are fundamental for the development of our contributions: Notably, existence, monotonicity, attainability and results in the Ćirić contribution. We show the convergence in norm with probability for an iterative procedure defined for our problem under the stated assumptions. By using the Ćirić operator and the Reich-Rus type $ \psi F $-contraction, we prove the existence of the results of the optional cost function of an infinite horizon problem in a complete metric space. For a particular case, we realize a numerical simulation in C++. The conclusions are that the convergence, the existence and the uniqueness results of an optimal cost function of an infinite horizon problem in a Banach space can be treated by resorting to the Ćirić operator.



    加载中


    [1] D. P. Bertsekas, Dynamic programming and optimal control, Belmont: Athena Scientific, 1995.
    [2] D. Acemoglu, Introduction to modern economic growth, 2007. Available from: https://www.theigc.org/sites/default/files/2016/06/acemoglu-2007.pdf.
    [3] Y. Guo, X. B. Shu, F. Xu, C. Yang, HJB equation for optimal control system with random impulses, Optimization, 2022. https://10.1080/02331934.2022.2154607
    [4] F. Xu, Y. Lai, X. B. Shu, Chaos in integer order and fractional order financial systems and their synchronization, Chaos Soliton. Fract., 117 (2018), 125–136. https://doi.org/10.1016/j.chaos.2018.10.005 doi: 10.1016/j.chaos.2018.10.005
    [5] D. P. Bertsekas, Dynamic programming and optimal control, Belmont: Athena Scientific, 2005. Available from: http://athenasc.com/dpbook.html.
    [6] M. J. Miranda, P. L. Fackler, Applied computational economics and finance, The MIT Press, 2004. Available from: https://mitpress.mit.edu/9780262633093/applied-computational-economics-and-finance/.
    [7] R. Torres, Dynamic programming (ECO 10401 - 001), 2014. Available from: http://ciep.itam.mx/rtorres/progdin/.
    [8] N. L. Stokey, R. E. Lucas Jr., E. C. Prescott, Recursive methods in economic dynamics, Cambridge: Harvard University Press, 1989. https://doi.org/10.2307/j.ctvjnrt76
    [9] K. J. Arrow, T. Harris, J. Marschak, Optimal inventory policy, Econometrica, 19 (1951), 250–272. Available from: https://www.or.mist.i.u-tokyo.ac.jp/takeda/FreshmanCourse/ArrowHarrisMarschak.pdf.
    [10] R. E. Lucas Jr., E. C. Prescott, Investment under uncertainty, Econometrica, 39 (1971), 659–681. https://doi.org/10.2307/1909571 doi: 10.2307/1909571
    [11] W. A. Brock, L. J. Mirman, Optimal economic growth and uncertainty: The discounted case, J. Econ. Theory, 4 (1972), 479–513. https://doi.org/10.1016/0022-0531(72)90135-4 doi: 10.1016/0022-0531(72)90135-4
    [12] R. E. Lucas, Asset prices in an exchange economy, Econometrica, 46 (1978), 1429–1445. Available from: http://www.jstor.org/stable/1913837.
    [13] W. A. Brock, The economics of information and uncertainty, Chapter title: Asset prices in a production economy, Chicago: University of Chicago Press, 1982. Available from: https://www.nber.org/system/files/chapters/c4431/c4431.pdf.
    [14] F. E. Kydland, E. C. Prescott, Time to build and aggregate fluctuations, Econometrica, 50 (1982), 1345–1370. Available from: http://www.jstor.org/stable/1913386?origin = JSTOR-pdf.
    [15] I. P. Androulakis, Dynamic programming: Infinite horizon problems overview, In: C. Floudas, P. Pardalos (eds), Encyclopedia of optimization, Boston: Springer, 2008. https://doi.org/10.1007/978-0-387-74759-0-148
    [16] T. Kamihigashi, Existence and uniqueness of a fixed point for the Bellman operator in deterministic dynamic programming, REB Disscution, 2011.
    [17] M. G. Bellemare, G. Ostrovski, A. Guez, P. Thomas, R. Munos, Increasing the action gap: New operators for reinforcement learning, Pro. AAAI Conf. Artif. Intell., 30 (2016). https://doi.org/10.48550/arXiv.1512.04860
    [18] M. G. Bellemare, W. Dabney, R. Munos, A distributional perspective on reinforcement learning, Int. Conf. Machine Learn., 2017,449–458. https://doi.org/10.48550/arXiv.1707.06887
    [19] M. G. Bellemare, W. Dabney, M. Rowland, Distributional reinforcement learning, MIT Press, 2023. Available from: http://www.distributional-rl.org.
    [20] R. Bellman, Dynamic programming, Science, 153 (1966), 34–37.
    [21] J. B. Serrano, S. Curi, A. Krause, G. Neu, Logistic q-learning, Int. Conf. Artif. Intell. Statis., 2021, 3610–3618. Available from: https://proceedings.mlr.press/v130/bas-serrano21a.html.
    [22] J. Filar, K. Vrieze, Competitive Markov decision processes, Springer Science & Business Media, 2012. Available from: https://link.springer.com/book/10.1007/978-1-4612-4054-9.
    [23] M. L. Puterman, Markov decision processes: Discrete stochastic dynamic programming, John Wiley & Sons, 2014.
    [24] J. M. Alden, R. L. Smith, Rolling horizon procedures in nonhomogeneous Markov decision processes, Oper. Res., 40 (1984), 183–194. http://dx.doi.org/10.1287/opre.40.3.S183 doi: 10.1287/opre.40.3.S183
    [25] I. E. Schochetman, R. L. Smith, Infinite horizon optimization, Math. Oper. Res., 14 (1989), 559–574. http://dx.doi.org/10.1287/moor.14.3.559 doi: 10.1287/moor.14.3.559
    [26] A. Charnes, W. W. Cooper, B. Mellon, A model for optimizing production by reference to cost surrogates, Econometrica, 23 (1955), 307–323. http://dx.doi.org/10.2307/1910387 doi: 10.2307/1910387
    [27] F. Modigliani, F. E. Hohn, Production planning over time and the nature of the expectation and planning horizon, Econometrica, 23 (1955), 46–66. http://dx.doi.org/10.2307/1905580 doi: 10.2307/1905580
    [28] S. M. Johnson, Sequential production planning over time at minimum cost, Manag. Sci., 3 (1957), 435–437. http://dx.doi.org/10.1287/mnsc.3.4.435 doi: 10.1287/mnsc.3.4.435
    [29] S. Chand, S. P. Sethi, J. M. Proth, Existence of forecast horizons in undiscounted discrete-time lot size models, Oper. Res., 38 (1990), 884–892. http://dx.doi.org/10.1287/opre.38.5.884 doi: 10.1287/opre.38.5.884
    [30] S. P. Sethi, G. L. Thompson, Optimal control theory, New York: Springer, 2005. http://dx.doi.org/10.1007/978-1-4757-6097-2
    [31] E. V. Denardo, Dynamic programming: Models and applications, Mineola: Dover, 2003.
    [32] T. Cheevaprawatdomrong, R. L. Smith, Infinite horizon production scheduling in time varying systems under stochastic demand, Oper. Res., 52 (2004), 105–115. http://dx.doi.org/10.1287/opre.1030.0080 doi: 10.1287/opre.1030.0080
    [33] C. Bes, S. P. Sethi, Concepts of forecast and decision horizons: Applications to dynamic stochastic optimization problems, Math. Oper. Res., 13 (1988), 295–310. http://dx.doi.org/10.1287/moor.13.2.295 doi: 10.1287/moor.13.2.295
    [34] S. P. Sethi, A note on a planning horizon model of cash management, J. Financ. Quant. Anal., 6 (1971), 659–665. http://dx.doi.org/10.2307/2330136 doi: 10.2307/2330136
    [35] A. Ghate, R. L. Smith, Optimal backlogging over an infinite horizon under time-varying convex production and inventory costs, Manuf. Serv. Op. Manag., 11 (2009), 362–368. http://dx.doi.org/10.1287/msom.1080.0218 doi: 10.1287/msom.1080.0218
    [36] N. L. Stokey, Recursive methods in economic dynamics, Harvard University Press, 1969. Available from: https://www.hup.harvard.edu/catalog.php?isbn = 9780674750968.
    [37] X. Yang, There important applications of mathematics in financial mathematics, Am. J. Indust. Bus. Manage., 7 (2017), 1096–1100. https://doi.org/10.4236/ajibm.2017.79077 doi: 10.4236/ajibm.2017.79077
    [38] V. Brătian, A. Bucur, C. Oprean, Finanţe cantitative: Evaluarea valorilor mobiliare şi gestiunea portofoliului, Sibiu: Lucian Blaga Publishing House, 2016. Available from: http://biblioteca.ulbsibiu.ro.
    [39] C. O. Stan, C. Tănăsescu, A. Bucur, A new proposal for efficiency quantification of capital markets in the context of complex nonlinear dynamics and chaos, Econ. Res.-Ekon. Istraž., 30 (2017), 1669–1693. http://dx.doi.org/10.1080/1331677X.2017.1383172
    [40] V. Brătian, A. Bucur, C. Oprean, C. Tănăsescu, Discretionary vs nondiscretionary in fiscal mechanism-nonautomatic fiscal stabilities, Econ. Res.-Ekon. Istraž., 29 (2017), 1–17. http://dx.doi.org/10.1080/1331677X.2015.1106330
    [41] D. E. Kirk, Optimal control theory: An introduction, New Jersey: Prentice-Hall, Englewood Cliffs, 1998. Available from: https://books.google.ro.
    [42] M. Sniedovich Dynamic programming: Foundations and principles, CRC Press, 2010. https://doi.org/10.1201/EBK0824740993
    [43] R. Bellman The theory of dynamic programming, Santa Monica: Rand Corporation Report, 1954. Available from: https://www.rand.org/content/dam/rand/pubs/papers/2008/P550.pdf.
    [44] L. B. Ćirić, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. Available from: https://www.ams.org/journals/proc/1974-045-02/S0002-9939-1974-0356011-2/S0002-9939-1974-0356011-2.pdf.
    [45] N. A. Secelean, D. Wardowski, $\psi F$-contraction: Not necessarily nonexpansive Picard operators, Results Math., 70 (2016), 41–431. http://dx.doi.org/10.1007/s00025-016-0570-7 doi: 10.1007/s00025-016-0570-7
    [46] S. Panya, K. Roy, M. Soha, Fixed point for a class of extended interpolative $\psi F$-contraction maps over $a\;b$-metric space and its applications to dynamical programming, U. P. B. SCI Bull Series A, 83 (2021), 59–70. Available from: https://www.scientificbulletin.upb.ro.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1216) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog