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1. Introduction

The applicability of dynamic programming results for optimal control and for optimal growth
problems [1–4], in which fixed-point theory-based methods were used, is well-known. In this article
we investigate the application of the Ćirić fixed-point theorem to prove the existence and uniqueness
results of the solution of the dynamic programming Bellman’s equation under assumptions that are
significantly weaker than the ones generally considered in the specialty literature [5].

Our work afforded us to further extend the topic of an already relevant class of methods to solve
optimization problems (notably optimal control, respectively dynamic programming), that have a long
study in the history of mathematical techniques.

Discrete Markov decision models for the financial field may be studied using the dynamic
programming principles developed by Richard Bellman (1956). Dynamic programming is based on
the Principle of Optimality, which was explained by Bellman in the following text: “An optimal policy
has the property that, whatever the initial state and decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision” [6].

For the simulation of the mathematical model, Ricard Torres published in 2014 a MATLAB script
implementing policy iteration [7]. Torres’ result provides insight to how we can programmatically find
the optimal policies, by developing a way to programmatically organize the Dynamic Programming
problem into a cost network.

Dynamic programming and fixed point theory are important mathematical tools in the financial and
economic fields (for modern financial, respectively econometric modulization). The book by Stokey
and Lucas [8] published in 1989 is an example of an important book in this direction. Numerical
methods to solve dynamic programming (DP) models can be DP models with sequential decision
making, the optimal inventory model (Arrow et al. [9]), the optimal investment model (Lucas and
Prescott [10]), the optimal growth model under uncertainty (Brock and Mirman [11]), the asset pricing
models (Lucas [12] and Brock [13]), the business cycle model (Kydland and Prescott [14]) or DP
formulated as a Markov decision process (MDP) (Androulakis [15]).

Blackwell (1965) and Denardo (1967) showed that the Bellman operator is a contraction mapping.
Kamihigashi [16] showed that the Bellman operator has a unique fixed point, and this fixed point is
a value function. The consistent Bellman operator (Bellemare et al. [17]) is a modified operator that
addresses the problem of inconsistency of the optimal action-value functions for suboptimal actions.
The distributional Bellman operator (Bellemare et al. [18]) enables operation of the whole return
distribution, instead of its expectation, i.e., the value function (Bellemare et al. [19], Bellman [20]).
The logistic Bellman operator uses a logistic loss to solve a convex linear programming problem to
find optimal value functions (Bas-Serrano et al. [21]).

The Markov decision process (MDP) is a fundamental framework for stochastic games, control
design in stochastic environments, reinforcement learning, etc. (Filar and Vrieze [22]). Relying on the
fact that the optimal value function is the fixed point of the Bellman operator, dynamic programming
methods iteratively use different types of the Bellman operator to converge to the optimal value
function (Puterman [23], Alden and Smith [24]).

The literature on infinite horizon optimization and its applications is rich. For example, in 1989,
Schochetman and Smith [25] considered the general problem of choosing a discounted cost. They
solved examples for equipment replacement and production planning, by applying the study of the
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minimizing infinite sequence of decisions from a closed subset of the product space formed by a
sequence of arbitrary compact metric spaces.

Modeling for optimizing production was analyzed in 1955 by Chanes et al. [26] and by Modigliani
and Hohn [27], and sequential production planning was described in an article from the year
1957 (Johnson [28]).

The existence of forecast horizons in undiscounted discrete-time lot size models was investigated
in 1990 by Chand et al. [29].

The literature on infinite horizon optimization is vast and encompasses diverse fields,
including finance, electrical engineering (especially control systems), economics, operation research,
management science, statistics and mathematics (Sethi and Thompson [30], Denardo [31],
Cheevaprawatdomrong [32], Bes and Sethi [33]).

The planning of the horizon model of cash management was investigated by Sethi in
1971 (Sethi [34]), and optimal backlogging over an infinite horizon under time-varying convex
production and inventory costs was studied by Ghate and Smith in an article from the year 2009 (Ghate
and Smith [35]).

The use of mathematics within the field of finance has been increasing, for analyzing and solving
problems such as development [36], control theory, differential game theory, capital asset pricing model
from stochastic optimum [37], risk management, derivative security pricing and valuation, portofolio
creation and structuring [38], efficiency quantification of capital markets [39], quantitative investing
strategies, models of growth, exchange economy and effects of mergers on consumers on both sides of
the market [40], etc.

Fixed point theory plays an important role in topology, nonlinear analysis, dynamic optimization
and obtaining results in the theory of differential and integral equations, notably in the existence
of differential and integral equations or inclusions. These results are essential in many branches of
science, economics, management and finance; thus, its increasing use in control and optimization is
not surprising [1, 41, 42].

In [43], Richard Bellman introduced dynamic programming, which is typically useful to investigate
problems that involve choices to be made over an infinite number of periods, such as the problem that
considers a periodic wage offer for a worker. The acceptance implies receiving this wage in all future
periods while the rejection implies receiving a new wage offer in the next period. Another example
that is increasingly important concerns choosing how to allocate output between consumption and
investment, that is, the consumption yields utility in the current period, while investment increases
future production.

Based on the work of Torres, in this article, we will develop tools that allow us to solve the
stationary, infinite-horizon optimization problems, that is, precisely, the maximization of the utility
of households under weaker assumptions than those considered so far.

Let us formulate our problem as the following:

max
ki∈Kt

∞∑
t=0

βtU[ f (kt) − kt+1], (1.1)

s.t. 0 ≤ kt+1 ≤ f (kt),∀t, and given k0 > 0.

We can solve (1.1) by defining and solving the following associated functional equation:
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Tv(k) = max
0≤y≤ f (k)

U[ f (k) − y] + βv(y), (1.2)

where Kt = {kt}
∞
0 , kt is Capital at start of period t, and f (kt) is the production. ct is the consumption,

and this means
kt+1 = f (kt) − ct.

U(.) is the current period of utility function, and β ∈ (0, 1).
The well-known Banach contraction principle states that, if (X, d) is a complete metric space, and

T : X → X is a mapping satisfying

d(T (x),T (y)) ≤ σd(x, y), (1.3)

for some σ ∈ (0, 1) and for all x, y ∈ X, then T has a unique fixed point x∗, and the sequence {xn}

generated by the iterative process xn+1 = T xn converges to x∗ for some x ∈ X.
The Banach contraction has been widely generalized in several settings. In [44], Ćirić introduced

quasi contraction map and showed that the condition of quasi contraction implies all the conditions of
Banach’s contraction principle.

In this paper we will consider Ćirić contractions in Banach space, and the main result consists of
the existence of a fixed point. The practical relevance of our result is that it can be applied even to
discontinuous operators. An important class of problems consists of, for example, infinite-horizon
iterative schemes for optimization problems with state constraints for which the value function is
merely lower semi-continuous.

In this paper we investigate the Ćirić operator to prove the properties of infinite-horizon problems.
A self map T : X → X on a metric space (X, d) is said to be a Ćirić mapping if, for all x and y in X,

d(T (x),T (y)) ≤ σmax
{
d(x, y), d(x,T x), d(y,Ty),

1
2

[
d(x,Ty) + d(y,T x)

]}
. (1.4)

We can write

M(x, y) = max
{
d(x, y), d(x,T x), d(y,Ty),

1
2

[
d(x,Ty) + d(y,T x)

]}
.

To see the relevance of this extension, just consider the following very simple example Ćirić
contractive mapping that is not a contraction. Let T : X → X be defined by

T x =


x
4

f or x ∈ [0, 1],

x
5

f or x ∈ (1, 2].
(1.5)

The mapping T is Ćirić type with σ =
3
5

. Indeed, if both x and y are in X1 or in X2, then

d(T x,Ty) =
1
4
|x −

4
5

y| ≤
1
4
|x −

1
5

y| =
1
4

d(x,Ty);

d(T x,Ty) =
1
5
|
5
4

x − y| ≤
1
5
|y − T x| ≤

1
4

d(y,T x).
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Therefore, T satisfies the condition

d(T x,Ty) ≤
1
4

max{d(x, y), d(x,Ty), d(y,T x)}

and hence the inequality (1.4).

To show that T is not Banach contraction on X, let x =
999

1000
and y =

1001
1000

.

Then, we have d(x, y) = |
999

1000
−

1001
1000

| =
40

20000
and, on other side, d(T x,Ty) =

991
20000

.

Then, we get, d(T x,Ty) =
991

20000
> σ

40
80

= σd(x, y), as σ ∈ (0, 1). Therefore, the Banach
contraction condition is not satisfied.

The Ćirić contractive map does not have to be continuous in general, but it is always convergent to
a fixed point.

This article is organized as follows. In the next section, we formulate the infinite horizon problem
that we are going to investigate in two cases: Implicit and fully explicit. Then, we provide the
basic definitions, as well as the assumptions to be satisfied by its data. In the ensuing section,
Section 3, we present several fixed point results that are fundamental for the development of our
contributions: Notably, existence, monotonicity, and attainability. Also pertinent to our results is the
Ćirić contraction [44], which will also be introduced in this section. In Section 5, we show that the
convergence in norm with probability is one of the iterative procedures defined for our problem under
the stated assumptions and application to dynamical programming. Section 6, numerical simulation,
contains an algorithm in C++, which was applied for a particular case. Finally, some conclusions, and
prospective future work are briefly addressed in Section 7.

2. Problem formulation

This section is organized into two parts. In the first part, we introduce the operator that is defined
via an explicit function in a complete metric space, while in the second part, we study the one that
defines an implicit function.

2.1. Explicit case

The optimal value function is a unique solution of the Bellman equation given by

Tv∗(x) = max
0≤y≤ f (x)

U[ f (x) − y] + βv(y) for all x ∈ X.

Given some positive function ν : X ⇒ R, we denote by C(X) the set of functions v such that
‖v‖ < ∞, where the norm ‖ · ‖ on C(X) is defined by ‖ · ‖:

‖v‖ = sup
x∈X
|v(x)|.

Hence, C(X) is complete with metric induced by norm. To proceed further and in order to get the
optimal cost function, we need to consider for each policy y ∈ M the mapping T : C(X) → C(X)
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defined by
Tv(x) = max

0≤y≤ f (x)
U[ f (x) − y] + βv(y) for all x ∈ X.

Thus, in order to solve Bellman’s equation, we only need to introduce the material that leads us to
prove the existence and uniqueness of the fixed point, that is, Tv∗ = v∗.

Example 2.1. One sector sustainable growth
Further, we need the following notations related to the economy concepts.

- Capital at the start of period t is denoted by kt.
- Production (including depreciated capital) is f (kt) and consumption is ct,

so kt+1 = f (kt) − ct.
Given k0 ≥ 0 and 0 ≤ kt+1 ≤ f (kt), the planner maximizes

∞∑
t=0

δtU(ct) =

∞∑
t=0

δtU( f (kt) − kt+1).

Let U : R+ → R be an increasing and bounded map and let δ ∈ (0, 1). Suppose the problem has
a solution for all k0 ≥ 0. Let us define the value function v : R+ → R, where v(k0) is value of the
maximized objective function given k0.

Then, the planner’s problem in period 0 is maxc0,k1(U(c0) + δV(k1), subject to c0 + k1 = f (k0),
c0, k1 ≥ 0 and k0 ≥ 0 given.

The value function must satisfy the following functional equation:

Tv(k) = max
0≤y≤ f (k)

(U( f (k) − y) + δv(y).

Note v ∈ B(X), where X = R+.
We define T : C(X)→ C(X) as follows:

Tv(k) = max
0≤y≤ f (k)

(U( f (k) − y) + δv(y).

A solution is a function v∗ satisfying v∗ = Tv∗.

2.2. Implicit case

Note, however, that evaluating an optimal policy requires not only availability of the optimal value
function v∗ but also the dynamics function f and stage cost function U. If f and U are unknown, then
knowing v∗ is not sufficient for evaluating an optimal policy. To overcome this issue, we will use the
optimal H-function to compute an optimal policy without knowing f and U explicitly.

We consider a set X of states, a set N of controls (the current period of utility) and, for each x ∈ X,
a nonempty control constraint N(x) ⊂ N. We denote by M the set of all functions µ : X → N with
µ(x) ∈ N(x) for all x ∈ X, which will be referred to as current period choices.

We denote by V(X) the set of functions v : X → R and by V̄(X) the set of functions v : X → R
where R = R ∪ {−∞,∞}. We study the operator of the form

H : X × N ×V(X)→ R,
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and, for each policy µ ∈ M, we consider the mapping T : V(X)→ V̄(X) defined by

Tv(x) = max
µ∈M

H(x, µ, v) ∀x ∈ X.

In view of the definition ofM, T and Tµ, we have the following relations:

Tv(x) = max
µ∈M
{H(x, µ(x), v)} = max

u∈U
{H(x, u, v)}.

Example 2.2. Let T : C(X)→ C(X) be defined as follows:

Tv(x) =


v(x)

4
f or x ∈ S 1,

v(x)
5

f or x ∈ S 2,

(2.1)

where
S 1 = {v ∈ C(X) : 0 ≤ v(x) ≤ 1},

and
S 2 = {v ∈ C(X) : 1 < v(x) ≤ 2}.

Then, it is clear that T is a Ćirić contractive map, but it does not satisfy the Banach
contraction condition.

3. Auxiliary results

In this section, many results that will be instrumental in the proof of the main result of this article
are presented.

Definition 3.1. (Ćirić map) A self map T of B(X) is called a Ćirić contractive map if

‖Tv − Tv
′

‖ ≤ σmax{‖v − v
′

‖, ‖v − Tv‖, ‖v
′

− Tv
′

‖,
1
2

[‖v − Tv
′

‖ + ‖v
′

− Tv‖]},

for all v, v
′

∈ C(X), where σ ∈ (0, 1).

Assumption 3.1. The self map Tµ is a Ćirić contractive map.

Theorem 3.1. (Existence) Let the operators T,Tµ : C(X) → C(X) be Ćirić contractive. Then, T and
Tµ have, respectively, v∗ and vµ as fixed points.

Lemma 3.1. The following hold:

i) For an arbitrary v0 ∈ C(X), the sequence {vk} defined by vk+1 = Tµvk converges in norm to vµ.
ii) For an arbitrary v0 ∈ C(X), the sequence {vk} defined by vk+1 = Tvk converges in norm to v∗.

Lemma 3.2. C(X) is complete with respect to the topology induced by ‖ · ‖.

It is not difficult to observe that C(X) is closed and convex. Thus, given {vk}
∞
k=1 ⊂ C(X) and v ∈ C(X),

if vk → V in the sense that lim
k→∞
‖vk − v‖ = 0, then lim

k→∞
vk(x) = v(x) for all x ∈ X.

Now, we introduce the following standard assumptions:
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Assumption 3.2. (Well-posedness) For all v ∈ C(X) and for all µ ∈ M, we have that Tµv ∈ C(X) and
Tv ∈ C(X).

From Definition 3.1, we conclude that every contraction T is also a Ćirić contractive map. However,
the inverse is not always true.

We will require the following properties to hold.

Assumption 3.3. (Monotonicity) For all v, v
′

∈ C(X), we have that v ≤ v
′

implies

H(x, u, v) ≤ H(x, u, v
′

), ∀x ∈ X, u ∈ U(x),

where “≤ ” is defined in a pointwise sense in X.

Assumption 3.4. (Attainability) For all v ∈ C(X), there exists µ ∈ M such that Tµv = Tv.

4. Main results

Blackwell’s sufficient condition for Ćirić contractive map

Theorem 4.1. (Blackwell [7]) Let T be an operator defined on C(X) satisfying the following properties:
(a) [monotonicity] For all x ∈ X and for all v, v

′

∈ C(X), v(x) ≤ v
′

(x), implies that for all x ∈ X,Tv(x) ≤
Tv

′

(x).
(b) [discounting] There exists some β ∈ (0, 1) such that
for all v ∈ C(X), a ≥ 0, x ∈ X, [T (v + a)](x) ≤ (Tv)(x) + βa.

Then, T is a Ćirić map with modulus β.

Proof. For any v and v
′

∈ C(X) and any x ∈ X,

v(x) − v
′

(x) ≤ ‖v − v
′

‖ ≤ M(v, v
′

).

Hence, v(x) ≤ M(v, v
′

) + v
′

(x) for all x ∈ X, so

v ≤ M(v, v
′

) + v
′

.

Suppose T : C(X)→ C(X) satisfies Blackwell’s condition. Then, there exists β ∈ (0, 1) such that

T (v) ≤ T (v
′

+ M(v, v
′

)) ≤ Tv
′

+ βM(v, v
′

).

By going through the exact same reasoning, by reversing the role of v and v
′

we will end up with

T (v
′

) ≤ T (v + M(v, v
′

)) ≤ Tv + βM(v, v
′

).

Hence, for all x ∈ X, with |Tv(x) − Tv
′

(x)| ≤ βM(v, v
′

), then

‖Tv − Tv
′

‖∞ ≤ βM(v, v
′

).

Thus, T is a Ćirić contractive map.
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5. Convergence result

Theorem 5.1. Let T : C(X)→ C(X) be a Ćirić contractive map. Then, we have the following.
1) There exists a unique solution to the Bellman equation Tv = v.
2) The solution can be found by iterating the relation vk+1 = Tvk.

Remark 5.1. The unique solution of the Bellman equation here is the optimal cost function, which is
the maximum of the utility.

Remark 5.2. Unlike the Banach contraction operator, the Ćirić operator is not necessarily continuous.

5.1. Example and implementation

Stochastic shortest path problem

Next, we present an example illustrating our results.
Let

Tv(k) =


max

0≤y≤ f (k)
(U( f (k) − y) + 1

4v(y) f or v ∈ S 1,

max
0≤y≤ f (k)

(U( f (k) − y) + 1
5v(y) f or v ∈ S 2,

(5.1)

where
S 1 = {v ∈ C(X) : v(x) ∈ [0, 1]},

S 2 = {v ∈ C(X) : v(x) ∈ (1, 2]}.

g : X × U → R is incurred when control u ∈ U(x) is selected at state x.
Let ν(x) = 1, for all x ∈ X. Given an arbitrary v0 ∈ B(X), since H(·, ·, ·) is a Ćirić contractive map,

it is clear that the Bellman equation defined by

Tv(k) =


max

0≤y≤ f (k)
(U( f (k) − y) +

1
4

v(y) f or v ∈ S 1,

max
0≤y≤ f (k)

(U( f (k) − y) +
1
5

v(y) f or v ∈ S 2

(5.2)

is not a Banach contraction, but it is a Ćirić contractive map.

5.2. Another application to dynamical programming

If in [37] we have
Tv(k) = max

0≤y≤ f (x)
{U[ f (k) − y] + β(y)}, (5.3)

where f ∈ Bd(Kt) is the set of all real-valued bounded functions on Kt, we define a norm on Bd(Kt) by
‖ f ‖ = sup

t∈[0,∞)
| f (kt)| for all f ∈ Bd(Kt).

Then, (Bd(Kt), ‖ · ‖) forms a Banach space equipped with the metric defined by d( f1, f2) :=
sup

t∈[0,∞)
| f1(kt) − f2(kt)| for all f1, f2 ∈ Bd(Kt).
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We are going to analyze the existence of the solution for the functional equation [46] by using the
concept of the extended interpolative Reich-Rus type ψF-contraction. For this, we use an operator
T : Bd(Kt)→ Bd(Kt) defined by

Tv(k) = max
0≤y≤ f (k)

{U[ f (x) − y] + βv(y)}, (5.4)

for all f ∈ Bd(Kt).
Obviously, for the cases in which U and v are bounded, T becomes well-defined.

Theorem 5.2. Let T : Bd(Kt)→ Bd(Kt) be an operator defined by (5.4) and the following properties:

1) U and v are continuous and bounded.
2) For all f1, f2 ∈ Bd(Kt)\Fix(T ), satisfying

|U[ f1(k) − y] − U[ f2(k) − y]| ≤
1
e

√
d( f1, f2) · d( f1,T f1) · d( f2,T f2), (5.5)

the Eq (5.3) has a bounded solution.

Proof. Let ε > 0 and f1, f2 ∈ Bd(Kt)\Fix(T ). Then, there exist k1, k2 such that

U[ f1(k1) − y] + βv(y) > T f1(k) − ε, (5.6)

U[ f2(k2) − y] + βv(y) > T f2(k) − ε, (5.7)

T f1(k) ≥ U[ f2(k2) − y] + βv(y), (5.8)

T f2(k) ≥ U[ f1(k1) − y] + βv(y). (5.9)

From (5.6) and (5.7) results

T f1(k) − T f2(k) < U[ f1(k1) − y] + βv(y) − U[ f2(k2) − y] + βv(y) + ε ≤

≤ |U[ f1(k1) − y] − U[ f2(k2) − y]| + ε ≤

≤
1
e

3
√

d( f1, f2) · d( f1,T f1) · d( f2,T f2), for all k.

(5.10)

Analogously, (5.8) and (5.9) imply

T f2(k) − T f1(k) <
1
e

3
√

d( f1, f2) · d( f1,T f1) · d( f2,T f2) + ε, for all k. (5.11)

From (5.10) and (5.11) results

|T f1(k) − T f2(k)| <
1
e

3
√

d( f1, f2) · d( f1,T f1) · d( f2,T f2) + ε, for all k. (5.12)

Since ε > 0 is arbitrary, we have

|T f1(k) − T f2(k)| ≤
1
e
·

3
√

d( f1, f2) · d( f1,T f1) · d( f2,T f2),
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for all k, and thus,

d(T f1(k),T f2(k)) ≤
1
e
·

3
√

d( f1, f2) · d( f1,T f1) · d( f2,T f2).

We apply the logarithm function, and we obtain

lnd(T f1,T f2) ≤ −1 +
1
3

lnd( f1, f2) +
1
3

lnd( f1,T f1) +
1
3

lnd( f2,T f2) =

1
3

[lnd( f1, f2) − 1] +
1
3

[lnd( f1,T f1) − 1] +
1
3

[lnd( f2,T f2) − 1].
(5.13)

The relation (5.13) is nothing but extended interpolative Reich-Rus type ψF-contractions for the
operator T , with F(x) = lnx, ψ(x) = x − 1, a = b = c = 1

3 and s = 1, because: A mapping T : Bd(kt)→
Bd(kt) (Bd(kt) being a b - metric space) is an extended interpolative Reich-Rus type ψT -contraction if
there exist F ∈ F and ψ ∈ Ψ such that for all f1, f2 ∈ Bd(kt)\Fix(T ) with T f1 , T f2,

F(d(T f1,T f2)) ≤ aψ(F(d( f1, f2))) + bψ(F(d( f1,T f1))) + cψ(F(d( f2,T f2))),

for some constants a, b, c ∈ [0, 1] with 0 < a + b + c ≤ 1,
where F denotes the class of all functions F : (0,∞)→ R for which the following hold:

(F1) limn→∞ xn = 0⇔ limn→∞ F(xn) = −∞, for all sequences {xn} ∈ (0,∞).
(F2) There exists k ∈ (0, 1), and xkF(x)→ 0 for x→ 0+.

Ψ = {ψ : R→ R|ψ is monotone increasing and ψn(t)→ −∞ for n→ ∞ for all t ∈ R}; ψn is the n − t
composition of ψ [45].

We have ψn(x) = x−n, and for f ∗ ∈ Bd(Kt)\Fix(T ), β∗ = d( f ∗,T f ∗) = supt∈[0,∞) | f
∗(t)−T f ∗(t)| ∈ R∗.

Then, for all p ∈ (0, 1), the series
∑

n |ψ
nF( f ∗)|−1/p is convergent. Hence, by Theorem 3.1 from [46], T

has a fixed point in Bd(Kt), and that implies that Eq (5.3) has a bounded solution.

6. Numerical simulation

Example 6.1. We consider the functions f : R→ R+, U : R+ → R, U(t) = t+1
t+2 , v : R→ R, v(y) =

2y+1
y+1 ,

the parameter β ∈ (0, 1) and a point x ∈ R. Define the function hβ,x : [0, f (x)]→ R,

hβ,x(y) = U[ f (x) − y] + βv(y) =
f (x) − y + 1
f (x) − y + 2

+ β
2y + 1
y + 1

=

= 1 −
1

f (x) − y + 2
+ β(2 −

1
y + 1

).

After a simple calculation we find

h′β,x(y) = −
1

( f (x) − y + 2)2 +
β

(y + 1)2 .

It follows that h′β,x(y) = 0 if and only if y = y0 =
f (x)+2− 1√

β
1√
β
+1

. If y0 ∈ [0, f (x)], then h′β,x(y) ≥ 0 for

y ∈ [0, y0], and h′β,x(y) ≤ 0 for y ∈ [y0, f (x]). Consequently, y0 =
f (x)+2− 1√

β
1√
β
+1

is the unique maximum point
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of the function hβ,x(y) on the interval [0, f (x)]. Moreover, the maximum value of the function hβ,x(y) on
the interval [0, f (x)] is given by

h0 = hβ,x(y0) = 1 −
1

f (x) − y0 + 2
+ β(2 −

1
y0 + 1

) =

= 1 −
1

f (x) −
f (x)+2− 1√

β
1√
β
+1

+ 2
+ β(2 −

1
f (x)+2− 1√

β
1√
β
+1

+ 1
) = 1 + 2β −

(1 +
√
β)2

f (x) + 3
.

Considering the particular case for β = 1
4 , we find that y0 =

f (x)
3 ∈ [0, f (x)] is the unique maximum

point of the function h 1
4 ,x

(y) on the interval [0, f (x)]. The maximum value of the function h 1
4 ,x

(y) on the
interval [0, f (x)] is

h0 = h 1
4 ,x

(y0) =
3
4

(1 +
f (x)

f (x) + 3
).

ALGORITHM
Input parameters

- The analytical expression of the function f : R→ R+;
- The analytical expression of the function U : R+ → R;
- The analytical expression of the function v : R→ R;
- The parameter β ∈ (0, 1);
- The point x ∈ R for which we calculate the solution of the optimization problem

maxy∈[0, f (x)]{U[ f (x) − y] + βv(y)} = −miny∈[0, f (x)]{−U[ f (x) − y] − βv(y)};
- The error for the computation of the maximum point of the optimization problem, ε > 0.

Output parameters
xmax - the maximum point of the optimization problem, calculated with the error ε;
gmax - the maximum value of the function to be optimized;
n - the number of iterations.

Pseudocode
Define the function gβ,x : [0, f (x)]→ R,

gβ,x(y) = −U[ f (x) − y] − βv(y)
A = 0
B = f (x)
F0 = 1
F1 = 1
n = 1
While Fn ≤

B−A
ε

do
n = n + 1
Fn = Fn−1 + Fn−2

End While
a1 = A
b1 = B
λ1 = a1 + Fn−2

Fn
∗ (b1 − a1)

µ1 = a1 + Fn−1
Fn
∗ (b1 − a1)

For k = 1, 2, ..., n − 1 do
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If gβ,x(λk) < gβ,x(µk) then
ak+1 = ak

bk+1 = µk

λk+1 = ak+1 + Fn−k−2
Fn−k
∗ (bk+1 − ak+1)

µk+1 = λk

else
ak+1 = λk

bk+1 = bk

λk+1 = µk

µk+1 = ak+1 + Fn−k−1
Fn−k
∗ (bk+1 − ak+1)

End If
End For
xmax = an+bn

2
gmax = −gβ,x(xmax)

PROCEDURE IN C++
#include <iostream>
#include <math.h>
using namespace std;
double f(double x)
{

return pow(2,-fabs(x));
}

double U(double t)
{

return (t+1)/(t+2);
}

double v(double y)
{

return (2*y+1)/(y+1);
}

double g(double beta, double x, double y)
{

return -U(f(x)-y)-beta*v(y);
}

void InputParameters(double& beta, double& x, double& eps)
{

cout << ”beta=”; cin >> beta;
cout << ”x=”; cin >> x;
cout << ”eps=”; cin >> eps;

}

void OptimizationMethod(double beta, double x, double eps, int& n, double F[100], double a[100],
double b[100], double lambda[100], double miu[100], double& ymax, double& gmax)
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{

double A, B;
int k;
A=0;
B=f(x);
F[0]=1;
F[1]=1;
n=1;
while (F[n]<=(B-A)/eps)
{

n++;
F[n]=F[n-1]+F[n-2];

}

a[1]=A;
b[1]=B;
lambda[1]=a[1]+F[n-2]*(b[1]-a[1])/F[n];
miu[1]=a[1]+F[n-1]*(b[1]-a[1])/F[n];
for(k=1;k<=n-1;k++)

if (g(beta, x, lambda[k])<g(beta, x, miu[k]))
{

a[k+1]=a[k];
b[k+1]=miu[k];
lambda[k+1]=a[k+1]+F[n-k-2]*(b[k+1]-a[k+1])/F[n-k];
miu[k+1]=lambda[k];

}

else
{

a[k+1]=lambda[k];
b[k+1]=b[k];
lambda[k+1]=miu[k];
miu[k+1]=a[k+1]+F[n-k-1]*(b[k+1]-a[k+1])/F[n-k];

}

ymax=(a[n]+b[n])/2;;
gmax=-g(beta, x, ymax);

}

void OutputParameters(double beta, double x, int n, double F[100], double a[100], double b[100],
double lambda[100], double miu[100], double ymax, double gmax)
{

int k;
cout<<”The number of iterations is n=”<<n<<endl;
cout<<”k g(beta, x, lambda[k]) g(beta, x, miu[k]) a[k] b[k] lambda[k] miu[k]”<<endl;
cout.precision(7);
for(k=1;k<= n;k++)
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cout<<k<<” ”<<g(beta, x, lambda[k])<<” ”<<g(beta, x, miu[k])<<” ”<<a[k]<<” ”
<<b[k]<<” ”<<lambda[k]<<” ”<<miu[k]<<endl;

cout<<”The maximum point of the function is ymax=”<<ymax<<endl;
cout<<”The maximum value of the function is gmax=”<<gmax<<endl;

}

int main()
{

int n;
double beta, x, eps, F[100], a[100], b[100], lambda[100], miu[100], ymax, gmax;
InputParameters(beta, x, eps);
OptimizationMethod(beta, x, eps, n, F, a, b, lambda, miu, ymax, gmax);
OutputParameters(beta, x, n, F, a, b, lambda, miu, ymax, gmax);
return 0;

}

TEST DATA
f : R→ R+, f (x) = 2−|x|

U : R+ → R, U(t) = t+1
t+2

v : R→ R, v(y) =
2y+1
y+1

beta=0.25
x=-0.25
eps=0.00001
RESULTS
The number of iterations is n=25
The maximum point of the function is ymax=0.2803
The maximum value of the function is gmax=0.9141993
The outputs and outcomes are presented in Table 1 and also in a graphical representation in Figure 1:
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Table 1. Outputs and outcomes.

k g(beta, x, lambda[k]) g(beta, x,miu[k]) a[k] b[k] lambda[k] miu[k]
1 -1.249433 -1.249433 -0.6 -0.4 -0.5238095 -0.4761905
2 -0.9129618 -0.913905 0 0.5197026 0.1985087 0.3211938
3 -0.913905 -0.9118618 0.1985087 0.5197026 0.3211938 0.3970174
4 0.9141929 -0.913905 0.1985087 0.3970174 0.2743323 0.3211938
5 -0.9139782 -0.9141929 0.1985087 0.3211938 0.2453703 0.2743323
6 -0.9141929 -0.9141739 0.2453703 0.3211938 0.2743323 0.2922318
7 -0.9141471 -0.9141929 0.2453703 0.2922318 0.2632698 0.2743323
8 -0.9141929 -0.9141991 0.2632698 0.2922318 0.2743323 0.2811693
9 -0.9141991 -0.9141946 0.2743323 0.2922318 0.2811693 0.2853948
10 -0.9141987 -0.9141991 0.2743323 0.2853948 0.2785578 0.2811693
11 -0.9141991 -0.9141981 0.2785578 0.2853948 0.2811693 0.2827833
12 -0.9141992 -0.9141991 0.2785578 0.2827833 0.2801718 0.2811693
13 -0.9141992 -0.9141992 0.2785578 0.2811693 0.2795553 0.2801718
14 -0.9141992 -0.9141992 0.2795553 0.2811693 0.2801718 0.2805528
15 -0.9141992 -0.9141992 0.2795553 0.2805528 0.2799363 0.2801718
16 -0.9141992 -0.9141993 0.2799363 0.2805528 0.2801718 0.2803173
17 -0.9141993 -0.9141992 0.2801718 0.2805528 0.2803173 0.2804073
18 -0.9141992 -0.9141993 0.2801718 0.2804073 0.2802619 0.2803173
19 -0.9141993 -0.9141992 0.2802619 0.2804073 0.2803173 0.2803519
20 -0.9141993 -0.9141993 0.2802619 0.2803519 0.2802965 0.2803173
21 -0.9141993 -0.9141993 0.2802619 0.2803173 0.2802826 0.2802965
22 -0.9141993 -0.9141993 0.2802826 0.2803173 0.2802965 0.2803034
23 -0.9141993 -0.9141993 0.2802826 0.2803034 0.2802896 0.2802965
24 -0.9141993 -0.9141993 0.2802896 0.2803034 0.2802965 0.2802965
25 -0.9141993 -0.9141993 0.2802965 0.2803034 0.2802965 0.2803034

Figure 1. A graphical representation in Microsoft Excel.
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7. Conclusions

In this article, we approached an economic/financial problem, the stationary infinite horizon
problem, under a much wider class of contractive operators by applying methods of fixed point theory.
By resorting to the Ćirić operator and the Reich-Rus type ψF-contraction, we proved the convergence,
the existence and the uniqueness of the results of the optimal cost function of the infinite horizon
problem in Banach space. The numerical simulation showed that a stationary infinite horizon problem
can be solved for particular cases with applications in the financial/economic field.
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