In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow with nonslip boundary condition for the velocity and Neumann boundary condition for the temperature. Under Oleinik's monotonicity assumption, we establish the local-in-time existence and uniqueness of solutions in Sobolev space for the boundary layer equations by a new weighted energy method developed by Masmoudi and Wong.
Citation: Yonghui Zou, Xin Xu, An Gao. Local well-posedness to the thermal boundary layer equations in Sobolev space[J]. AIMS Mathematics, 2023, 8(4): 9933-9964. doi: 10.3934/math.2023503
[1] | Xiaolei Dong . Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space. AIMS Mathematics, 2024, 9(3): 5294-5329. doi: 10.3934/math.2024256 |
[2] | Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, Mohammad Alnegga . Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Mathematics, 2021, 6(9): 10037-10054. doi: 10.3934/math.2021583 |
[3] | Afraz Hussain Majeed, Sadia Irshad, Bagh Ali, Ahmed Kadhim Hussein, Nehad Ali Shah, Thongchai Botmart . Numerical investigations of nonlinear Maxwell fluid flow in the presence of non-Fourier heat flux theory: Keller box-based simulations. AIMS Mathematics, 2023, 8(5): 12559-12575. doi: 10.3934/math.2023631 |
[4] | Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146 |
[5] | Soh Edwin Mukiawa . Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law. AIMS Mathematics, 2023, 8(12): 28188-28209. doi: 10.3934/math.20231443 |
[6] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[7] | Yellamma, N. Manjunatha, Umair Khan, Samia Elattar, Sayed M. Eldin, Jasgurpreet Singh Chohan, R. Sumithra, K. Sarada . Onset of triple-diffusive convective stability in the presence of a heat source and temperature gradients: An exact method. AIMS Mathematics, 2023, 8(6): 13432-13453. doi: 10.3934/math.2023681 |
[8] | Latifa I. Khayyat, Abdullah A. Abdullah . The onset of Marangoni bio-thermal convection in a layer of fluid containing gyrotactic microorganisms. AIMS Mathematics, 2021, 6(12): 13552-13565. doi: 10.3934/math.2021787 |
[9] | Bauyrzhan Derbissaly, Makhmud Sadybekov . Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(4): 9969-9988. doi: 10.3934/math.2024488 |
[10] | Nadeem Abbas, Wasfi Shatanawi, Fady Hasan, Taqi A. M. Shatnawi . Numerical analysis of Darcy resistant Sutterby nanofluid flow with effect of radiation and chemical reaction over stretching cylinder: induced magnetic field. AIMS Mathematics, 2023, 8(5): 11202-11220. doi: 10.3934/math.2023567 |
In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow with nonslip boundary condition for the velocity and Neumann boundary condition for the temperature. Under Oleinik's monotonicity assumption, we establish the local-in-time existence and uniqueness of solutions in Sobolev space for the boundary layer equations by a new weighted energy method developed by Masmoudi and Wong.
The concept of the boundary layer was first proposed by Ludwig Prandtl in 1904 ([19]). For the incompressible viscous fluid satisfying the non-slip boundary condition, Prandtl obtained a degenerate parabolic equation coupled with the elliptic equation, namely the famous Prandtl equation, to describe the fluid motion in the boundary layer.
Since Prandtl boundary layer theory was put forward, many mathematicians have devoted themselves to establishing its mathematical theory (cf. [2,3,5,7,8,9,17,18,23,25,27,29,30,31,34,35,36]). Oleinik [17] performed the first rigorous mathematical systematic work by showing that under the monotonic condition of the boundary normal tangential velocity field, local well-posedness of the Prandtl system can be proved in two-dimensional by using the Crocco transformation. This well-posedness result was also obtained in the Sobolev spaces by using energy method (cf. [1,16]). The key ingredient in the proof is a nonlinear cancellation mechanism that can be used to eliminate the problematic terms in the equations.
Without the monotonicity condition, Caflisch and Sammartino [21,22] established the local well-posedness in the framework of analytic functions. If the initial data is neither monotonic in the normal variable nor analytic, E and Engquist [4] constructed a finite time blowup solution to the Prandtl equations. See also the instability results of Gérard-Varet and Dormy [6]. Recently, there are also many important studies on the boundary layer problem for some more complex fluids, such as the MHD system and viscoelastic equations. Interested readers can refer to [11,12,13,14,15,20,24,32,33] for more details.
In reality, most fluids have thermal conductivity, so the study of heat-conducting viscous fluid has important theoretical significance and application background. The main object of this paper is to establish the local well-posedness of the thermal boundary layer equations for two-dimensional incompressible heat conducting flow with non-slip boundary condition. Namely, we will consider the following system in the two-dimensional half space Ω:=T×R+={(x,y)∣x∈R/Z,0<y<∞}
{∂tu+u∂xu+v∂yu=∂2yu−∂xP−(θ−θ∞),∂tθ+u∂xθ+v∂yθ=∂2yθ+(∂yu)2,∂xu+∂yv=0,u(t,x,y)∣t=0=u0(x,y),θ(t,x,y)∣t=0=θ0(x,y),u(t,x,y)∣y=0=0,v(t,x,y)∣y=0=0,∂yθ(t,x,y)∣y=0=θb(t,x),limy→+∞u(t,x,y)=U(t,x),limy→+∞θ(t,x,y)=Θ(t,x), | (1.1) |
where (u,v) is the velocity field, and θ is the absolute temperature. The U(t,x),Θ(t,x) and P(t,x) are the traces at the boundary {y=0} of the tangential velocity, temperature, and pressure of the outer inviscid flow with heat conduction, respectively. The reference temperature θ∞ is assumed to be a positive constant in this paper. The states U,Θ, and P are interrelated through
{∂tU+U∂xU=−∂xP−(Θ−θ∞),∂tΘ+U∂xΘ=0. | (1.2) |
The mathematical theory of the thermal boundary layer equations was first studied by Wang and Zhu in [26], where they proved the local existence and uniqueness of solutions under the assumption of analyticity. In [28], they also proved finite time blowup of the solutions if the monotonic condition is violated. On back flow of boundary layers in two-dimensional unsteady incompressible heat conducting flow be studied in [29]. Recently, Liu, Wang and Yang [10] developed energy method to prove the well-posedness of a viscous layer problem when the tangential velocity is monotonically increasing in the normal variable. In this paper, we are going to show the local well-posedness of the system (1.1) in Sobolev space under the monotonic condition. This extends the Oleinik local well-posedness theory to the thermal boundary layer equations.
To state the main result, we first introduce some notations and the function spaces in which the initial-boundary value problem (1.1) will be solved under the strictly monotonic assumption on the tangential velocity in the normal variable
ω:=∂yu>0. |
First, C is a genetic constant which may change from line to line throughout this paper. We denote the tangential derivative operator by
∂βχ=∂β1t∂β2x,β=(β1,β2)∈N2, |
and the full derivative operator is given by
Dα=∂βχ∂my,α=(β,m)=(β1,β2,m)∈N3. |
We also use the following notations
e1=(1,0),e2=(0,1), |
and
E1=(1,0,0),E2=(0,1,0),E3=(0,0,1). |
Second, Hs(Ω) and Hs(T) is the usual Sobolev space on spatial domain Ω and T respectively. We also define the weighted Sobolev space Hs,γ(Ω) by
‖u‖2Hs,γ:=∑|α|≤s‖⟨y⟩γ+mDαu‖2L2(Ω), |
with u(t,x,y):[0,T]×Ω→R and
⟨y⟩=1+y. |
Finally, we set ˜θ=θ−Θ and define the space Hs,γμ,δ for (ω,˜θ):[0,T]×Ω→R by
Hs,γμ,δ:={ω|‖(ω,˜θ)‖Hs,γ<∞,⟨y⟩μω≥δ,∑|α|≤2|⟨y⟩μ+mDα(ω,˜θ)|≤1δ}, | (1.3) |
with s≥6,γ≥1,μ>γ+12 and δ∈(0,1).
Remark 1.1. The condition μ>γ+12 is indispensable for the definition of the space Hs,γμ,δ. Actually, if μ≤γ+12, one can check that Hs,γμ,δ is an empty set. For example, taking μ=γ=1,α=0, we find that ‖⟨y⟩ω‖L2<∞,⟨y⟩ω≥δ,|⟨y⟩ω|≤1δ can not hold at the same time. The same hypothesis is also explained by Masmoudi and Wong (see Remark 2.1 in [16]). The reason for introducing the weighted space Hs,γμ,δ is to give the control of terms like ∂xωω,∂xθω,∂2xωω,∂2xθω.
Before state the main result, we assume θb=0 throughout this paper for the sake of simplicity. We claim that the result still holds if we have a non-trivial θb. Moreover, it is easy to find that the vorticity ω satisfies
∂tω+u∂xω+v∂yω=∂2yω−∂yθ. | (1.4) |
Now, we are ready to state the main results of this paper in the following theorem.
Theorem 1.2. Given any even integer s≥6, real numbers γ≥1,μ>γ+12,δ∈(0,1), assume the following conditions on the initial data and the outer flow U and Θ:
i) The initial data u0−U∈Hs,γ−1(Ω) and (ω0,˜θ0)∈Hs,γμ,2δ. Here, the time derivatives of the initial data is expressed by solving equation (1.1) and (1.4) repeatly for ∂kt(ω,˜θ) and substituting the initial data into the result, for example:
∂tω0:=−[u0∂xω0+v0∂yω0−∂2yω0+∂yθ0], | (1.5) |
with v0=−∫y0∂xu0dy.
ii)The outer flow U and Θ is supposed to satisfy
supts2+1∑l=0‖∂lt(U,Θ)‖Hs−2l+2(T)<+∞. |
Then there exists a time T:=T(s,γ,δ,‖(w0,˜θ0)‖Hs,γ,U,Θ)>0 such that the initial-boundary value problem (1.1) has a unique classical solution (u,v,θ) satisfying
u−U∈L∞([0,T];Hs,γ−1)∩C([0,T];Hs−w), |
and
(∂yu,˜θ)∈L∞([0,T];Hs,γμ,δ)∩C([0,T];Hs−w), |
where Hs−w is the space Hs endowed with its weak topology.
Remark 1.3. If the Dirichlet boundary condition for temperature is given, some boundary terms cannot be handled in the proof. In this paper, we give the Neumann boundary condition to the temperature θ and it is interesting to investigate the Dirichlet boundary condition case. Another interesting question is how to extend the results to fractional problems.
Remark 1.4. We assume s≥6 in Theorem 1.2 mainly because we need to derive the uniform upper bound and lower bound of the solutions, and s needs to be an even number. Moreover, we didn't get the result similar to (5.3) in [16], so we need to assume s≥6 to get our results.
Remark 1.5. From the definition of Hs,γμ,δ, we can see that both the vorticity and the temperature enjoy some decay properties with respect to ⟨y⟩ at the far field y=+∞. We refer to Appendix C of [16] for more details about the far-fields behavior of the vorticity, and the decay rates of the temperature can be obtained similarly.
Let us briefly describe the strategy of the proof of our main theorem. As mentioned earlier, we will use the energy method developed by Masmoudi and Wong [16] to prove the local well-posedness of the thermal boundary layer equations. To do this, we first need to construct a regularized system by adding the viscous terms ε∂2xu and ε∂2xθ to the original equations. This will make the system no longer degenerate and the local existence of the regularized system can be established by using the classical local well-posedness theory of the hyperbolic-parabolic system. Next, to construct local solutions of the original system, we will derive the uniform-in-ε estimates of the solutions to the regularized system, which is the main part of this paper. The uniform estimates are divided into two parts. The first part is the weighted L2 estimates on Dα(ω,˜θ) with |α|≤s,|β|≤s−1 and the second part is to get the estimate of ∂βχ(ω,˜θ) with |β|=s.
Different from classical Prandtl equations [16] where only spatial derivatives of the solutions need to be estimated, here we give the control of both spatial and time derivatives of the solutions, because the time derivatives of θ will be involved in estimating the boundary integral ∫T∂yDαωDαωdx (see Lemma 3.3 for example). Similarly, the control of ∂ktω is also needed when we encountered with the boundary term ∫T∂yDα˜θDα˜θdx. However, estimating Dα(ω,˜θ) will bring us new difficulties when we have the term ∫T∂yDαωDαωdx with |α|=|(β1,0,m)|=s and m=2k+1 is odd. Since there are no x-derivatives here, we can not use integrating by parts to reduce the s+1 order derivatives which will prevent us from using trace estimate to estimate the boundary term. The remedy is to replace ∂m+1yω and ∂myω by using the equations repeatedly to get
∫T∂yDαωDαω|y=0=∫T∂β1t[(∂t−ε2∂2x)k+1ω+Qk]∂β1t[(∂t−ε2∂2x)k(∂xP−θ)+Pk], |
where Pk and Qk are low order terms. Now, as we already have x-derivatives in the above boundary integral, we can use integrating by parts and the trace lemma to control it.
The estimate of ∂βχ(ω,˜θ) mainly based on the nonlinear cancellation method invented in [16]. Here we note that we only need the monotonic assumption on the tangential velocity u in the normal variable but have no restrictions on the absolute temperature θ. With the uniform estimates of the solutions, we show that the solutions of the regularized system actually exists in a time interval [0,T] independent of ε. Moreover, we can use the Aubin-Lions lemma to extract a solution sequence and prove that the limit of this sequence is the solution of the original thermal boundary layer equations. Thus the existence of the local solution is constructed. Finally, the uniqueness of the solution is also proved by the energy estimate.
The rest of the paper is organized as follows. In Section 2, we present some preliminaries. In Section 3, we first introduce the regularized system (3.1) and the regularized vorticity system (3.3) in order to construct the approximate solutions. Then we give the uniform estimates of the solutions. The local-in-time existence and uniqueness of the solution to the initial-boundary value problem (1.1) will be proved in Sections 4 and Section 5 respectively based on the uniform weighted estimates derived in Section 3. The proof of some useful inequalities and the derivation of some equations will be given in the Appendix.
In this section, we introduce some notations and collect some preliminary results which will be used in the rest part of this paper.
As the Prandtl system, the key point for obtaining the energy estimates of solutions is to eliminate the terms v∂yu and v∂yθ appeared in the first and the second equations of (1.1) respectively. Recalling that in [10] (see also [1,16] for a similar transformation), the authors introduce ω=∂y(u∂yu) and ˉθ=θ−∂yθ∂yuu. Here a little different from [10], we define
gβ:=∂βχω−∂yωω∂βχ(u−U),hβ:=∂βχ˜θ−∂y˜θω∂βχ(u−U), |
then we can introduce a weighted norm for the vorticity
‖ω(t)‖2Hs,γg(Ω):=∑|β|=s‖⟨y⟩γgβ‖2L2(Ω)+∑|α|≤s|β|≤s−1‖⟨y⟩γ+mDαω(t)‖2L2(Ω), | (2.1) |
and a weighted norm for the absolute temperature
‖˜θ(t)‖2Hs,γh(Ω):=∑|β|=s‖⟨y⟩γhβ‖2L2(Ω)+∑|α|≤s|β|≤s−1‖⟨y⟩γ+mDα˜θ(t)‖2L2(Ω). | (2.2) |
Obviously, the main difference between norms ‖⋅‖Hs,γ(Ω) and ‖⋅‖Hs,γg(Ω), ‖⋅‖Hs,γh(Ω) is that the weighted L2 norm of ∂βχω and ∂βχ˜θ with |β|=s is replaced by that of gβ, hβ. As we will see later, by estimating the weighted norms (2.1) and (2.2) of the solutions, we can avoid the loss of x-derivative through a delicate nonlinear cancellation.
Moreover, similar to those in [16], one can show that ‖ω‖Hs,γ(Ω) and ‖ω‖Hs,γg(Ω) are almost equivalent. That is, for any (ω,˜θ)∈Hs,γμ,δ(Ω), there exists a positive constant C such that
C−1‖ω‖Hs,γg≤‖ω‖Hs,γ+‖(u−U)‖Hs,γ−1≤C(‖ω‖Hs,γg+‖∂βχU‖L2), | (2.3) |
and
‖˜θ‖Hs,γ≤C(‖˜θ‖Hs,γh+‖ω‖Hs,γg+‖∂βχU‖L2). | (2.4) |
Remark 2.1. Although hβ is similar to gβ in form, the weighted norm ‖˜θ‖Hs,γh does not share the almost equivalent relationship with the norm ‖˜θ‖Hs,γ. However, the above inequality (2.4) is enough to solve the problem.
Next, let us introduce several useful inequalities which will be frequently used in this paper. We omit the proofs of these inequalities for the sake of simplicity and interested readers may refer to [11] and [16] and the references therein for more details.
Lemma 2.2 (Hardy type inequality). Let u:Ω→R. Then
i) if γ>−12 and limy→+∞u(x,y)=0, we have
‖⟨y⟩γu‖L2(Ω)≤22γ+1‖⟨y⟩γ+1∂yu‖L2(Ω), |
ii) if γ<−12, we have
‖⟨y⟩γu‖L2(Ω)≤√−12γ+1‖u|y=0‖L2(T)−22γ+1‖⟨y⟩γ+1∂yu‖L2(Ω). |
Lemma 2.3 (Sobolev type inequality). Let u:Ω→R. Then there exists a positive constant C such that
‖u‖L∞(Ω)≤C(‖u‖L2(Ω)+‖∂xu‖L2(Ω)+‖∂2yu‖L2(Ω)). |
Lemma 2.4 (Trace estimate). Let u,v:Ω→R. If limy→+∞(uv)(x,y)=0, then
|∫T(uv)|y=0dx|≤‖∂yu‖L2(Ω)‖v‖L2(Ω)+‖u‖L2(Ω)‖∂yv‖L2(Ω). |
Lemma 2.5 (Aubin-Lions). Let Ω0⊂Ω⊂Ω1 be three Banach spaces, with compact embedding Ω0⊂Ω and continuous embedding Ω⊂Ω1. Let p,q≥1, then
Lp([0,T];Ω0)∩H1,q([0,T];Ω1), |
is compactly embedded into Lp([0,T];Ω).
Finally, we also need the following lemma which will be used to control certain L2 and L∞ norms of u,v,ω,˜θ,gβ,hβ and their derivatives in terms of the weighted norms ‖ω(t,⋅)‖Hs,γg and ‖˜θ(t,⋅)‖Hs,γh. The proof of this lemma is given in the Appendix A.
Lemma 2.6. Let the vector field (u,v) defined on Ω satisfy the condition ∂xu+∂yv=0, the Dirichlet boundary condition u|y=0=v|y=0=0 and limy→+∞u=U. If (ω,˜θ)∈Hs,γμ,δ for some constants s≥6,γ≥1,μ>γ+12 and δ∈(0,1), then we have the following estimates:
A) Weighted L2 estimates.
(i) For all |β|=0,1,⋯,s,
‖⟨y⟩γ−1∂βχ(u−U)‖L2≤C(‖ω‖Hs,γg+‖∂βχU‖L2). | (2.5) |
(ii) For all |β|=0,1,⋯,s−1,
‖⟨y⟩−1(∂βχv+y∂β+e2χU)‖L2≤C(‖ω‖Hs,γg+‖∂βχU‖L2). | (2.6) |
(iii) For all |β|≤s,
‖⟨y⟩γ+mDβω‖L2≤{C(‖ω‖Hs,γg+‖∂βχU‖L2)if|β|=s,C‖ω‖Hs,γgif|β|≠s, | (2.7) |
and
‖⟨y⟩γ+mDβ˜θ‖L2≤{C(‖˜θ‖Hs,γg+‖ω‖Hs,γg+‖∂βχU‖L2)if|β|=s,C‖˜θ‖Hs,γhif|β|≠s. | (2.8) |
(iv) For all |β|=1,2,⋯,s,
‖⟨y⟩γgβ‖L2≤{C(‖ω‖Hs,γg+‖∂βχU‖L2)if|β|≤s−1,C‖ω‖Hs,γgif|β|=s, | (2.9) |
and
‖⟨y⟩γhβ‖L2≤{C(‖˜θ‖Hs,γh+‖ω‖Hs,γg+‖∂βχU‖L2)if|β|≤s−1,C‖˜θ‖Hs,γhif|β|=s. | (2.10) |
B) Weighted L∞ estimates.
(v) For all |β|=0,1,⋯,s−1,
‖∂βχu‖L∞≤C(‖ω‖Hs,γg+‖∂βχU‖L2). | (2.11) |
(vi) For all For all |β|=0,1,⋯,s−2,
‖⟨y⟩−1∂βχv‖L∞≤C(‖ω‖Hs,γg+‖∂βχU‖L2+1). | (2.12) |
(vii) For all |α|≤s−2,
‖⟨y⟩γ+mDβω‖L∞≤C‖ω‖Hs,γg,‖⟨y⟩γ+mDβ˜θ‖L∞≤C‖˜θ‖Hs,γh. | (2.13) |
In this section, in order to prove the local-in-time existence of the initial-boundary value problem (1.1), we consider the following regularized equations for any ε>0:
{∂tuε+uε∂xuε+vε∂yuε=ε2∂2xuε+∂2yuε−∂xPε−(θε−θ∞),∂tθε+uε∂xθε+vε∂yθε=ε2∂2xθε+∂2yθε+(ωε)2,∂xuε+∂yvε=0,uε(t,x,y)∣t=0=u0(x,y),θε(t,x,y)∣t=0=θ0(x,y),uε(t,x,y)∣y=0=0,vε(t,x,y)∣y=0=0,∂yθε(t,x,y)∣y=0=0,limy→+∞uε(t,x,y)=Uε(t,x),limy→+∞θε(t,x,y)=Θε(t,x). | (3.1) |
The states Uε and Pε are interrelated through
{∂tUε+Uε∂xUε=ε2∂2xUε−∂xPε−(Θε−θ∞),∂tΘε+Uε∂xΘε=ε2∂2xΘε. | (3.2) |
By a direct calculation, we find that the regularized vorticity ωε:=∂yuε and ˜θε=θε−Θε satisfies the following regularized system
{∂tωε+uε∂xωε+vε∂yωε=ε2∂2xωε+∂2yωε−∂yθε,∂t˜θε+uε∂x˜θε+vε∂y˜θε=ε2∂2x˜θε+∂2y˜θε+(ωε)2−˜uε∂xΘε,∂yωε∣y=0=∂xPε−(θε∣y=0−θ∞),∂y˜θε∣y=0=0. | (3.3) |
Here, the velocity field (uε,vε) is given by
uε(t,x,y):=U−∫+∞yωε(t,x,˜y)d˜y,vε(t,x,y):=−∫y0∂xuε(t,x,˜y)d˜y. |
Now, the regularized system (3.3) constitutes a hyperbolic-parabolic equations. For any fixed ε>0, the well-posedness can be established in a standard way. Actually, we have
Lemma 3.1 (Local Existence of the Regularized Equations). Let s≥6 be an even integer, γ≥1,μ>γ+12, δ∈(0,12), and ε∈(0,1). If (ω0,θ0)∈Hs+12,γμ,2δ, then there exist a time
T:=T(s,γ,δ,ε,ω0,θ0,U,Θ), |
and a solution
(ωε,˜θε)∈C([0,T];Hs+4,γμ,δ)∩C1([0,T];Hs+2,γ), |
to the regularized system (3.3). Moreover, the velocity (uε,vε) and the absolute temperature θε satisfy the regularized system (3.1) as well.
By Lemma 3.1, we have obtained the local existence of solution in [0,T] which depends on (s,γ,δ,ω0,θ0,U,Θ) as well as the parameter ε>0. To get a solution in a time interval independent of ε for the original system, we need to derive the uniform-in-ε estimates of the solutions. From now on, we omit the superscript ε of the solution for the sake of simplicity.
The proof of the uniform estimates will be divided into four parts. First, we will give the weighted estimates of Dα(ω,˜θ) with |α|≤s and |β|≤s−1 in Subsection 3.1. Then we study the estimates of Dβχ(ω,˜θ) with |β|=s in Subsection 3.2. In Subsection 3.3, the weighted Hs estimates of the solution are obtained by combining the estimates in the last two parts. Finally, to ensure that our solution belongs to the function space Hs,γμ,δ, we also need to deal with the L∞ estimates of the solution and this will be given in Subsection 3.4.
The main goal of this part is to prove:
Theorem 3.2. Let s≥6 be an even integer, γ≥1,μ>γ+12,δ∈(0,1), and ε∈(0,1]. If
(ω,˜θ)∈C([0,T];Hs+4,γμ,δ)∩C1([0,T];Hs+2,γμ,δ), |
and (u,v,ω,˜θ) solves (3.1) and (3.3), then we have
12ddt∑|α|≤s|β|≤s−1‖⟨y⟩γ+mDα(ω,˜θ)‖2L2−ε2∑|β|=s‖∂y∂βχ˜θ‖2L2≤−ε2∑|α|≤s|β|≤s−1‖⟨y⟩γ+m∂xDα(ω,˜θ)‖2L2−12∑|α|≤s|β|≤s−1‖⟨y⟩γ+m∂yDα(ω,˜θ)‖2L2+C(1+‖ω‖Hs,γg)s−2‖ω‖2Hs,γg+C(‖ω‖Hs,γg+‖∂βχU‖L2(T)+1)‖ω‖2Hs,γg+Cs/2∑l=0‖∂lt(∂xP)‖2Hs−2l(T)+C‖ω‖Hs,γg‖˜θ‖2Hs,γh+C‖ω‖Hs,γg‖˜θ‖Hs,γh+C(1+‖˜θ‖Hs,γh)s−2‖˜θ‖2Hs,γh+C(‖ω‖Hs,γg+‖∂βχU‖L2(T)+1)‖˜θ‖2Hs,γh+C‖∂β+e2χΘ‖L∞(‖ω‖Hs,γg+‖∂βχU‖L2(T))‖˜θ‖Hs,γh, | (3.4) |
where C is a constant independent of ε and t.
Proof. Applying the operator Dα=∂βχ∂my for α=(β,m)=(β1,β2,m) with |α|≤s,|β|≤s−1 to the equation (3.3)1,(3.3)2, multiplying by ⟨y⟩2γ+2mDαω, ⟨y⟩2γ+2mDα˜θ respectively, then integrating over Ω, we have
12ddt‖⟨y⟩γ+mDαω‖2L2=ε2∫Ω⟨y⟩2γ+2m∂2xDαωDαω+∫Ω⟨y⟩2γ+2m∂2yDαωDαω−∫Ω⟨y⟩2γ+2m(u∂xDαω+v∂yDαω)Dαω−∫Ω⟨y⟩2γ+2mDαω∂yDα˜θ−∑0<σ≤α(ασ)∫Ω⟨y⟩2γ+2m(Dσu∂xDα−σω+Dσv∂yDα−σω)Dαω:=5∑i=1Ji, | (3.5) |
and
12ddt‖⟨y⟩γ+mDα˜θ‖2L2=ε2∫Ω⟨y⟩2γ+2m∂2xDα˜θDα˜θ+∫Ω⟨y⟩2γ+2m∂2yDα˜θDα˜θ−∫Ω⟨y⟩2γ+2m(u∂xDα˜θ+v∂yDα˜θ)Dα˜θ−∑0<σ≤α(ασ)∫Ω⟨y⟩2γ+2m(Dσu∂xDα−σ˜θ+Dσv∂yDα−σ˜θ)Dα˜θ−∑0≤σ≤α(ασ)∫Ω⟨y⟩2γ+2mDσωDα−σωDα˜θ−∑0≤σ≤α(ασ)∫Ω⟨y⟩2γ+2mDσ˜u∂xDα−σΘDα˜θ:=6∑i=1Ki. | (3.6) |
Now, we will give the estimates of Ji and Ki as follows. First of all, for J1, it holds that
J1=−ε2‖⟨y⟩γ+m∂xDαω‖2L2, |
where an integration by parts in the x-variable is used. For J2, utilizing integration by parts in the y-variable, we have
J2=−‖⟨y⟩γ+m∂yDαω‖2L2−(2γ+2m)∫Ω⟨y⟩2γ+2m−1∂yDαωDαω+∫T∂yDαωDαω|y=0=−‖⟨y⟩γ+m∂yDαω‖2L2+J12+J22. |
Clearly, J12 can be controlled by using the Cauchy inequality
J12≤14‖⟨y⟩γ+m∂yDαω‖2L2+C‖⟨y⟩γ+mDαω‖2L2≤14‖⟨y⟩γ+m∂yDαω‖2L2+C‖ω‖2Hs,γg. |
However, the estimate of the boundary integral J22 is very complicated. To handle it, we need to introduce the following lemma and the proof of this lemma is given in the Appendix B.
Lemma 3.3. (Reduction of Boundary Data). Under the hypotheses of Theorem 3.2, we have
{∂yω|y=0=∂xP−θ|y=0+θ∞,∂3yω|y=0=(∂t−ε2∂2x)(∂xP−θ|y=0)+ω∂xω|y=0+∂2yθ|y=0. | (3.7) |
For any 2≤k≤s2, we have
∂2k+1yω|y=0=(∂t−ε2∂2x)k(∂xP−θ|y=0)+Pk|y=0, | (3.8) |
where Pk denotes a polynomial
Pk=P[Dα|α|≤2k−1ω,Dπ|π|≤2k(∂xP,θ)]. |
Now, we claim that
J22≤18‖⟨y⟩γ+m∂yDαω‖2L2+C(1+‖ω‖Hs,γg)s−2‖ω‖2Hs,γg+C‖˜θ‖2Hs,γh+ε2∑|β|=s‖∂y∂βχ˜θ‖2L2+Cs/2∑l=0‖∂lt(∂xP)‖2Hs−2l(T). | (3.9) |
We prove the above claim in two cases |α|≤s−1 and |α|=s. When |α|≤s−1, we find
∫T∂yDαωDαω|y=0≤‖∂2yDαω‖L2‖Dαω‖L2+‖∂yDαω‖L2‖∂yDαω‖L2≤18‖∂2yDαω‖2L2+C(‖Dαω‖2L2+‖∂yDαω‖2L2)≤18‖∂2yDαω‖2L2+C‖ω‖2Hs,γg. |
While when |α|=s, we must have m≥1 since |β|≤s−1. Two cases need to be considered here.
Case 1: m=2k is an even number.
In this case, we can use Lemma 3.3 to obtain
∫T∂yDαωDαω|y=0=∫TDαω∂βχ(∂t−ε2∂2x)k(∂xP−θ)+∫TDαωPk|y=0. |
Therefore, applying the trace estimate in Lemma 2.3 and the Cauchy-Schwarz inequality to the above equation, we get
J22≤18‖⟨y⟩γ+m∂yDαω‖2L2+C(1+‖ω‖Hs,γg)s−2‖ω‖2Hs,γg+C‖˜θ‖2Hs,γh+ε2∑|β|=s‖∂y∂βχ˜θ‖2L2+Cs/2∑l=0‖∂lt(∂xP)‖2Hs−2l(T). | (3.10) |
Case 2: m=2k+1 is an odd number.
In this case, since s is even, we have |β|=|β1|+|β2|≥1.
(1) When β2≥1. Using integration by parts in x, we have
∫T∂yDαωDαωdx|y=0=−∫TDα−E2+E3ω∂xDαωdx|y=0. | (3.11) |
Now, the term ∂xDαω|y=0=∂β+e2χ∂2m+1yω|y=0 has an odd number of y derivatives. Hence, we can apply Lemma 3.2 to reduce the order of the right hand side of (3.11). Similar to the Case 1, we can further apply Lemma 2.4 to eventually obtain the following estimates:
J22≤18‖⟨y⟩γ+m+1Dα−E2+E3ω‖2L2+C(1+‖ω‖Hs,γg)s−2‖ω‖2Hs,γg+C‖˜θ‖2Hs,γh+ε2∑|β|=s‖∂y∂βχ˜θ‖2L2+Cs/2∑l=0‖∂lt(∂xP)‖2Hs−2l(T). | (3.12) |
(2) When β2=0. There is no derivative of x here, so we cannot integrate by parts with respect to x directly. However, we can substitute the y−derivative of ω by using Lemma 3.3 and
∂2k+2yω=(∂t−ε2∂2x)k+1ω+Qk, |
which is obtained by applying ∂2ky to (3.3)1 and Qk is a polynomial of Dα(ω,˜θ) with |α|≤2k+1. This substitution gives us the derivative with respect to x, so we have
∫T∂yDαωDαω|y=0=∫T∂β1t∂2k+2yω∂β1t∂2k+1yω=∫T∂β1t[(∂t−ε2∂2x)k+1ω+Qk]∂β1t[(∂t−ε2∂2x)k(∂xP−θ)+Pk]. |
The difficulty lies in the term ε2k+2∫T∂β1t∂2k+2xω∂β1t(∂t−ε2∂2x)k(∂xP−θ), since the others can be estimated directly by the trace estimate. Integrating by parts with respect to x, we have
∫T∂β1t∂2k+2xω∂β1t(∂t−ε2∂2x)k(∂xP−θ)=−∫T∂β1t∂2k+1xω∂β1t(∂t−ε2∂2x)k∂x(∂xP−θ). | (3.13) |
Now, the order of the derivatives of (ω,θ) in (3.13) is no larger than β1+2k+1=s, so we can further apply Lemma 2.4 to eventually obtain the following estimates:
J22≤18‖⟨y⟩γ+m∂yDαω‖2L2+C(1+‖ω‖Hs,γg)s−2‖ω‖2Hs,γg+C‖˜θ‖2Hs,γh+ε2∑|β|=s‖∂y∂βχ˜θ‖2L2+Cs/2∑l=0‖∂lt(∂xP)‖2Hs−2l(T). | (3.14) |
Thus, combining estimates (3.10), (3.12), (3.14), we prove (3.9). As a result, J2 can be estimated as
J2≤−12‖⟨y⟩γ+m∂yDαω‖2L2+C(1+‖ω‖Hs,γg)s−2‖ω‖2Hs,γg+C‖˜θ‖2Hs,γh+ε2∑|β|=s‖∂y∂βχ˜θ‖2L2+Cs/2∑l=0‖∂lt(∂xP)‖2Hs−2l(T). |
For the term J3, we can use integration by parts and the equation ∂xu+∂yv=0 to get
J3=−∫Ω⟨y⟩2γ+2m(u∂xDαω+v∂yDαω)Dαω=(2γ+2m)∫Ω⟨y⟩2γ+2m(⟨y⟩−1v)(Dαω)2≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T)+1)‖ω‖2Hs,γg. |
Next, we can estimate the term J4 by using Cauchy-Schwarz inequality directly:
J4=−∫Ω⟨y⟩2γ+2mDαω∂yDα˜θ≤14‖⟨y⟩γ+m∂yDα˜θ‖2L2+C‖ω‖2Hs,γg. |
Finally, we will show the estimate of
J5=−∑0<σ≤α(ασ)∫Ω⟨y⟩2γ+2m(Dσu∂xDα−σω+Dσv∂yDα−σω)Dαω:=J15+J25, |
where σ=(ˉσ,ˉm)=(σ1,σ2,ˉm). For J15, we have two cases:
Case 1: ˉm=0, and |ˉσ|≤s−1. Here we have
∫Ω⟨y⟩2γ+2m∂ˉσχuDα−σ−E2ωDαω≤‖∂ˉσχu‖L∞‖⟨y⟩γ+mDα−σ+E2ω‖L2‖⟨y⟩γ+mDαω‖L2≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T))‖ω‖2Hs,γg. | (3.15) |
Case 2: ˉm≥1. In this case, by Lemma 2.4, we find
∫Ω⟨y⟩2γ+2mDσu∂xDα−σωDαω≤‖⟨y⟩γ+mDσ−E3ωDα−σ+E2ω‖L2‖⟨y⟩γ+mDαω‖L2≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T))‖ω‖2Hs,γg. | (3.16) |
While for J25, we need to consider the following four cases:
Case 1: ˉm=0,σ2=s−1,
∫Ω⟨y⟩2γ+2mDσv∂yDα−σωDαω≤C‖⟨y⟩−1(∂ˉσχv+y∂β+e2χU)‖L2‖⟨y⟩γ+mDαω‖L2‖⟨y⟩γ+m+1Dα−σ+E3ω‖L∞≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T))‖ω‖2Hs,γg. | (3.17) |
For the other three cases, by using ∂xu+∂yv=0 and Lemma 2.4, one has
Case 2: m=0,σ2≤s−2,
J25≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T))‖ω‖2Hs,γg. | (3.18) |
Case 3: m=1,
J25≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T))‖ω‖2Hs,γg. | (3.19) |
Case 4: m≤2,
J25≤C‖ω‖3Hs,γg. | (3.20) |
Combining estimates (3.15)-(3.20), we get
J5≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T)+1)‖ω‖2Hs,γg. | (3.21) |
In the following part, we will give the estimates of the right-hand side terms of (3.6). First, for K1, it directly follows from an integration by parts in the x-variable that
K1=−ε2‖⟨y⟩γ+m∂xDα˜θ‖2L2. | (3.22) |
Integrating by parts in the y-variable in K2, we have
K2=−‖⟨y⟩γ+m∂yDα˜θ‖2L2−(2γ+2m)∫Ω⟨y⟩2γ+2m−1∂yDα˜θDα˜θ+∫T∂yDα˜θDα˜θ|y=0=−‖⟨y⟩γ+m∂yDα˜θ‖2L2+K12+K22. | (3.23) |
Here K12 can be controlled by the Cauchy-Schwarz inequality
K12≤14‖⟨y⟩γ+m∂yDα˜θ‖2L2+C‖⟨y⟩γ+mDα˜θ‖2L2≤14‖⟨y⟩γ+m∂yDα˜θ‖2L2+C‖˜θ‖2Hs,γh. | (3.24) |
Similar to the estimate of J22, the boundary integral K22 is controlled in the following two cases: |α|≤s−1 and |α|=s. When |α|≤s−1, we can use the basic trace estimate directly to control K22 since the order of the derivatives in the boundary integral is no larger than s. While for the case |α|=s, we have to appeal to the boundary reduction argument as before. Actually, we have the following lemma.
Lemma 3.4. (Reduction of Boundary Data). Under the hypotheses of Theorem 3.2, for any 2≤k≤s2, we have
∂2k+1y˜θ|y=0=Hk, |
Hk denotes a polynomial, and
Hk=H[Dα|α|≤2k−1ω,Dπ|π|≤2k(˜θ,Θ)]. |
The proof of this Lemma is based on an elementary use of the original equation (1.1), so we just omit it. With this Lemma, we can give the estimate of K22 in a similar fashion with J22. By direct calculations, one has
K22≤18‖⟨y⟩γ+m∂yDα˜θ‖2L2+C(1+‖˜θ‖Hs,γh)s−2‖˜θ‖2Hs,γh+C‖ω‖2Hs,γg. | (3.25) |
Collecting the estimates (3.23), (3.24) and (3.25), we obtain
K2≤−12‖⟨y⟩γ+m∂yDα˜θ‖2L2+C(1+‖˜θ‖Hs,γh)s−2‖˜θ‖2Hs,γh+C‖ω‖2Hs,γg. |
For K3 we have
K3=−∫Ω⟨y⟩2γ+2m(u∂xDα˜θ+v∂yDα˜θ)Dα˜θ≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T)+1)‖˜θ‖2Hs,γh. |
The estimate of K4 is similar to J5. Namely, we can use a similar strategy to get
K4≤C(‖ω‖Hs,γg+‖∂βχU‖L2(T)+1)‖˜θ‖2Hs,γh. |
The term K5 can be estimated by using Lemma 2.6 directly:
K5≤C‖ω‖2Hs,γg‖˜θ‖Hs,γh. |
Similarly, K6 satisfies
K6≤C‖∂β+e2χΘ‖L∞(‖ω‖Hs,γg+‖∂βχU‖L2(T))‖˜θ‖Hs,γh. |
Finally, putting all the above estimates of Ji and Ki into (3.5) and (3.6), we can obtain the desired estimate (3.4). This completes the proof of Theorem 3.2.
In this subsection, we will derive the weighted L2 estimates on gβ and hβ by using standard energy method. We need to derive the evolution equations of gβ and hβ first.
Let a=∂yωω, b=∂y˜θω, then after a tedious but straightforward calculation (see Appendix C), we have
(∂t+u∂x+v∂y−ε2∂2x−∂2y)gβ=2ε2(∂β+e2χ˜u−∂xωω∂βχ˜u)∂xa+2gβ∂ya−ge2∂βχU+∂2y˜θω∂βχ˜u−ab∂βχ˜u−∑0<ˉβ<β(βˉβ)∂β−ˉβχugˉβ+e2+a∑0≤ˉβ<β(βˉβ)∂β−ˉβ+e2χU∂ˉβχ˜u−∑0<ˉβ<β(βˉβ)∂β−ˉβχv(∂y∂ˉβχω−a∂ˉβχω)−∂βχ∂y˜θ+a∂βχ˜θ, | (3.26) |
and
(∂t+u∂x+v∂y−ε2∂2x−∂2y)hβ=2ε2(∂β+e2χ˜u−∂xωω∂βχ˜u)∂xb−∂y(ab)∂βχ˜u−he2∂βχU−b2∂βχ˜u−a∂2y˜θω∂βχ˜u+b∂2yωω∂βχ˜u−2∂yω∂βχ˜u+2∂βχω∂yb+∂xΘ∂βχ˜u−∑0<ˉβ<β(βˉβ)∂β−ˉβχuhˉβ+e2+b∑0≤ˉβ<β(βˉβ)∂β−ˉβ+e2χU∂ˉβχ˜u−∑0<ˉβ<β(βˉβ)∂β−ˉβχv(∂y∂ˉβχ˜θ−b∂ˉβχω)−∂βχω2+b∂βχ˜θ−∑0≤ˉβ≤β(βˉβ)∂β−ˉβχ˜u∂ˉβχ∂xΘ. | (3.27) |
Theorem 3.5. Let s≥6 be an even integer, γ≥1,μ>γ+12,δ∈(0,1), and ε∈(0,1]. If
(ω,˜θ)∈C([0,T];Hs+4,γμ,δ)∩C1([0,T];Hs+2,γμ,δ), |
and (u,v,ω,˜θ) solves (3.1) and (3.3), then we have
12ddt∑|β|=s‖⟨y⟩γ(gβ,hβ)‖2L2+ε22∑|β|=s‖⟨y⟩γ∂x(gβ,hβ)‖2L2+12∑|β|=s‖⟨y⟩γ∂y(gβ,hβ)‖2L2≤C(‖ω‖Hs,γg+‖∂βχU‖L∞(T)+1)(‖ω‖Hs,γg+‖∂β+e2χU‖L∞(T))‖ω‖Hs,γg+C‖∂βχ∂xP‖L2(T)+C(‖ω‖Hs,γg+‖∂βχU‖L∞(T)+1)(‖ω‖Hs,γg+‖∂β+e2χU‖L∞(T))‖˜θ‖Hs,γh+C(‖∂βχU‖2L∞(T)+‖∂β+e2χΘ‖2L∞(T))(‖˜θ‖2Hs,γh+‖ω‖2Hs,γg)+C(‖ω‖Hs,γg+‖∂βχU‖L∞(T)+1)‖˜θ‖2Hs,γh. | (3.28) |
where C is a constant independent of ε and t.
Proof. Multiplying the equation (3.26) by ⟨y⟩2γgβ and integrating the resulting equation over Ω, we have
12ddt‖⟨y⟩γgβ‖2L2=ε2∫Ω⟨y⟩2γ∂2xgβgβ+∫Ω⟨y⟩2γ∂2ygβgβ−∫Ω⟨y⟩2γ(u∂xgβ+v∂ygβ)gβ+2ε2∫Ω⟨y⟩2γgβ(∂β+e2χ˜u−∂xωω∂βχ˜u)∂xa+2∫Ω⟨y⟩2γg2β∂ya−∫Ω⟨y⟩2γgβge2∂βχU+∫Ω⟨y⟩2γgβ∂2y˜θω∂βχ˜u−∫Ω⟨y⟩2γgβab∂βχ˜u−∑0<ˉβ<β(βˉβ)∫Ω⟨y⟩2γgβ∂β−ˉβχugˉβ+e2−∑0<ˉβ<β(βˉβ)∫Ω⟨y⟩2γgβ∂β−ˉβχv(∂y∂ˉβχω−a∂ˉβχω)+a∑0≤ˉβ<β(βˉβ)∫Ω⟨y⟩2γgβ∂β−ˉβ+e2χU∂ˉβχ˜u−∫Ω⟨y⟩2γgβ∂βχ∂y˜θ+∫Ω⟨y⟩2γgβa∂βχ˜θ:=13∑i=1Li, |
where gi=∂iχω−∂yωω∂iχ(u−U).
Then we shall estimate Li term by term as follows. It directly follows from an integration by parts in the x-variable that
L1=−ε2‖⟨y⟩γ∂xgβ‖2L2. |
Integrating by parts in the y-variable, we have
L2=−‖⟨y⟩γ∂ygβ‖2L2−(2γ)∫Ω⟨y⟩2γ−1∂ygβgβ+∫T∂ygβgβ|y=0:=−‖⟨y⟩γ∂ygβ‖2L2+L12+L22. | (3.29) |
L12 is controlled by the Cauchy inequality
L12≤18‖⟨y⟩γ∂ygβ‖2L2+C‖⟨y⟩γgβ‖2L2≤18‖⟨y⟩γ∂ygβ‖2L2+C‖ω‖2Hs,γg. | (3.30) |
For the boundary integral L22, a direct calculation yields
∂ygβ=∂y(∂βχω−∂yωω∂βχ˜u)=∂βχ∂yω−∂βχ˜u∂2yωω−a(∂βχω−∂yωω∂βχ˜u)=∂χ∂yω−∂βχ˜u∂2yωω−agβ. | (3.31) |
This combined with ∂yω|y=0=∂xP−θ|y=0+θ∞ and u|y=0=0 gives
∂ygβ|y=0=∂βχ(∂xP−θ|y=0+θ∞)+∂βχU∂2yωω|y=0−(agβ)|y=0. | (3.32) |
Substituting (3.32) to L_{2}^{2} and using Lemma 2.4, we get
\begin{equation} \label{gL_{2}^{2}} \begin{aligned} L_{2}^{2} = &\left.\int_{\mathbb{T}} g_{\beta}\left(\partial_{\chi}^{\beta}\left( \partial_{x} P-\theta+\theta_{\infty}\right)+\partial_{\chi}^{\beta} U \frac{\partial_{y}^{2} \omega}{\omega}-a g_{\beta}\right)\right|_{y = 0} \\ \leq & \frac{1}{4}\left\|\langle y\rangle^{\gamma} \partial_{y} g_{\beta}\right\|_{L^{2}}^{2}+\frac{1}{4}\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}+C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2}+C\|\omega\|_{H_{g}^{s, \gamma}}^{2}(1+\|\partial_{\chi}^{\beta} U\|_{L^{\infty}(\mathbb{T})}^{2}) +\| \partial_{\chi}^{\beta}\left( \partial_{x} P\right)\|_{L^{2}(\mathbb{T})}^{2}, \end{aligned} \end{equation} | (3.33) |
where |\frac{\partial_{y}^{2}\omega}{\omega}| \leq \frac{1}{\delta^{2}} is used. Combining (3.29)-(3.33), we have
\begin{equation*} \begin{aligned} L_{2} \leq -\frac{1}{4}\left\|\langle y\rangle^{\gamma} \partial_{y} g_{\beta}\right\|_{L^{2}}^{2}-\frac{1}{4}\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}+C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2} +C\|\omega\|_{H_{g}^{s, \gamma}}^{2}(1+\|\partial_{\chi}^{\beta} U\|_{L^{\infty}(\mathbb{T})}^{2})+\| \partial_{\chi}^{\beta}\left( \partial_{x} P\right)\|_{L^{2}(\mathbb{T})}^{2}. \end{aligned} \end{equation*} |
For L_{3} , by integrating by parts in the x -variable and y -variable, and using the equation \partial_{x}u+\partial_{y}v = 0 , we have
\begin{equation*} \begin{aligned} L_{3} = -\int_{\Omega}\langle y\rangle^{2 \gamma}\left(u \partial_{x} g_{\beta}+v \partial_{y}g_{\beta}\right) g_{\beta} = 2 \gamma\int_{\Omega}\langle y\rangle^{2 \gamma}(\langle y\rangle^{-1}v)(g_{\beta})^{2} \leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})}+1)\|\omega\|_{{H_{g}^{s, \gamma}}}^{2}. \end{aligned} \end{equation*} |
The term L_{4} is estimated as follows:
\begin{equation*} \begin{aligned} L_{4} = &2\varepsilon^{2}\int_{\Omega}\langle y\rangle^{2 \gamma}g_{\beta}\left(\partial_{\chi}^{\beta+e_{2}} \tilde{u}-\frac{\partial_{x} \omega}{\omega} \partial_{\chi}^{\beta} \tilde{u}\right) \partial_{x} a\\ &\leq 2\varepsilon^{2}\Big[ \|\langle y\rangle^{ \gamma-1}\partial_{\chi}^{\beta+e_{2}} \tilde{u}\|_{L^2}+\|\langle y\rangle^{ \gamma-1}\frac{\partial_{x} \omega}{\omega} \partial_{\chi}^{\beta} \tilde{u}\|_{L^{2}}\Big] \left\|\langle y\rangle^{ \gamma}g_{\beta}\right\|_{L^{2}} \left\|\langle y \rangle \partial_{x} a \right \|_{L^{\infty}}. \end{aligned} \end{equation*} |
Since \delta \leq \langle y\rangle^{\mu} \omega \leq \delta^{-1}, \quad \sum_{|\alpha| \leq 2}\left|\langle y\rangle^{\mu+m} D^{\alpha} \omega\right|^{2} \leq \delta^{-2} , we have \left\|\langle y\rangle \partial_{x} a\right\|_{L^{\infty}} \leq \delta^{-2} . Note that \omega \partial_{y}\left(\frac{\partial_{\chi}^{\beta+e_{2}} \tilde{u}}{\omega}\right) = \partial_{x} g_{\beta}+\partial_{x} a \partial_{\chi}^{\beta} \tilde{u} , and since \mu > \gamma+\frac{1}{2} , we can use Lemma 2.2 to get
\begin{equation*} \begin{aligned} \left\|\langle y\rangle^{\gamma-1} \partial_{\chi}^{\beta+e_{2}} \tilde{u}\right\|_{L^{2}} & = \left\|\langle y\rangle^{\gamma-1} \omega \frac{\partial_{\chi}^{\beta+e_{2}} \tilde{u}}{\omega}\right\|_{L^{2}}\\ & \leq \frac{1}{\delta}\left\|\langle y\rangle^{\gamma-\mu-1} \frac{\partial_{\chi}^{\beta+e_{2}} \tilde{u}}{\omega}\right\|_{L^{2}} \\ & \leq C\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{2}}+C\left\|\langle y\rangle^{\gamma} \omega \partial_{y}\left(\frac{\partial_{\chi}^{\beta+e_{2}} \tilde{u}}{\omega}\right)\right\|_{L^{2}} \\ & \leq C\left(\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{2}}+\left\|\langle y\rangle^{\gamma} \partial_{x} g_{\beta}\right\|_{L^{2}}+\|\langle y\rangle^{\gamma} \partial_{x} a \partial_{\chi}^{\beta} \tilde{u}\|_{L^{2}}\right). \end{aligned} \end{equation*} |
Thus, we get
\begin{equation*} \begin{aligned} L_4\leq \frac{\varepsilon^{2}}{2}\left\|\langle y\rangle^{\gamma} \partial_{x} g_{\beta}\right\|_{L^{2}}^{2}+C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{2}})\|\omega\|_{H_{g}^{s, \gamma}}. \end{aligned} \end{equation*} |
Since \|\partial_{y}a\|_{L^{\infty}}\leq C , we have
\begin{equation*} L_{5} \leq C\|\omega\|_{{H_{g}^{s, \gamma}}}^{2}. \end{equation*} |
The estimates of L_6-L_{13} are straightforward, so we omit the details for simplicity. Actually, we have
\begin{align*} L_{6} &\leq C\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{\infty}}(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{2}})\|\omega\|_{H_{g}^{s, \gamma}}, \\ L_{7}+ L_{8}+ L_{9}+ L_{10} &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})}+1)\|\omega\|_{H_{g}^{s, \gamma}}^{2}, \\ L_{11} &\leq C\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{\infty}}(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{2}})\|\omega\|_{H_{g}^{s, \gamma}}, \\ L_{12}& \leq \frac{1}{4}\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}+C\|\omega\|_{H_{g}^{s, \gamma}}^{2}, \\ L_{13} &\leq C(\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}})\|\omega\|_{H_{g}^{s, \gamma}}. \end{align*} |
Now let us estimate h_{\beta} . Multiplying the equation (3.27) by \left \langle y \right \rangle ^{2\gamma}h_{\beta} and integrating the resulting equation over \Omega , we have
\begin{equation*} \begin{aligned} \frac{1}{2} \frac{d}{d t}\left\|\langle y\rangle^{\gamma} h_{\beta}\right\|_{L^{2}}^{2} & = \varepsilon^{2} \int_{\Omega}\langle y\rangle^{2 \gamma} \partial_{x}^{2} h_{\beta} h_{\beta}+\int_{\Omega}\langle y\rangle^{2 \gamma} \partial_{y}^{2} h_{\beta} h_{\beta} -\int_{\Omega}\langle y\rangle^{2 \gamma}\left(u \partial_{x} h_{\beta} +v \partial_{y} h_{\beta}\right) h_{\beta} \\ &\quad+2 \varepsilon^{2}\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}\left(\partial_{\chi}^{\beta+e_{2}} \tilde{u}-\frac{\partial_{x} \omega}{\omega} \partial_{\chi}^{\beta} \tilde{u}\right) \partial_{x} b-\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta} \partial_{y}(ab)\partial_{\chi}^{\beta} \tilde{u}\\ &\quad-\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}h_{e_{2}} \partial_{\chi}^{\beta} U-\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}b^{2}\partial_{\chi}^{\beta} \tilde{u}-\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}a\frac{\partial_{y}^{2}\tilde{\theta}}{\omega}\partial_{\chi}^{\beta} \tilde{u}\\ &\quad+\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}b\frac{\partial_{y}^{2}\omega}{\omega}\partial_{\chi}^{\beta} \tilde{u}+2\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta} \partial_{y}b\partial_{\chi}^{\beta}\omega-2\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}\partial_{y}\omega\partial_{\chi}^{\beta} \tilde{u}\\ &\quad-\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}\partial_{\chi}^{\beta-\bar{\beta}} u h_{\bar{\beta}+e_{2}} -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}}\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta} \partial_{\chi}^{\beta-\bar{\beta}} v\left(\partial_{y} \partial_{\chi}^{\bar{\beta}} \tilde{\theta}-b \partial_{\chi}^{\bar{\beta}} \omega\right)\\ &\quad+b\sum\limits_{0\leq \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}\partial_{\chi}^{\beta-\bar{\beta}+e_{2}} U \partial_{\chi}^{\bar{\beta}} \tilde{u}-\sum\limits_{0\leq \bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}} \int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}\partial_{\chi}^{\beta-\bar{\beta}}\omega \partial_{\chi}^{\bar{\beta}} \omega\\ &\quad+\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}b\partial_{\chi}^{\beta}\tilde{\theta}-\sum\limits_{0\leq \bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}}\langle y\rangle^{2 \gamma}h_{\beta} \partial_{\chi}^{\beta-\bar{\beta}} \tilde{u} \partial_{\chi}^{\bar{\beta}+e_{2}}\Theta+\int_{\Omega}\langle y \rangle ^{2\gamma} h_{\beta}\partial_{x}\Theta\partial_{\chi}^{\beta}\tilde{u}\\ &: = \sum\limits_{i = 1}^{18}M_{i}, \end{aligned} \end{equation*} |
where h_{i} = \partial_{\chi}^{i} \tilde{\theta}-\frac{\partial_{y} \tilde{\theta}}{\omega} \partial_{\chi}^{i}(u-U) .
Each M_i need to be estimated now. However, since the estimate of M_i is similar to L_i , we only give a skeleton of the proof. From integration by parts in the x -variable, we have
\begin{equation*} M_{1} = -\varepsilon^{2}\left\|\langle y\rangle^{\gamma} \partial_{x} h_{\beta}\right\|_{L^{2}}^{2}. \end{equation*} |
Similar to the estimate of L_2 , we have
\begin{equation} \label{hM_{2}} \begin{aligned} M_{2} = -\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}-\left(2 \gamma\right) \int_{\Omega}\langle y\rangle^{2 \gamma-1} \partial_{y} h_{\beta} h_{\beta} +\left.\int_{\mathbb{T}} \partial_{y} h_{\beta} h_{\beta}\right|_{y = 0} : = -\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}+M_{2}^{1}+M_{2}^{2}, \end{aligned} \end{equation} | (3.34) |
where M_{2}^{1} is controlled by the Cauchy inequality
\begin{equation} \label{hM_{2}^{1}} \begin{aligned} M_{2}^{1} & \leq \frac{1}{8}\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}+C\left\|\langle y\rangle^{\gamma} h_{\beta}\right\|_{L^{2}}^{2} \leq \frac{1}{8}\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}+C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2}. \end{aligned} \end{equation} | (3.35) |
Using the boundary conditions \partial_{y}\tilde{\theta}|_{y = 0} = 0 and u|_{y = 0} = 0 , we have
\begin{equation} \left.\partial_{y} h_{\beta}\right|_{y = 0} = \left.\partial_{\chi}^{\beta} U \frac{\partial_{y}^{2} \tilde{\theta}}{\omega}\right|_{y = 0}-\left.\left(b g_{\beta}\right)\right|_{y = 0}. \end{equation} | (3.36) |
Substituting (3.36) to M_{2}^{2} and using Lemma 2.4, we get
\begin{equation} \label{hM_{2}^{2}} \begin{aligned} M_{2}^{2} = \left.\int_{\mathbb{T}} h_{\beta}\left(\partial_{\chi}^{\beta} U \frac{\partial_{y}^{2} \tilde{\theta}}{\omega}-b g_{\beta}\right)\right|_{y = 0} \leq \frac{1}{4}\left\|\langle y\rangle^{\gamma} (\partial_{y} g_{\beta}, \partial_{y} h_{\beta})\right\|_{L^{2}}^{2}+C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2}(1+\|\partial_{\chi}^{\beta} U\|_{L^{\infty}(\mathbb{T})}^{2}). \end{aligned} \end{equation} | (3.37) |
Combining (3.34)–(3.37), we have
\begin{equation*} \begin{aligned} M_{2} &\leq -\frac{1}{4}\left\|\langle y\rangle^{\gamma} \partial_{y} g_{\beta}\right\|_{L^{2}}^{2}-\frac{1}{4}\left\|\langle y\rangle^{\gamma} \partial_{y} h_{\beta}\right\|_{L^{2}}^{2}+ C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2}(1+\|\partial_{\chi}^{\beta} U\|_{L^{\infty}(\mathbb{T})}^{2}). \end{aligned} \end{equation*} |
We can give the control of M_3 as
\begin{equation*} \begin{aligned} M_{3} = -\int_{\Omega}\langle y\rangle^{2 \gamma}\left(u \partial_{x} h_{\beta}+v \partial_{y}h_{\beta}\right) h_{\beta} = (2 \gamma)\int_{\Omega}\langle y\rangle^{2 \gamma}(\langle y\rangle^{-1}v)(h_{\beta})^{2} \leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})}+1)\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}^{2}. \end{aligned} \end{equation*} |
The term M_{4} can be controlled in a similar fashion as L_{4} , we just skip the details to get
\begin{equation*} \begin{aligned} M_{4}& = 2\varepsilon^{2}\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}\left(\partial_{\chi}^{\beta+e_{2}} \tilde{u}-\frac{\partial_{x} \omega}{\omega} \partial_{\chi}^{\beta} \tilde{u}\right) \partial_{x} b\\ &\leq 2\varepsilon^{2}\left\|\langle y\rangle^{ \gamma-1}\left(\partial_{\chi}^{\beta+e_{2}} \tilde{u}-\frac{\partial_{x} \omega}{\omega} \partial_{\chi}^{\beta} \tilde{u}\right)\right\|_{L^{2}}\left\|\langle y\rangle^{ \gamma}h_{\beta}\right\|_{L^{2}} \left\|\langle y \rangle \partial_{x} b \right \|_{L^{\infty}} \\ &\leq \frac{\varepsilon^{2}}{2}\left\|\langle y\rangle^{\gamma} \partial_{x} g_{\beta}\right\|_{L^{2}}^{2}+C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{2}})\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}. \end{aligned} \end{equation*} |
By tedious but straightforward calculations, we find
\begin{align*} M_{5} &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}, \\ M_{6} &\leq C\|\partial_{\chi}^{\beta} U\|_{L^{\infty}(\mathbb{T})}\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}(\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}+\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})}), \\ M_{7}+M_{8}+M_{9}+M_{10} &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}, \\ M_{11} &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}\|\omega\|_{{H_{g}^{s, \gamma}}}. \end{align*} |
Here we have used \|\langle y \rangle a \|_{L^{\infty}}\leq C, \|\langle y \rangle b \|_{L^{\infty}}\leq C, \|\langle y \rangle \frac{\partial_{y}^{2}\tilde{\theta}}{\omega} \|_{L^{\infty}}\leq C, \|\langle y \rangle \frac{\partial_{y}^{2}\omega}{\omega} \|_{L^{\infty}}\leq C, \|\langle y \rangle ^{2} ab\|_{L^{\infty}} \leq C, \|\langle y \rangle ^{2}b^{2}\|_{L^{\infty}} \leq C, \|\langle y \rangle ^{2}\partial_{y}(ab)\|_{L^{\infty}} \leq C , since (\omega, \tilde{\theta}) \in H_{\mu, \delta}^{s, \gamma} . For M_{12} , we have
\begin{equation*} \begin{aligned} M_{12} = -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}}\int_{\Omega}\langle y\rangle^{2 \gamma}h_{\beta}\partial_{\chi}^{\beta-\bar{\beta}} u h_{\bar{\beta}+e_{2}} &\leq \|\partial_{\chi}^{\beta-\bar{\beta}}\tilde{u}\|_{L^{\infty}}\|\langle y \rangle ^{\gamma} h_{\bar{\beta}+e_{2}}\|_{L^{2}}\|\langle y \rangle ^{\gamma} h_{\beta}\|_{L^{2}}\\ &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})(\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}+\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}. \end{aligned} \end{equation*} |
By direct calculations, one can show that
\begin{align} M_{13} &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})}+1)(\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}^{2} +\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}\|\omega\|_{{H_{g}^{s, \gamma}}}), \\ M_{14} &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}\|\partial_{\chi}^{\beta} U\|_{L^{\infty}(\mathbb{T})}, \\ M_{15} &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}\|\omega\|_{{H_{g}^{s, \gamma}}}, \\ M_{16} &\leq C(\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}. \end{align} |
The term M_{17} can be estimated by using Lemma 2.6 directly:
\begin{equation*} \begin{aligned} M_{17} = \sum\limits_{0 \leq \bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}}\langle y\rangle^{2 \gamma}h_{\beta} \partial_{\chi}^{\beta-\bar{\beta}} \tilde{u} \partial_{\chi}^{\bar{\beta}+e_{2}}\Theta &\leq C \|\partial_{\chi}^{\bar{\beta}+e_{2}} \Theta\|_{L^{\infty}} \|\langle y \rangle ^{\gamma}\partial_{\chi}^{\beta-\bar{\beta}}\tilde{u}\|_{L^{2}} \|\langle y \rangle ^{\gamma}h_{\beta}\|_{L^{2}}\\ &\leq C \|\partial_{\chi}^{\bar{\beta}+e_{2}}\Theta\|_{L^\infty} (\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}. \end{aligned} \end{equation*} |
The last term M_{18} can also be estimated by using Lemma 2.6:
\begin{equation*} \begin{aligned} M_{18} = \int_{\Omega}\langle y \rangle ^{2\gamma}h_{\beta}\partial_{x}\Theta\partial_{\chi}^{\beta}\tilde{u} \leq \|\partial_{x}\Theta\|_{L^{\infty}}\|\langle y \rangle ^{\gamma}h_{\beta}\|_{L^{2}}\|\langle y \rangle ^{\gamma}\partial_{\chi}^{\beta}\tilde{u}\|_{L^{2}} \leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})})\|\partial_{x}\Theta\|_{L^{\infty}}\|\tilde{\theta}\|_{{H_{h}^{s, \gamma}}}. \end{aligned} \end{equation*} |
Finally combining all the above estimates, we obtain the estimate (3.28), and this completes the proof of Theorem 3.5.
In this subsection, we can derive the weighted H^{s} estimates on \omega, \tilde{\theta} by employing Theorem 3.2 and Theorem 3.5. The aim of this subsection is to derive the growth rate control (3.26) on the weighted H^{s} energy of \omega, \tilde{\theta} .
Theorem 3.6. Let s \geq 6 be an even integer, \gamma \geq 1, \mu > \gamma + \frac{1}{2}, \delta \in(0, 1) , and \varepsilon \in(0, 1]. If
(\omega, \tilde{\theta}) \in C([0, T] ; H_{\mu , \delta}^{s+4, \gamma}) \cap C^{1}([0, T] ; H_{\mu , \delta}^{s+2, \gamma}), |
and (u, v, \omega, \tilde{\theta}) solves (3.1) and (3.3), then we have
\begin{equation} \begin{aligned} \|\omega\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2} &\leq \left\{\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}+\int_{0}^{t} Y(\tau) d \tau\right\} \\ & \cdot\left\{1-C\left(\frac{s}{2}-1\right)\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}+\int_{0}^{t} Y(\tau) d \tau\right)^{\frac{s-2}{2}} t\right\}^{-\frac{2}{s-2}} : = \mathcal{G}, \end{aligned} \end{equation} | (3.38) |
where C is a constant independent of \varepsilon and t . The function Y(t) is expressed by
\begin{equation} Y(t) = C(\|\partial_{\chi}^{\beta+e_{2}} U(t)\|_{L^{\infty}(\mathbb{T})}+\|\partial_{\chi}^{\beta+e_{2}} \Theta(t)\|_{L^{\infty}(\mathbb{T})}+1)^{2}+C \sum\limits_{l = 0}^{s / 2}\|\partial_{t}^{l}( \partial_{x} P)(t)\|_{H^{s-2 l}(\mathbb{T})}^{2}. \end{equation} | (3.39) |
Proof. Combining estimates (3.4) and (3.28), we find
\begin{equation} \begin{aligned} \frac{d}{d t}\big\{\|\omega(t)\|_{H_{g}^{s, \gamma} }^{2}+\|\tilde{\theta}(t)\|_{H_{h}^{s, \gamma} }^{2}\big\} &\leq C\|\omega(t)\|_{H_{g}^{s, \gamma}}^{s}+C\|\tilde{\theta}(t)\|_{H_{h}^{s, \gamma}}^{s}+C \sum\limits_{l = 0}^{s / 2}\|\partial_{t}^{l}( \partial_{x} P)(t)\|_{H^{s-2 l}(\mathbb{T})}^{2}\\ &+C(\|\partial_{\chi}^{\beta+e_{2}} U(t)\|_{L^{\infty}(\mathbb{T})}+\|\partial_{\chi}^{\beta+e_{2}} \Theta(t)\|_{L^{\infty}(\mathbb{T})}+1)^{2}. \end{aligned} \end{equation} | (3.40) |
Then it follows from the comparison principle of ordinary differential equations that
\begin{equation*} \begin{aligned} \|\omega\|_{H_{g}^{s, \gamma}}^{2}&+\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2} \leq \left\{\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}+\int_{0}^{t} Y(\tau) d \tau\right\} \\ & \cdot\left\{1-C\left(\frac{s}{2}-1\right)\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}+\int_{0}^{t} Y(\tau) d \tau\right)^{\frac{s-2}{2}} t\right\}^{-\frac{2}{s-2}}, \end{aligned} \end{equation*} |
provided
\begin{equation*} 1-C\left(\frac{s}{2}-1\right)\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}+\int_{0}^{t} Y(\tau) d \tau\right)^{\frac{s-2}{2}} t \quad\geq 0, \end{equation*} |
which truly holds if t > 0 is chosen small enough. This completes the proof of Theorem 3.6.
In this subsection, we are going to prove the uniform existence of the solutions to the regularized system. To this end, we need to derive the uniform upper bound and lower bound of the solutions.
For |\alpha|\leq 2 , applying the operator D^{\alpha} = \partial_{\chi}^{\beta} \partial_{y}^{m} to the equation (3.3)_{1} and multiplying \langle y \rangle ^{\mu+m} , we have
\begin{equation} \begin{aligned} \quad \partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \omega & = -\sum\limits_{0\leq \sigma \leq \alpha}\binom{\alpha}{\sigma}\langle y \rangle ^{\mu+m} D^{\sigma} u \partial_{x} D^{\alpha-\sigma} \omega -\sum\limits_{0\leq \sigma \leq \alpha}\binom{\alpha}{\sigma}\langle y \rangle^{\mu+m} D^{\sigma} v\partial_{y} D^{\alpha-\sigma} \omega \\ &\quad +\varepsilon^{2}\langle y \rangle^{\mu+m} \partial_{x}^{2} D^{\alpha} \omega+\langle y \rangle^{\mu+m} \partial_{y}^{2} D^{\alpha} \omega-\langle y \rangle^{\mu+m} \partial_{y} D^{\alpha} \tilde{\theta}. \end{aligned} \end{equation} | (3.41) |
From Lemma 2.6, when |\sigma| \leq 2 with \sigma = (\sigma_{1}, \sigma_{2}, \bar{m}) , we have
\begin{equation*} \left\|\langle y\rangle^{\bar{m}} D^{\sigma} u\right\|_{L^{\infty}} \leq \begin{cases}C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})}) & \bar{m} = 0, \\ C\|\omega\|_{H_{g}^{s, \gamma}} & \bar{m} \geq 1, \end{cases} \end{equation*} |
\begin{align*} \begin{aligned} \left\|\langle y\rangle^{\bar{m}-1} D^{\sigma} v\right\|_{L^{\infty}} \leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}(\mathbb{T})}+1), \quad \|\langle y\rangle^{\bar{m}} D^{\sigma} \tilde{\theta} \|_{L^{\infty}} \leq C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}, \quad \|\langle y\rangle^{\bar{m}+1} \partial_{y} D^{\sigma} \tilde{\theta}\|_{L^{\infty}} \leq C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}. \end{aligned} \end{align*} |
Then, by direct calculation and using the above inequalities, we get
\begin{equation} \begin{aligned} \|\partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \omega\|_{L^{\infty}} \leq C\|\omega\|_{H_{g}^{s, \gamma}}^{2}+C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2}+C(\|\partial_{\chi}^{\beta+e_{2}} U\|_{L^{2}}+1)^{2} \leq C\mathcal{G}(t) +CY(t). \end{aligned} \end{equation} | (3.42) |
Integrating (3.41) with respect to t , we have
\begin{equation} \begin{aligned} \sum\limits_{|\alpha| \leq 2}\left\|\langle y\rangle^{\mu+m} D^{\alpha} \omega\right\|_{L^{\infty}} \leq & \sum\limits_{|\alpha| \leq 2}\left\|\langle y\rangle^{\mu+m} D^{\alpha} \omega_{0}\right\|_{L^{\infty}}+\sum\limits_{|\alpha| \leq 2} \int_{0}^{t}\left\|\partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \omega\right\|_{L^{\infty}} d \tau \\ \leq & \sum\limits_{|\alpha| \leq 2}\left\|\langle y\rangle^{\mu+m} D^{\alpha} \omega_{0}\right\|_{L^{\infty}}+\sum\limits_{|\alpha| \leq 2} \sup _{0 \leq \tau \leq t}\left\|\partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \omega\right\|_{L^{\infty}} t \\ \leq & \sum\limits_{|\alpha| \leq 2}\left\|\langle y\rangle^{\mu+m} D^{\alpha} \omega_{0}\right\|_{L^{\infty}}+C \mathcal{G} t+ CYt, \end{aligned} \end{equation} | (3.43) |
where (3.42) is used. Specifically, when \alpha = (0, 0, 0) and m = 0 , we have
\begin{equation} \begin{aligned} \langle y\rangle^{\mu} \omega \geq \langle y\rangle^{\mu} \omega_{0}-\int_{0}^{t}\left\|\partial_{t}\langle y\rangle^{\mu} \omega\right\|_{L^{\infty}} d \tau \geq \langle y\rangle^{\mu} \omega_{0}-\sup _{0 \leq \tau \leq t}\left\|\partial_{t}\langle y\rangle^{\mu} \omega\right\|_{L^{\infty}}t \geq \langle y\rangle^{\mu} \omega_{0}-C \mathcal{G} t-C Y t . \end{aligned} \end{equation} | (3.44) |
Applying the operator D^{\alpha} = \partial_{\chi}^{\beta} \partial_{y}^{m} to the equation (3.3)_{2} and multiplying \langle y \rangle ^{\mu+m} , we have
\begin{equation*} \begin{aligned} \quad \partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta} & = -\sum\limits_{0\leq\sigma \leq \alpha}\binom{\alpha}{\sigma}\langle y \rangle ^{\mu+m} D^{\sigma} u \partial_{x} D^{\alpha-\sigma} \tilde{\theta} -\sum\limits_{0\leq\sigma \leq \alpha}\binom{\alpha}{\sigma}\langle y \rangle^{\mu+m} D^{\sigma} v\partial_{y} D^{\alpha-\sigma} \tilde{\theta} \\ &\quad +\varepsilon^{2}\langle y \rangle^{\mu+m} \partial_{x}^{2} D^{\alpha} \tilde{\theta}+\langle y \rangle^{\mu+m} \partial_{y}^{2} D^{\alpha} \tilde{\theta}+\langle y \rangle^{\mu+m} D^{\alpha} \omega^{2}\\ &\quad-\sum\limits_{0\leq\sigma \leq \alpha}\binom{\alpha}{\sigma}\langle y \rangle ^{\mu+m} D^{\sigma} \tilde{u}D^{\alpha-\sigma}\partial_{x}\Theta. \end{aligned} \end{equation*} |
Similar to (3.42), we get from the above equation that
\begin{equation*} \begin{aligned} \|\partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}\|_{L^{\infty}} \leq C\|\omega\|_{H_{g}^{s, \gamma}}^{2}+C\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2}+(\|\partial_{\chi}^{\beta+e_{2}} U(t)\|_{L^{2}}+\|\partial_{\chi}^{\beta+e_{2}} \Theta(t)\|_{L^{2}}+1)^{2} \leq C\mathcal{G}(t) +CY(t), \end{aligned} \end{equation*} |
which further gives
\begin{equation} \begin{aligned} \sum\limits_{|\alpha| \leq 2}\|\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}\|_{L^{\infty}} \leq & \sum\limits_{|\alpha| \leq 2}\|\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}_{0}\|_{L^{\infty}}+\sum\limits_{|\alpha| \leq 2} \int_{0}^{t}\|\partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}\|_{L^{\infty}} d \tau \\ \leq & \sum\limits_{|\alpha| \leq 2}\|\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}_{0}\|_{L^{\infty}}+\sum\limits_{|\alpha| \leq 2} \sup _{0 \leq \tau \leq t}\|\partial_{t}\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}\|_{L^{\infty}} t \\ \leq & \sum\limits_{|\alpha| \leq 2}\|\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}_{0}\|_{L^{\infty}}+C \mathcal{G} t+ CYt. \end{aligned} \end{equation} | (3.45) |
Now the uniform existence of the regularized system (3.3) can be stated as follows.
Theorem 3.7. Let s \geq 6 be an even integer, \gamma \geq 1, \mu > \gamma + \frac{1}{2}, \delta \in(0, 1) and \varepsilon \in(0, 1) . If (\omega_{0}, \tilde{\theta}_{0}) \in H_{\mu, 2 \delta}^{s, \gamma} and |Y(t)| \leq M for any t\geq0 , then there exists a positive T independent of \varepsilon , such that the regularized system (3.3) has solutions
(\omega, \tilde{\theta}) \in C\left([0, T] ; H_{\mu, \delta}^{s, \gamma}\right) \cap C^{1}\left([0, T] ; H^{s-2, \gamma}\right). |
Moreover, for any t \in[0, T] , the solutions satisfy the following uniform estimates.
i) Uniform weighted H^{s} estimates
\begin{equation} \|\omega(t)\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}(t)\|_{H_{h}^{s, \gamma}}^{2} \leq 4\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}\right). \end{equation} | (3.46) |
ii) Uniform weighted L^{\infty} upper bound
\begin{equation*} \sum\limits_{|\alpha| \leq 2}\|\langle y\rangle^{\mu+m} D^{\alpha}(\omega, \tilde{\theta})(t)\|_{L^{\infty}} \leq \frac{1}{\delta}. \end{equation*} |
iii) Uniform weighted L^{\infty} lower bound
\begin{equation*} \langle y\rangle^{\mu} \omega \geq \delta. \end{equation*} |
Proof. Since Y(t)\leq M , if we take
\begin{equation*} T_{1} = \min \left\{\frac{3(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2})}{M}, \frac{1-2^{-s+1}}{C 2^{s-2}\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}\right)^{s-2}}\right\} , \end{equation*} |
then by inequality (3.38), we have
\begin{equation*} \|\omega\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}^{2} \leq \mathcal{G}(t)\leq 4(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}), \end{equation*} |
for t \in\left[0, T_{1}\right] . This gives (3.46). Note that (\omega_{0}, \tilde{\theta}_{0}) \in H_{\mu, 2\delta}^{s, \gamma} , we have
\sum\limits_{|\alpha| \leq 2}\left\|\langle y\rangle^{\mu+m} D^{\alpha} \omega_{0}\right\|_{L^{\infty}} \leq \frac{1}{2\delta}. |
Choosing T_{2} as
\begin{equation*} T_{2} = \min \left\{T_{1}, \frac{\delta^{-1}}{16 C\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}\right)}, \frac{\delta^{-1}}{4 C M}\right\}, \end{equation*} |
then from (3.43), we have for all t \in\left[0, T_{2}\right] ,
\begin{equation*} \sum\limits_{|\alpha| \leq 2}\left\|\langle y\rangle^{\mu+m} D^{\alpha} \omega\right\|_{L^{\infty}} \leq \frac{1}{\delta}. \end{equation*} |
Next, due to \langle y\rangle^{\mu} \omega_{0} \geq 2 \delta , if T_{3} is chosen as
\begin{equation*} T_{3} = \min \left\{T_{1}, \frac{\delta}{8 C\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}\right)}, \frac{\delta}{2 C M}\right\}, \end{equation*} |
then from (3.44), we have for all t \in\left[0, T_{3}\right] , \langle y\rangle^{\mu} \omega \geq \delta . Similarly, if we choose
\begin{equation*} T_{4} = \min \left\{T_{1}, \frac{\delta^{-1}}{16 C\left(\left\|\omega_{0}\right\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}_{0}\|_{H_{h}^{s, \gamma}}^{2}\right)}, \frac{\delta^{-1}}{4 C M}\right\}, \end{equation*} |
then we can get from (3.45) that for all t \in\left[0, T_{4}\right] ,
\begin{equation*} \sum\limits_{|\alpha| \leq 2}\|\langle y\rangle^{\mu+m} D^{\alpha} \tilde{\theta}\|_{L^{\infty}} \leq \frac{1}{\delta}. \end{equation*} |
Finally, letting T: = \min\big\{T_{1}, T_{2}, T_{3}, T_{4}\big\} , we complete the proof of the theorem.
In this section, we will establish the local existence of solution to the original system (1.1) by compactness argument. Using the almost equivalence relation (2.3)-(2.4) and the uniform weighted H^{s} estimate (3.46), we have
\begin{align} \sup _{0 \leq t \leq T}\big(\|\omega^{\varepsilon}\|_{H^{s, \gamma}}^{2}&+\|u^{\varepsilon}-U\|_{H^{s, \gamma-1}}^{2}+\|\tilde{\theta}^{\varepsilon}\|_{H^{s, \gamma}}^{2}\big) \\ &\leq C \sup _{0 \leq t \leq T}\big(\|\omega^{\varepsilon}\|_{H_{g}^{s, \gamma}}^{2}+\|\tilde{\theta}^{\varepsilon}\|_{H_{h}^{s, \gamma}}^{2}+\|\partial_{\chi}^{\beta} U\|_{L^{2}}^{2}\big) \\ &\leq 4 C\big(\|\omega_{0}^{\varepsilon}\|_{H_{g}^{s, \gamma}}^{2} +\|\tilde{\theta}_{0}^{\varepsilon}\|_{H_{h}^{s, \gamma}}^{2} +\|\partial_{\chi}^{\beta} U\|_{L^{2}}^{2}\big). \end{align} |
Furthermore, we also know that \partial_{t} (\omega^{\varepsilon}, \tilde{\theta}^{\varepsilon}) and \partial_{t} \tilde{u}^{\varepsilon} are uniformly bounded in L^{\infty}([0, T]; H^{s-2, \gamma}) and L^{\infty}([0, T]; H^{s-2, \gamma-1}) , respectively. By Aubin-Lions Lemma 2.5 and compact embedding of H^{s, \gamma} in H_{l o c}^{s^{\prime}} (s^{\prime} < s) , we can find limit function
\begin{align} &\omega = \partial_{y} u \in L^{\infty}\left([0, T] ; H^{s, \gamma}\right) \cap \bigcap\limits_{s^{\prime} < s} C\left([0, T] ; H_{l o c}^{s^{\prime}}\right), \end{align} | (4.1) |
\begin{align} &\tilde{u} \in L^{\infty}([0, T]; \left.H^{s, \gamma-1}\right) \cap \bigcap\limits_{s^{\prime} < s} C\left([0, T] ; H_{l o c}^{s^{\prime}}\right) , \end{align} | (4.2) |
\begin{align} &\tilde{\theta} \in L^{\infty}\left([0, T] ; H^{s, \gamma}\right) \cap \bigcap\limits_{s^{\prime} < s} C\left([0, T] ; H_{l o c}^{s^{\prime}}\right), \end{align} | (4.3) |
such that, after taking a subsequence, as \varepsilon_{k} \rightarrow 0^{+} :
\begin{align} \begin{cases} \omega^{\varepsilon_{k}} \stackrel{*}{\rightharpoonup} \omega \qquad& \text { in } L^{\infty}\left([0, T] ; H^{s, \gamma}\right) , \\ \omega^{\varepsilon_{k}} \rightarrow \omega \qquad& \text { in } C\left([0, T] ; H_{l o c}^{s^{\prime}}\right) , \\ u^{\varepsilon_{k}}-U \stackrel{*}{\rightharpoonup } u-U \qquad& \text { in } L^{\infty}\left([0, T] ; H^{s, \gamma-1}\right) , \\ u^{\varepsilon_{k}} \rightarrow u\qquad & \text { in } C\left([0, T] ; H_{l o c}^{s^{\prime}}\right), \\ \theta^{\varepsilon_{k}}-\Theta \stackrel{*}{\rightharpoonup} \theta-\Theta\qquad & \text { in } L^{\infty}\left([0, T] ; H^{s, \gamma}\right), \\ \theta^{\varepsilon_{k}} \rightarrow \theta \qquad& \text { in } C\left([0, T] ; H_{l o c}^{s^{\prime}}\right). \end{cases} \end{align} | (4.4) |
Using the local uniform convergence of \partial_{x} u^{\varepsilon_{k}} , we also have the pointwise convergence of v^{\varepsilon_{k}} , as \varepsilon_{k} \rightarrow 0^{+}
\begin{equation} v^{\varepsilon_{k}} = -\int_{0}^{y}\partial_{x}u^{\varepsilon_{k}}dy \rightarrow v = -\int_{0}^{y}\partial_{x}udy. \end{equation} | (4.5) |
Combining (4.4)-(4.5), one may justify the pointwise convergence of all terms in the regularized equation (3.1). Passing to the limit \varepsilon_{k} \rightarrow 0^{+} in (3.1), we know that the limit function (u, v, \tilde{\theta}) solves the problem in the classical sense. Thus the local existence of solutions is obtained and we complete the proof of our main Theorem 1.2.
The purpose of this section is to prove the uniqueness of H^{s, \gamma}_{\mu, \delta} solutions constructed in Section 4. Assume \left(u_{1}, v_{1}, \theta_{1}\right) and \left(u_{2}, v_{2}, \theta_{2}\right) are two solutions to the initial-boundary value problem (1.1) and \omega_{i} = \partial_{y} u_{i}(i = 1, 2) . Setting \bar{u} = u_{1}-u_{2}, \bar{v} = v_{1}-v_{2}, \bar{\theta} = \theta_{1}-\theta_{2}, \bar{\omega} = \omega_{1}-\omega_{2} , we obtain the following equations
\begin{align} \left\{\begin{aligned} &(\partial_{t}+u_{1} \partial_{x}+v_{1} \partial_{y}-\partial_{y}^{2}) \bar{\omega}+\bar{u} \partial_{x} \omega_{2}+\bar{v} \partial_{y} \omega_{2} = -\partial_{y}\bar{\theta}, \\ &(\partial_{t}+u_{1} \partial_{x}+v_{1} \partial_{y}-\partial_{y}^{2}) \bar{\theta}+\bar{u} \partial_{x} \theta_{2}+\bar{v} \partial_{y} \theta_{2} = (\omega_{1}+\omega_{2})\bar{\omega}, \\ &(\partial_{t}+u_{1} \partial_{x}+v_{1} \partial_{y}-\partial_{y}^{2}) \bar{u}+\bar{u} \partial_{x} u_{2}+\bar{v} \partial_{y} u_{2} = -\bar{\theta} , \\ &\partial_{x} \bar{u}+\partial_{y} \bar{v} = 0 , \\ &\bar{\omega}|_{t = 0} = \omega_{10}-\omega_{20}, \quad \bar{\theta}|_{t = 0} = \theta_{10}-\theta_{20}, \quad \bar{u}|_{t = 0} = u_{10}-u_{20}, \\ &(\bar{u}, \bar{v}, \partial_{y} \bar{\omega}, \partial_{y} \bar{\theta})|_{y = 0} = 0. \end{aligned}\right. \end{align} | (5.1) |
Furthermore, set \varpi = \bar{\omega}-a_{2} \bar{u} and \vartheta = \bar{\theta}-b_{2} \bar{u} with a_{2} = \frac{\partial_{y} \omega_{2}}{\omega_{2}} and b_{2} = \frac{\partial_{y} \tilde{\theta}_{2}}{\omega_{2}}. By direct calculations, we get
\begin{equation} \left\{\begin{array}{l} (\partial_{t}+u_{1} \partial_{x}+v_{1} \partial_{y}-\partial_{y}^{2}) \varpi \\ \qquad\qquad\qquad\qquad = -\left\{(\partial_{t}+u_{1} \partial_{x}+v_{1} \partial_{y}-\partial_{y}^{2})a_{2}\right\}\bar{u}+2\partial_{y}a_{2}\bar{\omega}+a_{2}\bar{u}\partial_{x}u_{2}\\ \qquad\qquad\qquad\qquad+a_{2}\bar{v}\partial_{y}u_{2}+a_{2}\bar{\theta}-\bar{u} \partial_{x} \omega_{2}-\bar{v} \partial_{y} \omega_{2}-\partial_{y}\bar{\theta}, \\ (\partial_{t}+u_{1} \partial_{x}+v_{1} \partial_{y}-\partial_{y}^{2}) \vartheta\\ \qquad\qquad\qquad\qquad = -\left\{(\partial_{t}+u_{1} \partial_{x}+v_{1} \partial_{y}-\partial_{y}^{2})b_{2}\right\}\bar{u}+2\partial_{y}b_{2}\bar{\omega}+b_{2}\bar{u}\partial_{x}u_{2}\\ \qquad\qquad\qquad\qquad +b_{2}\bar{v}\partial_{y}u_{2}+b_{2}\bar{\theta}-\bar{u} \partial_{x} \theta_{2}-\bar{v} \partial_{y} \theta_{2}+(\omega_{1}+\omega_{2})\bar{\omega}, \\ \varpi|_{t = 0} = (\omega_{10}-\omega_{20})-a_{20}(u_{10}-u_{20}), \\ \vartheta|_{t = 0} = (\theta_{10}-\theta_{20})-b_{20}(u_{10}-u_{20}), \\ (\partial_{y} \varpi, \partial_{y} \vartheta)|_{y = 0} = 0. \end{array}\right. \end{equation} | (5.2) |
Since (\omega_{2}, \tilde{\theta}_{2}) \in H_{\mu, \delta}^{s, \gamma} , it follows from the weighted L^{\infty} bounds on \omega_{2}, \theta_{2} of Theorem 3.7 that
\left\|\langle y \rangle a_{2}\right\|_{L^{\infty}} \leq \delta^{-2}, \qquad \left\|\langle y \rangle \partial_{x} a_{2}\right\|_{L^{\infty}}+\left\|\langle y \rangle ^{2} \partial_{y} a_{2}\right\|_{L^{\infty}} \leq \delta^{-2}+\delta^{-4}, |
and
\left\|\langle y \rangle b_{2}\right\|_{L^{\infty}} \leq \delta^{-2}, \qquad \left\|\langle y \rangle \partial_{x} b_{2}\right\|_{L^{\infty}}+\left\|\langle y \rangle ^{2} \partial_{y} b_{2}\right\|_{L^{\infty}} \leq \delta^{-2}+\delta^{-4}. |
Multiplying the equations (5.2)_{1} and (5.2)_{2} by 2\varpi and 2\vartheta , respectively, then integrating the resulting equations over \Omega , and using Lemma 2.6 we obtain
\begin{equation} \begin{aligned} \frac{d}{d t}\left(\left\| \varpi \right\|_{L^{2}}^{2}+\left\| \vartheta \right\|_{L^{2}}^{2}\right) \leq C\left(\left\| \varpi \right\|_{L^{2}}^{2}+\left\| \vartheta \right\|_{L^{2}}^{2}+\left\|\langle y\rangle^{-1} \bar{u}\right\|_{L^{2}}^{2}\right). \end{aligned} \end{equation} | (5.3) |
Since \delta \leq \langle y \rangle ^{\mu} \omega_{2} \leq \delta^{-1} , \left.\bar{u}\right|_{y = 0} = 0 and \varpi = \omega_{2} \partial_{y}\left(\frac{\bar{u}}{\omega_{2}}\right) , we can use the Hardy inequality of Lemma 2.2 to obtain
\begin{equation} \begin{aligned} \left\|\langle y\rangle^{-1} \bar{u}\right\|_{L^{2}} & \leq \frac{1}{\delta}\left\|\langle y\rangle^{-\mu-1}\frac{\bar{u}}{\omega_{2}}\right\|_{L^{2}} \leq C \left\|\langle y\rangle^{-\mu}\partial_{y}\left(\frac{\bar{u}}{\omega_{2}}\right)\right\|_{L^{2}} \leq C\left\| \varpi \right\|_{L^{2}}. \end{aligned} \end{equation} | (5.4) |
Substituting (5.4) into (5.3), we get
\begin{equation} \frac{d}{d t}\left(\left\| \varpi \right\|_{L^{2}}^{2}+\left\| \vartheta \right\|_{L^{2}}^{2}\right) \leq C\left(\left\| \varpi \right\|_{L^{2}}^{2}+\left\|\vartheta \right\|_{L^{2}}^{2}\right). \end{equation} | (5.5) |
Applying Gronwall's inequality to (5.5), we obtain
\begin{equation*} \left\| \varpi(t) \right\|_{L^{2}}^{2}+\left\| \vartheta(t) \right\|_{L^{2}}^{2} \leq \left(\left\| \varpi(0) \right\|_{L^{2}}^{2}+\left\| \vartheta(0) \right\|_{L^{2}}^{2}\right)e^{Ct}, \end{equation*} |
which further gives
\begin{equation*} \left\| \varpi \right\|_{L^{2}}^{2}+\left\| \vartheta \right\|_{L^{2}}^{2} \equiv 0, \end{equation*} |
provided that u_{1}|_{t = 0} = u_{2}|_{t = 0} and \theta_{1}|_{t = 0} = \theta_{2}|_{t = 0} . As a result, we have \varpi \equiv 0 and \vartheta \equiv 0 . Note that \bar{u} can be expressed by \bar{u} = \omega_{2} \int_{0}^{y} \frac{\varpi }{\omega_{2}} d y , we get \bar{u} \equiv 0 .
It is easy to see \theta_{1} = \theta_{2} due to \bar{\theta} = \vartheta +b_{2} \bar{u} = 0. Finally we get v_{1} = v_{2} from (1.1)_{3} and \bar{u} = 0 . This completes the proof of the uniqueness.
In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow by using a new weighted energy method. Our results show that we only need the monotonic assumption on the tangential velocity u in the normal variable but have no restrictions on the absolute temperature \theta . Furthermore, this analytical approach can be applied to the boundary layer problems involving more complex fluids.
In this appendix, we will prove the inequalities given in Lemma 2.6. Here we give a proof for the reader's convenience.
Proof. Only need to prove \beta_{2} = 0 . In other words, we only prove when it's all derivatives with respect to t , other cases can be found in [16].
(i) It follows from the definition of \|u\|_{H^{s, \gamma-1}} that \| \langle y \rangle ^{\gamma-1} \partial_{t}(u-U)\| \leq \|(u-U)\|_{H^{s, \gamma-1}} , so it is a direct consequence of the almost equivalence inequality (2.3).
(ii) Using Lemma 2.2 and (2.5), we have
\begin{equation*} \begin{aligned} \|\langle y\rangle^{-1}\left(\partial_{t}^{s-1} v+y\partial_{t}^{s-1}\partial_{x}U)\right\|_{L^{2}} \leq2\|\partial_{t}^{s-1}\partial_{x}(u-U)\|_{L^{2}} \leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U|_{L^{2}}), \end{aligned} \end{equation*} |
which is inequality (2.6).
(iii) Inequality (2.7) and (2.8) follows directly from the defnition of \|\omega\|_{H^{s, \gamma}_{g}}, \|\tilde{\theta}\|_{H^{s, \gamma}_{h}} and inequality (2.3)-(2.4).
(iv) Since (\omega, \tilde{\theta}) \in H_{\mu, \delta}^{s, \gamma} , so we know that \|\langle y \rangle \frac{\partial_{y}\tilde{\theta}}{\omega}\|_{L^{\infty}} \leq \delta^{-2}, \|\langle y \rangle \frac{\partial_{y}\omega}{\omega}\|_{L^{\infty}} \leq \delta^{-2} . Thus
\begin{equation*} \begin{aligned} \left\|\langle y\rangle^{\gamma} g_{\beta}\right\|_{L^{2}} & \leq \|\langle y\rangle^{\gamma} \partial_{\chi}^{\beta}\omega \|_{L^2} + \delta^{-2} \| \left \langle y \right \rangle^{\gamma -1}\partial _{\chi}^{\beta}(u-U) \|_{L^2} \leq C( \|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}}), \end{aligned} \end{equation*} |
\begin{equation*} \begin{aligned} \left\|\langle y\rangle^{\gamma} h_{\beta}\right\|_{L^{2}} & \leq \|\langle y\rangle^{\gamma} \partial_{\chi}^{\beta}\tilde{\theta}\|_{L^2} + \delta^{-2} \| \left \langle y \right \rangle^{\gamma -1}\partial _{\chi}^{\beta}(u-U) \|_{L^2} \leq C(\|\tilde{\theta}\|_{H_{h}^{s, \gamma}}+ \|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}}), \end{aligned} \end{equation*} |
which is inequality for |\beta| \leq s-1 . When |\beta| = s , the better upper bound in (2.9) and (2.10) follows directly from the definition of \|\omega\|_{H_{g}^{s, \gamma}}, \|\tilde{\theta}\|_{H_{h}^{s, \gamma}} .
(v) Using Lemma 2.3, (2.5) and (2.7), we have
\begin{equation*} \begin{aligned} \|\partial_{t}^{s-1}(u-U)\|_{L^{\infty}}\leq C\{\|\partial_{t}^{s-1}(u-U)\|_{L^{2}}+\|\partial_{t}^{s-1}\partial_{x}(u-U)\|_{L^{2}}+\|\partial_{t}^{s-1}\partial_{y}\omega \|_{L^{2}}\} \leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}}), \end{aligned} \end{equation*} |
which implies inequality (2.11).
(vi) Applying triangle inequality, Lemma 2.3, \partial_{x}u+\partial_{y}v = 0 and \omega = \partial_{y}u , we have
\begin{equation*} \begin{aligned} \|\langle y \rangle ^{-1} \partial_{t}^{s-2}v\|_{L^{\infty}} &\leq \|\langle y \rangle ^{-1} y \partial_{t}^{s-2}\partial_{x}U\|_{L^{\infty}} +\|\langle y \rangle ^{-1} (\partial_{t}^{s-2}v+y\partial_{t}^{s-2}\partial_{x}U)\|_{L^{\infty}} \\ & \leq C\{\|\partial_{t}^{s-2}\partial_{x}U\|_{L^{2}}+\|\partial_{t}^{s-2}\partial_{x}^{2}U\|_{L^{2}}+\|\langle y \rangle ^{-1} (\partial_{t}^{s-2}v+y\partial_{t}^{s-2}\partial_{x}U)\|_{L^{2}}\\ &+\|\langle y \rangle ^{-1} (\partial_{t}^{s-2}\partial_{x} v+y\partial_{t}^{s-2}\partial_{x}^{2}U)\|_{L^{2}}+\|\langle y \rangle ^{-3} (\partial_{t}^{s-2}v+y\partial_{t}^{s-2}\partial_{x}U)\|_{L^{2}}\\ &+\|\langle y \rangle ^{-2} \partial_{t}^{s-2}\partial_{x}(u-U)\|_{L^{2}}+\|\langle y \rangle ^{-1}\partial_{t}^{s-1}\partial_{x}\omega\|_{L^{2}}\}\\ &\leq C(\|\omega\|_{H_{g}^{s, \gamma}}+\|\partial_{\chi}^{\beta} U\|_{L^{2}}+1), \end{aligned} \end{equation*} |
which implies inequality (2.12), because of (2.5)-(2.8).
(vii) The inequality follows directly from Lemma 2.3 and inequality (2.7)-(2.8).
Proof. In order to illustrate the idea, let us derive the formula (3.8) for the case k = 2 as follows. Applying \partial_y^3 to the vorticity equation (3.3)_{1} and evaluating at y = 0 , we obtain, by using (3.7)_{2} and \left.u\right|_{y = 0} = \left.v\right|_{y = 0} = \partial_{y}\theta|_{y = 0} = 0 , that
\begin{equation*} \begin{aligned} \left.\partial_{y}^{5} \omega\right|_{y = 0} = &\left(\partial_{t}-\varepsilon^{2} \partial_{x}^{2}\right)^{2} (\partial_{x} P-\theta)+\left(\partial_{t}-\varepsilon^{2} \partial_{x}^{2}\right)\left(\omega \partial_{x} \omega\right)+\left(\partial_{t}-\varepsilon^{2} \partial_{x}^{2}\right)\left(\partial_{y}^{2}\theta\right)\\ &+3 \omega \partial_{x} \partial_{y}^{2} \omega +2 \partial_{y} \omega \partial_{x} \partial_{y} \omega-\left.2 \partial_{x} \omega \partial_{y}^{2} \omega+\partial_{y}^{4}\theta\right|_{y = 0}. \end{aligned} \end{equation*} |
Since the last four terms on the right-hand side are our desired forms, we only need to deal with the terms (\partial_{t}-\varepsilon^{2} \partial_{x}^{2})(\omega \partial_{x} \omega)|_{y = 0} and (\partial_{t}-\varepsilon^{2} \partial_{x}^{2})(\partial_{y}^{2}\theta)|_{y = 0} . Using the evolution equations for \omega, \partial_{x} \omega and \partial_{y}^{2}\theta as well as u|_{y = 0} = v|_{y = 0} = \partial_{y}\theta|_{y = 0} = 0 , one may check that
\begin{align*} \left.\left(\partial_{t}-\varepsilon^{2} \partial_{x}^{2}\right)\left(\omega \partial_{x} \omega\right)\right|_{y = 0}& = \omega \partial_{x} \partial_{y}^{2} \omega+\partial_{x} \omega \partial_{y}^{2} \omega-\left.2 \varepsilon^{2} \partial_{x} \omega \partial_{x}^{2} \omega+\partial_{y}^{3}\theta\right|_{y = 0}, \\ \left(\partial_{t}-\varepsilon^{2} \partial_{x}^{2}\right)\left(\partial_{y}^{2}\theta\right)|_{y = 0}& = \partial_{y}^{4}\theta+2\omega\partial_{y}^{2}\omega+2(\partial_{y}\omega)^{2}-\partial_{y}\omega\partial_{x}\theta|_{y = 0}. \end{align*} |
Assuming that the lemma holds for k = n , we will show that it also holds for k = n + 1 . Applying \partial_y^{2n+1} to the vorticity equation and evaluating the resulting equation at y = 0 yields
\begin{equation*} \begin{aligned} &\partial_{y}^{2 n+3} \omega|_{y = 0} = (\partial_{t}-\varepsilon^{2} \partial_{x}^{2}) \partial_{y}^{2 n+1} \omega+\sum\limits_{i = 1}^{2 n+1}\binom{2n+1}{i}\partial_{y}^{i-1} \omega \partial_{x} \partial_{y}^{2 n-i+1} \omega+\partial_{y}^{2 n+1} \theta \\ &-\sum\limits_{i = 1}^{2 n+1}\binom{2n+1}{i}\partial_{y}^{i} \omega \partial_{x} \partial_{y}^{2 n-i+1} \theta +\sum\limits_{i = 2}^{2 n+1}\binom{2n+1}{i} \partial_{x} \partial_{y}^{i-2} \omega \partial_{y}^{2 n-i+2} \omega+2\partial_{y}^{2 n+2} \theta |_{y = 0}. \end{aligned} \end{equation*} |
Thanks to the induction hypothesis, we have
\begin{equation*} \left.\partial_{y}^{2 n+1} \omega\right|_{y = 0} = \left(\partial_{t}-\varepsilon^{2} \partial_{x}^{2}\right)^{n} (\partial_{x} P-\theta)+\mathcal{P}_{k}|_{y = 0}. \end{equation*} |
This completes the proof of Lemma 3.3.
In this appendix, we will derive the evolution equations for a, b, g_{\beta}, and h_{\beta} . The equations satisfied by (\tilde{u}, \omega) = (u-U, \partial_{y}u) is
\begin{equation} \left\{\begin{array}{ll} \partial_{t}\tilde{u}+u \partial_{x}\tilde{u}+v \partial_{y}\tilde{u} = \varepsilon^{2}\partial_{x}^{2}\tilde{u}+\partial_{y}^{2}\tilde{u}-\tilde{\theta}-\tilde{u}\partial_{x}U, \\ \partial_{t}\omega+u \partial_{x} \omega+v \partial_{y} \omega = \varepsilon^{2}\partial_{x}^{2}\omega+\partial_{y}^{2} \omega-\partial_{y}\tilde{\theta}. \\ \end{array} \right. \end{equation} | (6.1) |
Equation for a :
Differentiating the equation (6.1)_{2} with respect to y , we have
\begin{equation*} (\partial_{t}+u \partial_{x}+v \partial_{y}) \partial_{y}\omega = \varepsilon^{2}\partial_{x}^{2}\partial_{y}\omega+\partial_{y}^{3}\omega-\partial_{y}^{2}\tilde{\theta}-\omega \partial_{x}\omega+\partial_{x}u\partial_{y}\omega, \end{equation*} |
which implies
\begin{equation} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}) a\\ & = \frac{(\partial_{t}+u \partial_{x}+v \partial_{y}) \partial_{y}\omega}{\omega}-\frac{\partial_{y}\omega(\partial_{t}+u \partial_{x}+v \partial_{y}) \omega}{\omega^{2}}\\ & = \varepsilon^{2}\left(\frac{\partial_{x}^{2}\partial_{y}\omega}{\omega}-a\frac{\partial_{x}^{2}\omega}{\omega}\right)+\left(\frac{\partial_{y}^{3}\omega}{\omega}-a\frac{\partial_{y}^{2}\omega}{\omega}\right)-\frac{\partial_{y}^{2}\tilde{\theta}}{\omega}-\partial_{x}\omega+a\partial_{x}u+ab. \end{aligned} \end{equation} | (6.2) |
Note that
\begin{equation} \partial^{2}_{x}a = \frac{\partial_{x}^{2}\partial_{y}\omega}{\omega}-a\frac{\partial_{x}^{2}\omega}{\omega}-2\frac{\partial_{x}\omega}{\omega}\partial_{x}a, \quad \partial_{y}^{2}a = \frac{\partial_{y}^{3}\omega}{\omega}-a\frac{\partial_{y}^{2}\omega}{\omega}-2a\partial_{y}a. \end{equation} | (6.3) |
Substituting (6.3) into (6.2), we have (where g_{e_{2}} = \partial_{x}\omega-a\partial_{x}\tilde{u} ):
\begin{equation*} (\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2})a = 2\varepsilon^{2}\frac{\partial_{x}\omega}{\omega}\partial_{x}a+2a\partial_{y}a+ab-\frac{\partial_{y}\tilde{\theta}}{\omega}-g_{e_{2}}+a\partial_{x}U. \end{equation*} |
Equation for g_{\beta} :
Differentiating the equations (6.1) with \partial_{\chi}^{\beta} respectively, one has
\begin{equation} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) \partial_{\chi}^{\beta}\tilde{u}+\partial_{\chi}^{\beta}v \omega \\ & = -\sum\limits_{0 \leq \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} u\partial_{\chi}^{\bar{\beta}+e_{2}}\tilde{u} - \sum\limits_{0 \leq \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}+e_{2}} U \partial_{\chi}^{\bar{\beta}} \tilde{u} -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v \partial_{\chi}^{\bar{\beta}} \omega-\partial_{\chi}^{\beta}\tilde{\theta}, \end{aligned} \end{equation} | (6.4) |
and
\begin{equation} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) \partial_{\chi}^{\beta}\omega+\partial_{\chi}^{\beta}v \partial_{y}\omega \\ & = -\sum\limits_{0 \leq \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} u\partial_{\chi}^{\bar{\beta}+e_{2}}\omega -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v \partial_{\chi}^{\bar{\beta}} \partial_{y}\omega-\partial_{\chi}^{\beta}\partial_{y}\theta. \end{aligned} \end{equation} | (6.5) |
Subtracting (6.4) \times a from (6.5), we have
\begin{equation*} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) g_{\beta}+\left\{(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2})a\right\}\partial_{\chi}^{\beta}\tilde{u} \\ & = 2 \varepsilon^{2}\partial_{\chi}^{\beta+e_{2}} \tilde{u}\partial_{x}a +2\partial_{y}a\partial_{\chi}^{\beta}\omega -\sum\limits_{0\leq\bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} u g_{\bar{\beta}+e_{2}}-\partial_{\chi}^{\beta}\partial_{y}\tilde{\theta}+a\partial_{\chi}^{\beta}\tilde{\theta}\\ &+a \sum\limits_{0\leq\bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}+e_{2}} U \partial_{\chi}^{\bar{\beta}} \tilde{u} -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v\left(\partial_{y} \partial_{\chi}^{\bar{\beta}} \omega-a \partial_{\chi}^{\bar{\beta}} \omega\right), \end{aligned} \end{equation*} |
and then we get the equation satisfied by g_{\beta}
\begin{equation*} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) g_{\beta} \\ & = 2 \varepsilon^{2}(\partial_{\chi}^{\beta+e_{2}} \tilde{u}-\frac{\partial_{x} \omega}{\omega} \partial_{\chi}^{\beta} \tilde{u}) \partial_{x} a+2g_{\beta} \partial_{y} a -g_{e_{2}} \partial_{\chi}^{\beta} U+\frac{\partial_{y}^{2}\tilde{\theta}}{\omega}\partial_{\chi}^{\beta} \tilde{u} -ab\partial_{\chi}^{\beta} \tilde{u}-\partial_{\chi}^{\beta}\partial_{y}\tilde{\theta}+a\partial_{\chi}^{\beta}\tilde{\theta}\\ &-\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} u g_{\bar{\beta}+e_{2}} +a \sum\limits_{0\leq\bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}+e_{2}} U \partial_{\chi}^{\bar{\beta}} \tilde{u} -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v\left(\partial_{y} \partial_{\chi}^{\bar{\beta}} \omega-a \partial_{\chi}^{\bar{\beta}} \omega\right). \end{aligned} \end{equation*} |
Similarly, we can write down the evolution equation of h_{\beta}: = \partial_{\chi}^{\beta} \tilde{\theta}-\frac{\partial_{y} \tilde{\theta}}{\omega} \partial_{\chi}^{\beta}(u-U) as follows.
Equation for b :
The equations satisfied by (\tilde{u}, \tilde{\theta}) = (u-U, \theta-\Theta) is
\begin{equation} \left\{\begin{array}{ll} \partial_{t}\tilde{u}+u \partial_{x}\tilde{u}+v \partial_{y}\tilde{u} = \varepsilon^{2}\partial_{x}^{2}\tilde{u}+\partial_{y}^{2}\tilde{u}-\tilde{\theta}-\tilde{u}\partial_{x}U, \\ \partial_{t} \tilde{\theta}+u \partial_{x} \tilde{\theta}+v \partial_{y} \tilde{\theta} = \varepsilon^{2}\partial_{x}^{2}\tilde{\theta}+\partial_{y}^{2} \tilde{\theta}+\omega^{2}-\tilde{u}\partial_{x}\Theta. \\ \end{array} \right. \end{equation} | (6.6) |
Differentiating the equation (6.6)_{2} with respect to y , we have
\begin{equation*} (\partial_{t}+u \partial_{x}+v \partial_{y}) \partial_{y}\tilde{\theta} = \varepsilon^{2}\partial_{x}^{2}\partial_{y}\tilde{\theta}+\partial_{y}^{3}\tilde{\theta}-\omega \partial_{x}\tilde{\theta}+\partial_{x}u\partial_{y}\tilde{\theta}+2\omega\partial_{y}\omega-\omega\partial_{x}\Theta, \end{equation*} |
and
\begin{equation} \begin{aligned} (\partial_{t}+u \partial_{x}+v \partial_{y}) b = \varepsilon^{2}\left(\frac{\partial_{x}^{2}\partial_{y}\tilde{\theta}}{\omega}-b\frac{\partial_{x}^{2}\omega}{\omega}\right)+\left(\frac{\partial_{y}^{3}\omega}{\omega}-b\frac{\partial_{y}^{2}\omega}{\omega}\right)-\partial_{x}\tilde{\theta}+b\partial_{x}u+2\partial_{y}\omega-\partial_{x}\Theta+b^{2}. \end{aligned} \end{equation} | (6.7) |
Since
\begin{equation} \partial^{2}_{x}b = \frac{\partial_{x}^{2}\partial_{y}\tilde{\theta}}{\omega}-b\frac{\partial_{x}^{2}\omega}{\omega}-2\frac{\partial_{x}\omega}{\omega}\partial_{x}b, \quad \partial_{y}^{2}b = \frac{\partial_{y}^{3}\tilde{\theta}}{\omega}-a\frac{\partial_{y}^{2}\tilde{\theta}}{\omega}-\partial_{y}(ab), \end{equation} | (6.8) |
we get
\begin{equation*} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2})b\\ & = 2\varepsilon^{2}\frac{\partial_{x}\omega}{\omega}\partial_{x}b+\partial_{y}(ab)+b^{2}+a\frac{\partial_{y}^{2}\tilde{\theta}}{\omega}-b\frac{\partial_{y}^{2}\omega}{\omega}-h_{e_{2}}+b\partial_{x}U+2\partial_{y}\omega-\partial_{x}\Theta, \end{aligned} \end{equation*} |
Equation for h_{\beta} :
Differentiating the equations (6.6) with \partial_{\chi}^{\beta} respectively, one has
\begin{equation} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) \partial_{\chi}^{\beta}\tilde{u}+\partial_{\chi}^{\beta}v \omega \\ & = -\sum\limits_{0\leq\bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} u\partial_{\chi}^{\bar{\beta}+e_{2}}\tilde{u} - \sum\limits_{0\leq\bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}+e_{2}} U \partial_{\chi}^{\bar{\beta}} \tilde{u} -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v \partial_{\chi}^{\bar{\beta}} \omega-\partial_{\chi}^{\beta}\tilde{\theta}, \end{aligned} \end{equation} | (6.9) |
and
\begin{equation} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) \partial_{\chi}^{\beta}\tilde{\theta}+\partial_{\chi}^{\beta}v \partial_{y}\tilde{\theta} \\ & = -\sum\limits_{0\leq\bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} u\partial_{\chi}^{\bar{\beta}+e_{2}}\tilde{\theta} -\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v \partial_{\chi}^{\bar{\beta}} \partial_{y}\tilde{\theta} -\sum\limits_{0\leq\bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} \tilde{u} \partial_{\chi}^{\bar{\beta+e_{2}}} \Theta-\partial_{\chi}^{\beta}\omega^{2}. \end{aligned} \end{equation} | (6.10) |
Subtracting (6.9) \times b from (6.10), we have
\begin{equation*} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) h_{\beta}+\left\{(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2})b\right\}\partial_{\chi}^{\beta}\tilde{u} \\ & = 2 \varepsilon^{2}\partial_{\chi}^{\beta+e_{2}} \tilde{u}\partial_{x} b+2\partial_{\chi}^{\beta}\omega\partial_{y}b-\sum\limits_{0\leq\bar{\beta} < \beta}\binom{\beta}{\bar{\beta}}\partial_{\chi}^{\beta-\bar{\beta}} u h_{\bar{\beta}+e_{2}} +b \sum\limits_{0\leq\bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}+e_{2}} U \partial_{\chi}^{\bar{\beta}} \tilde{u} \\ &-\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v\left(\partial_{y} \partial_{\chi}^{\bar{\beta}} \tilde{\theta}-b \partial_{\chi}^{\bar{\beta}} \omega\right) -\partial_{\chi}^{\beta}\omega^{2} +b\partial_{\chi}^{\beta}\tilde{\theta}-\sum\limits_{0\leq \bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} \tilde{u} \partial_{\chi}^{\bar{\beta}} \partial_{x}\Theta, \end{aligned} \end{equation*} |
and then we get the equation satisfied by h_{\beta}
\begin{equation*} \begin{aligned} &(\partial_{t}+u \partial_{x}+v \partial_{y}-\varepsilon^{2} \partial_{x}^{2}- \partial_{y}^{2}) h_{\beta} \\ & = 2 \varepsilon^{2}\left(\partial_{\chi}^{\beta+e_{2}} \tilde{u}-\frac{\partial_{x} \omega}{\omega} \partial_{\chi}^{\beta} \tilde{u}\right) \partial_{x} b-\partial_{y}(ab)\partial_{\chi}^{\beta} \tilde{u} -h_{e_{2}} \partial_{\chi}^{\beta} U-b^{2}\partial_{\chi}^{\beta} \tilde{u} -a\frac{\partial_{y}^{2}\tilde{\theta}}{\omega}\partial_{\chi}^{\beta} \tilde{u}+b\frac{\partial_{y}^{2}\omega}{\omega}\partial_{\chi}^{\beta} \tilde{u}\\ &-2\partial_{y}\omega\partial_{\chi}^{\beta} \tilde{u}+2\partial_{\chi}^{\beta}\omega\partial_{y}b+\partial_{x}\Theta\partial_{\chi}^{\beta}\tilde{u} -\sum\limits_{0\leq < {\beta} < \beta}\binom{\beta}{\bar{\beta}}\partial_{\chi}^{\beta-\bar{\beta}} u h_{\bar{\beta}+e_{2}} +b \sum\limits_{0\leq\bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}+e_{2}} U \partial_{\chi}^{\bar{\beta}} \tilde{u} \\ &-\sum\limits_{0 < \bar{\beta} < \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} v\left(\partial_{y} \partial_{\chi}^{\bar{\beta}} \tilde{\theta}-b \partial_{\chi}^{\bar{\beta}} \omega\right)-\partial_{\chi}^{\beta}\omega^{2}+b\partial_{\chi}^{\beta}\tilde{\theta} -\sum\limits_{0\leq \bar{\beta} \leq \beta}\binom{\beta}{\bar{\beta}} \partial_{\chi}^{\beta-\bar{\beta}} \tilde{u} \partial_{\chi}^{\bar{\beta}} \partial_{x}\Theta. \end{aligned} \end{equation*} |
The research of Xu was supported by National Natural Science Foundation of China (Grant No. 12001506), the Natural Science Foundation of Shandong Province (Grant No. ZR2020QA014), and Project funded by China Postdoctoral Science Foundation (Grant No. 2021T140633, 2021M693028).
The authors declare no conflicts of interest.
[1] |
R. Alexandre, Y. Wang, C. Xu, T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., 28 (2015), 745–784. https://doi.org/10.1090/S0894-0347-2014-00813-4 doi: 10.1090/S0894-0347-2014-00813-4
![]() |
[2] |
R. Caflisch, M. Sammartino, Existence and singularities for the Prandtl boundary layer equations, ZAMM Z. Angew. Math. Mech., 80 (2000), 733–744. https://doi.org/10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L doi: 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L
![]() |
[3] |
D. Chen, Y. Wang, Z. Zhang, Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces, J. Differential Equations, 264 (2018), 5870–5893. https://doi.org/10.1016/j.jde.2018.01.024 doi: 10.1016/j.jde.2018.01.024
![]() |
[4] |
W. E. B. Engquist, Blow up of solutions of the unsteady Prandtl equation, Comm. Pure Appl. Math., 50 (1997), 1287–1293. https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4 doi: 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4
![]() |
[5] |
L. Fan, L. Ruan, A. Yang, Local well-posedness of solutions to the boundary layer equations for 2D compressible flow, J. Math. Anal. Appl., 493 (2021), 124565. https://doi.org/10.1016/j.jmaa.2020.124565 doi: 10.1016/j.jmaa.2020.124565
![]() |
[6] |
D. Gérard-Varet, E. Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc., 23 (2010), 591–609. https://doi.org/10.1090/S0894-0347-09-00652-3 doi: 10.1090/S0894-0347-09-00652-3
![]() |
[7] |
D. Gerard-Varet, Y. Maekawa, N. Masmoudi, Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes flows, Duke Math. J., 167 (2018), 2531–2631. https://doi.org/10.1215/00127094-2018-0020 doi: 10.1215/00127094-2018-0020
![]() |
[8] |
S. Gong, Y. Guo, Y. Wang, Boundary layer problems for the two-dimensional compressible Navier-Stokes, Anal. Appl. (Singap.), 14 (2016), 1–37. https://doi.org/10.1142/S0219530515400011 doi: 10.1142/S0219530515400011
![]() |
[9] |
I. Kukavica, N. Masmoudi, V. Vicol, T. K. Wong, On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., 46 (2014), 3865–3890. https://doi.org/10.1137/140956440 doi: 10.1137/140956440
![]() |
[10] |
C. Liu, Y. Wang, T. Yang, Study of boundary layers in compressible non-isentropic flows, Methods Appl. Anal., 28 (2021), 453–466. https://dx.doi.org/10.4310/MAA.2021.v28.n4.a3 doi: 10.4310/MAA.2021.v28.n4.a3
![]() |
[11] |
C. Liu, F. Xie, T. Yang, MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity Ⅰ: Well-Posedness Theory, Comm. Pure Appl. Math., 72 (2019), 63–121. https://doi.org/10.1002/cpa.21763 doi: 10.1002/cpa.21763
![]() |
[12] |
C. Liu, D. Wang, F. Xie, T. Yang, Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces, J. Funct. Anal., 279 (2020), 108637. https://doi.org/10.1016/j.jfa.2020.108637 doi: 10.1016/j.jfa.2020.108637
![]() |
[13] |
C. Liu, F. Xie, T. Yang, A note on the ill-posedness of shear flow for the MHD boundary layer equations, Sci. China Math., 61 (2018), 2065–2078. https://doi.org/10.1007/s11425-017-9306-0 doi: 10.1007/s11425-017-9306-0
![]() |
[14] |
C. Liu, F. Xie, T. Yang, Justification of Prandtl ansatz for MHD boundary layer, SIAM J. Math. Anal., 51 (2019), 2748–2791. https://doi.org/10.1137/18M1219618 doi: 10.1137/18M1219618
![]() |
[15] |
X. Lin, T. Zhang, Almost global existence for 2D magnetohydrodynamics boundary layer system, Math. Methods Appl. Sci., 41 (2018), 7530–7553. https://doi.org/10.1002/mma.5217 doi: 10.1002/mma.5217
![]() |
[16] |
N. Masmoudi, T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Comm. Pure Appl. Math., 68 (2015), 1683–1741. https://doi.org/10.1002/cpa.21595 doi: 10.1002/cpa.21595
![]() |
[17] | O. A. Oleinik, On the system of Prandtl equations in boundary-layer theory, Dokl. Akad. Nauk SSSR, 150 (1963), 28–31. |
[18] | O. A. Oleinik, V. N. Samokhin. Mathematical models in boundary layer theory, Routledge, 2018. https://doi.org/10.1201/9780203749364 |
[19] | L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandl. III, Intern. Math. Kongr, 1904,575–584. |
[20] |
X. Qin, T. Yang, Z. Yao, W. Zhou, Vanishing shear viscosity limit and boundary layer study for the planar MHD system, Math. Models Methods Appl. Sci., 29 (2019), 1139–1174. https://doi.org/10.1142/S0218202519500180 doi: 10.1142/S0218202519500180
![]() |
[21] |
M. Sammartino, R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. Ⅰ. Existence for Euler and Prandtl equations, Comm. Math. Phys., 192 (1998), 433–461. https://doi.org/10.1007/s002200050304 doi: 10.1007/s002200050304
![]() |
[22] |
M. Sammartino, R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. Ⅱ. Construction of the Navier-Stokes solution, Comm. Math. Phys., 192 (1998), 463–491. https://doi.org/10.1007/s002200050305 doi: 10.1007/s002200050305
![]() |
[23] | H. Schlichting, K. Gersten, Boundary-Layer Theory, Enlarged Edition. New York: Springer-Verlag, 2000. https://doi.org/10.1007/978-3-662-52919-5 |
[24] |
D. Wang, F. Xie, Inviscid limit of compressible viscoelastic equations with the no-slip boundary condition, J. Differential Equations, 353 (2023), 63–113. https://doi.org/10.1016/j.jde.2022.12.041 doi: 10.1016/j.jde.2022.12.041
![]() |
[25] |
Y. Wang, F. Xie, T. Yang, Local well-posedness of Prandtl equations for compressible flow in two space variables, SIAM J. Math. Anal., 47 (2015), 321–346. https://doi.org/10.1137/140978466 doi: 10.1137/140978466
![]() |
[26] |
Y. Wang, S. Zhu, Well-posedness of thermal boundary layer equation in two-dimensional incompressible heat conducting flow with analytic datum, Math. Methods Appl. Sci., 43 (2020), 4683–4716. https://doi.org/10.1002/mma.6226 doi: 10.1002/mma.6226
![]() |
[27] |
Y. Wang, S. Zhu, Back flow of the two-dimensional unsteady Prandtl boundary layer under an adverse pressure gradient, SIAM J. Math. Anal., 52 (2020), 954–966. https://doi.org/10.1137/19M1270355 doi: 10.1137/19M1270355
![]() |
[28] |
Y. Wang, S. Zhu, Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow, Commun. Pure Appl. Anal., 19 (2020), 3233–3244. https://doi.org/10.3934/cpaa.2020141 doi: 10.3934/cpaa.2020141
![]() |
[29] |
Y. Wang, S. Zhu, On back flow of boundary layers in two-dimensional unsteady incompressible heat conducting flow, J. Math. Phys., 63 (2022), 081504. https://doi.org/10.1063/5.0088618 doi: 10.1063/5.0088618
![]() |
[30] |
Y. Wang, Z. Zhang, Global C^{\infty} regularity of the steady Prandtl equation with favorable pressure gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 1989–2004. https://doi.org/10.1016/J.ANIHPC.2021.02.007 doi: 10.1016/J.ANIHPC.2021.02.007
![]() |
[31] |
Y. Wang, Z. Zhang, Asymptotic behavior of the steady Prandtl equation, Math. Ann., 1 (2022), 1–43. https://doi.org/10.1007/s00208-022-02486-6 doi: 10.1007/s00208-022-02486-6
![]() |
[32] |
F. Xie, T. Yang, Lifespan of solutions to MHD boundary layer equations with analytic perturbation of general shear flow, Acta Math. Appl. Sin. Engl. Ser., 35 (2019), 209–229. https://doi.org/10.1007/s10255-019-0805-y doi: 10.1007/s10255-019-0805-y
![]() |
[33] |
F. Xie, T. Yang, Global-in-Time Stability of 2D MHD Boundary Layer in the Prandtl–Hartmann Regime, SIAM J. Math. Anal., 50 (2018), 5749–5760. https://doi.org/10.1137/18M1174969 doi: 10.1137/18M1174969
![]() |
[34] |
C. Xu, X. Zhang, Long time well-posedness of Prandtl equations in Sobolev space, J. Differential Equations, 263 (2017), 8749–8803. https://doi.org/10.1016/j.jde.2017.08.046 doi: 10.1016/j.jde.2017.08.046
![]() |
[35] |
Z. Xin, L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math., 181 (2004), 88–133. https://doi.org/10.1016/S0001-8708(03)00046-X doi: 10.1016/S0001-8708(03)00046-X
![]() |
[36] |
P. Zhang, Z. Zhang, Long time well-posedness of Prandtl system with small and analytic initial data, J. Funct. Anal., 270 (2016), 2591–2615. https://doi.org/10.1016/j.jfa.2016.01.004 doi: 10.1016/j.jfa.2016.01.004
![]() |