In this paper, we consider an inverse source problem with nonlocal boundary conditions for the heat equation involving multi-term time-fractional derivatives. We determine a source term independent of the space variable, and the temperature distribution from the energy measurement. We reduce the solution of the inverse problem to finding solutions to two problems. The well-posedness of each problem is shown using the generalized Fourier method.
Citation: Bauyrzhan Derbissaly, Makhmud Sadybekov. Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions[J]. AIMS Mathematics, 2024, 9(4): 9969-9988. doi: 10.3934/math.2024488
In this paper, we consider an inverse source problem with nonlocal boundary conditions for the heat equation involving multi-term time-fractional derivatives. We determine a source term independent of the space variable, and the temperature distribution from the energy measurement. We reduce the solution of the inverse problem to finding solutions to two problems. The well-posedness of each problem is shown using the generalized Fourier method.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | M. I. Ismailov, M. Cicek, Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions, Appl. Math. Model., 40 (2016), 4891–4899. https://doi.org/10.1016/j.apm.2015.12.020 doi: 10.1016/j.apm.2015.12.020 |
[3] | N. Laskin, Time fractional quantum mechanics, Chaos Soliton. Fract., 102 (2017), 16–28. https://doi.org/10.1016/j.chaos.2017.04.010 doi: 10.1016/j.chaos.2017.04.010 |
[4] | A. Sohail, O. A. Beg, Z. W. Li, S. Celik, Physics of fractional imaging in biomedicine, Prog. Biophys. Mol. Bio., 140 (2018), 13–20. https://doi.org/10.1016/j.pbiomolbio.2018.03.002 doi: 10.1016/j.pbiomolbio.2018.03.002 |
[5] | C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and control: fundamentals and applications, London: Springer Science & Business Media, 2010. http://doi.org/10.1007/978-1-84996-335-0 |
[6] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An Introduction to mathematical models, London: World Scientific, 2010. |
[7] | H. Sheng, Y. Q. Chen, T. S. Qiu, Fractional processes and fractional-order signal processing techniques and applications, London: Springer Science & Business Media, 2012. http://doi.org/10.1007/978-1-4471-2233-3 |
[8] | R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039 |
[9] | I. Orazov, M. A. Sadybekov, On a class of problems of determining the temperature and density of heat sources given initial and final temperature, Sib. Math. J., 53 (2012), 146–151. https://doi.org/10.1134/S0037446612010120 doi: 10.1134/S0037446612010120 |
[10] | A. A. Samarskii, Some problems in differential equations theory, Differ. Uravn, 16 (1980), 1925–1935. |
[11] | J. R. Cannon, Y. P. Lin, S. M. Wang, Determination of a control parameter in a parabolic partial differential equation, ANZIAM J., 33 (1991), 149–163. http://dx.doi.org/10.1017/S0334270000006962 doi: 10.1017/S0334270000006962 |
[12] | A. M. Nakhushev, Equations of mathematical biology, Moscow: Vysshaya Shkola, 1985. |
[13] | M. Kirane, S. A. Malik, M. A. Al-Gwaiz, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Mod. Appl. S., 36 (2013), 1056–1069. https://doi.org/10.1002/mma.2661 doi: 10.1002/mma.2661 |
[14] | N. A. Asl, D. Rostamy, Identifying an unknown time-dependent boundary source in time-fractional diffusion equation with a non-local boundary condition, J. Comput. Appl. Math., 355 (2019), 36–50. https://doi.org/10.1016/j.cam.2019.01.018 doi: 10.1016/j.cam.2019.01.018 |
[15] | S. A. Malik, S. Aziz, An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions, Comput. Math. Appl., 73 (2017), 2548–2560. https://doi.org/10.1016/j.camwa.2017.03.019 doi: 10.1016/j.camwa.2017.03.019 |
[16] | K. M. Furati, O. S. Iyiola, M. Kirane, An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249 (2014), 24–31. https://doi.org/10.1016/j.amc.2014.10.046 doi: 10.1016/j.amc.2014.10.046 |
[17] | M. Ali, S. Aziz, Some inverse problems for time-fractional diffusion equation with nonlocal Samarskii-Ionkin type condition, Math. Mod. Appl. S., 44 (2021), 8447–8462. https://doi.org/10.1002/mma.6330 doi: 10.1002/mma.6330 |
[18] | Z. Lin, J. R. Wang, W. Wei, Multipoint BVPs for generalized impulsive fractional differential equations, Appl. Math. Comput., 258 (2015), 608–616. https://doi.org/10.1016/j.amc.2014.12.092 doi: 10.1016/j.amc.2014.12.092 |
[19] | Z. Lin, W. Wei, J. R. Wang, Existence and stability results for impulsive integro-differential equations, Facta Univer. Math., 29 (2014), 119–130. |
[20] | A. Oulmelk, L. Afraites, A. Hadri, M. A. Zaky, A. S. Hendy, Alternating direction multiplier method to estimate an unknown source term in the time-fractional diffusion equation, Comput. Math. Appl., 156 (2024), 195–206. https://doi.org/10.1016/j.camwa.2023.12.027 doi: 10.1016/j.camwa.2023.12.027 |
[21] | A. Oulmelk, L. Afraites, A. Hadri, M. Nachaoui, An optimal control approach for determining the source term in fractional diffusion equation by different cost functionals, Appl. Numer. Math., 181 (2022), 647–664. https://doi.org/10.1016/j.apnum.2022.07.009 doi: 10.1016/j.apnum.2022.07.009 |
[22] | F. Dib, M. Kirane, An inverse source problem for a two terms time-fractional diffusion equation, Bol. Soc. Parana. Mat., 40 (2022), 1–15. http://doi.org/10.5269/bspm.45265 doi: 10.5269/bspm.45265 |
[23] | M. A. Naimark, Linear differential operators: Elementary theory of linear differential operators, New York, 1967. |
[24] | Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam., 24 (1999), 207–233. |
[25] | Z. Y. Li, Y. K. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput., 257 (2015), 381–397. https://doi.org/10.1016/j.amc.2014.11.073 doi: 10.1016/j.amc.2014.11.073 |
[26] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives (theory and applications), New York and London: Gordon and Breach Science Publishers, 1993. |
[27] | A. Pedas, G. Vainikko, Integral equations with diagonal and boundary singularities of the kernel, Z. Anal. Anwend., 25 (2006), 487–516. http://doi.org/10.4171/ZAA/1304 doi: 10.4171/ZAA/1304 |
[28] | P. Lang, J. Locker, Spectral theory of two-point differential operators determined by-$D^2$. I. Spectral properties, J. Math. Anal. Appl., 141 (1989), 538–558. https://doi.org/10.1016/0022-247X(89)90196-0 doi: 10.1016/0022-247X(89)90196-0 |
[29] | M. A. Sadybekov, Initial-boundary value problem for a heat equation with not strongly regular boundary conditions, Functional Analysis in Interdisciplinary Applications: Springer International Publishing, 216 (2017), 330–348. |
[30] | L. C. Evans, Partial Differential Equation, American Mathematical Society, 2010. |
[31] | M. A. Sadybekov, I. N. Pankratova, Correct and stable algorithm for numerical solving nonlocal heat conduction problems with not strongly regular boundary conditions, Mathematics, 10 (2022), 3780. http://dx.doi.org/10.3390/math10203780 doi: 10.3390/math10203780 |