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1. Introduction

For a fixed positive integer m, let αi and qi, (i = 1, ...,m) be positive constants such that 1 > α1 >

· · · > αm > 0. We assume q1 = 1 without loss of generality. Consider the inverse problem of finding a
pair of functions {r, u} such that it satisfies the equation

m∑
i=1

qi∂
αi
t u = uxx + r(t) f (x, t), (x, t) ∈ DT , (1.1)

the initial condition
u(x, 0) = ϕ(x), x ∈ [0, 1], (1.2)

the nonlocal boundary conditions

u(0, t) + u(1, t) = 0, t ∈ [0,T ],
a1ux(0, t) + b1ux(1, t) + a0u(0, t) = 0, t ∈ [0,T ],

(1.3)
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and the overdetermination condition
1∫

0

u(x, t)dx = E(t), t ∈ [0,T ], (1.4)

where T > 0; DT = {(x, t) : 0 < x < 1, 0 < t ≤ T }; f , ϕ and E are given functions; a0, a1 and b1 are
real constants such that |a1| + |b1| > 0, a1 + b1 , 0; ∂αi

t is the Caputo time-fractional derivative defined
in [1] by

∂αi
t u =

1
Γ(1 − αi)

t∫
0

∂u(x, s)
∂s

ds
(t − s)αi

,

and Γ(·) is the Gamma function. Note that, in the case |a1| + |b1| > 0, a1 + b1 = 0, problem (1.1)–(1.4)
will immediately be incorrect.

For (1.1)–(1.3), the direct problem is the determination of u in DT such that u(·, t) ∈ C2[0, 1] and
∂αi

t u(x, ·) ∈ C(0,T ] when the initial temperature ϕ and the source term r f are given and continuous.
If the function r(t), t ∈ [0,T ] is unknown, the inverse problem is formulated as the problem of

finding a pair of functions {r, u}which satisfy (1.1)–(1.4) with r ∈ C[0,T ], u(·, t) ∈ C2[0, 1], ∂αi
t u(x, ·) ∈

C(0,T ].
The integral condition (1.4) arises when the data on the boundary cannot be measured directly, but

only the average value of the solution can be measured along the boundary [2].
Fractional calculus is used in quantum mechanics [3], biophysics [4], control theory [5],

viscoelasticity [6], signal processing [7], biological sciences [8], and many other disciplines.
In [9], the inverse problem for the classical heat equation satisfying the boundary conditions

a1ux(0, t) + b1ux(1, t) + a0u(0, t) + b0u(1, t) = 0, t ∈ [0,T ],
c1ux(0, t) + d1ux(1, t) + c0u(0, t) + d0u(1, t) = 0, t ∈ [0,T ],

was considered. The boundary conditions (1.3) are the particular case of the boundary conditions that
considered in [9] when b0 = 0, c0 = d0 = 1 and c1 = d1 = 0.

The practical applications of nonlocal boundary value problems span across diverse fields,
encompassing chemical diffusion [10], thermal conductivity [11], biological processes [12], and
others. Particularly in scenarios like multiphase flows involving liquids, solids, and gases, heat flow
is often proportional to the variations in boundary temperatures among distinct phases, alongside the
parameters a0, a1, b1 outlined in the nonlocal boundary conditions (1.3). This elucidates the growing
importance and extensive utilization of inverse problems featuring nonlocal boundary conditions across
various disciplines.

We note several papers devoted to the study the inverse problem for a time-fractional diffusion
equation with nonlocal boundary conditions. In [13], the inverse source problem for the time-fractional
diffusion equation in two dimensions was considered. [14] focused on determining a time-dependent
factor of an unknown source under certain sub-boundary conditions for the time-fractional diffusion
equation using nonlocal measurement data. The paper established the existence and uniqueness
of the solution to the inverse source problem by applying Lax-Milgram’s lemma in appropriate
Sobolev spaces. In [15], the inverse source problem for the time-fractional diffusion equation in two
dimensional space was considered, where the time fractional derivative is the Hilfer derivative. In [16],
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the authors considered the problem of determining the distribution and the source term for the time-
fractional diffusion equation. Two inverse problems for the time-fractional diffusion equation with a
family of nonlocal boundary conditions were discussed in [17].

We also note some papers related to the study of impulsive differential equations and the inverse
source problem for a time-fractional diffusion equation. In [18], the study focused on multipoint
BVPs concerning a generalized class of impulsive fractional-order nonlinear differential equations. [19]
addressed the study of a class of impulsive integro-differential equations, where impulses are not
instantaneous. In [20], the estimation of an unknown source term in the time-fractional diffusion
equation from measurement data was explored using the alternating direction method of multipliers.
The work presented in [21] involved the mathematical analysis of an inverse source problem governed
by a time-fractional diffusion equation. The objectives of this research included identifying the
source function using additional data via a regularized optimal control approach and determining the
regularization parameters through bi-level optimization.

This paper is an extension of the problem considered in [22].
It is well known that the boundary conditions (1.3) are not strongly regular boundary

conditions [23]. For this reason, when we solve the problem (1.1)–(1.4) by the Fourier method, then
the system of eigenfunctions of the auxiliary spectral problem does not form a basis. Therefore, the
application of the Fourier method is impossible and additional research is needed.

2. Preliminaries

The multinomial Mittag–Leffler function is defined as [24]

E(β1,...,βm),β0 (z1, ..., zm) =

∞∑
k=0

∑
k1+···+km=k

(k; k1, ..., km)
∏m

i=1 zki
i

Γ
(
β0 +

∑m
i=1 βiki

) ,

where 0 < β0 < 2, 0 < βi < 1 (i = 1, ...,m), and zi ∈ C (i = 1, ...,m). Here, (k; k1, ..., km) denotes the
multinomial coefficient

(k; k1, ..., km) :=
k!

k1! · · · km!
where k =

m∑
i=1

ki,

and ki (1 ≤ i ≤ m) are non-negative integers.

Lemma 2.1. [25] Let 0 < β0 < 2, 0 < βi < 1 (i = 1, ...,m), and zi ∈ C (i = 1, ...,m) be fixed. Then,

1
Γ (β0)

+

m∑
i=1

ziE(β1,...,βm),β0+βi (z1, ..., zm) = E(β1,...,βm),β0 (z1, ..., zm) .

Lemma 2.2. [25] Let 0 < β < 2 and 1 > α1 > · · · > αm > 0 be given. Assume that α1π/2 < µ <

α1π, µ ≤ |arg(z1)| ≤ π, and there exists K > 0 such that −K ≤ zi < 0, (i = 2, ...,m). Then, there exists
a constant c > 0 depending on µ, K, αi (i = 1, ...,m), and β such that∣∣∣E(α1,α1−α2,...,α1−αm),β (z1, ..., zm)

∣∣∣ ≤ c
1 + |z1|

≤ c.

Let us denote

E(·),α1(t) := E(α1,α1−α2,...,α1−αm),α1

(
−l1tα1 ,−l2tα1−α2 , ...,−lmtα1−αm

)
, t > 0,

where l1, ..., lm are some positive constants.
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Lemma 2.3. [25] Let 1 > α1 > · · · > αm > 0. Then,

d
dt

(
tα1 E(·),1+α1(t)

)
= tα1−1E(·),α1(t), t > 0.

Lemma 2.4. [26] Let fn be a sequence of functions defined on (a, b] for each n ∈ N, such that:
(1). For some α > 0, ∂αt fn(t) exists for all n ∈ N, t ∈ (a, b];
(2). Both the series

∑∞
n=1 fn(t) and

∑∞
n=1 ∂

α
t fn(t) are uniformly convergent on the interval [a + ε, b] for

any ε > 0.
Then,

∑∞
n=1 fn(t) is α > 0 differentiable, where

∑∞
n=1 fn(t) is a series of functions that must satisfy

∂αt

∞∑
n=1

fn(t) =

∞∑
n=1

∂αt fn(t).

Consider the Volterra integral equation

g0(t) =

t∫
0

Q(t, t1)g0(t1)dt1 + g1(t), 0 ≤ t ≤ 1. (2.1)

Denote ∆ := {(t, t1) : 0 ≤ t1 < t ≤ 1} and introduce the class S α of kernels Q(t, t1) that are defined
and continuous on ∆ and for (t, t1) ∈ ∆ satisfy the inequality

|Q(t, t1)| ≤ c0 (t − t1)−α , 0 < α < 1, c0 = const > 0.

Lemma 2.5. [27] Let g1 ∈ C[0, 1] and Q(t, t1) ∈ S α with 0 ≤ α < 1. Then, (2.1) has a unique solution
g0 ∈ C[0, 1].

3. Functional relations

The application of the Fourier method to solve problem (1.1)–(1.4) leads to a spectral problem
−z′′(x) = λz(x), x ∈ (0, 1),
z(0) + z(1) = 0,
a1z′(0) + b1z′(1) + a0z(0) = 0,

(3.1)

where |a1| + |b1| > 0, a1 + b1 , 0. The system of eigenfunctions of problem (3.1) does not form a
basis in L2(0, 1) [28]. For this reason, we cannot solve problem (1.1)–(1.4) by the Fourier method.
Therefore, using the method from [29], we introduce even u1 and odd u2 with respect to the variable x
parts of the function u as

u(x, t) = u1(x, t) + u2(x, t),

where
2u1(x, t) = u(x, t) + u(1 − x, t), 2u2(x, t) = u(x, t) − u(1 − x, t).

At the same time, for all (x, t) ∈ DT , the relations

u2(x, t) = −u2(1 − x, t), u2x(x, t) = u2x(1 − x, t),
u1(x, t) = u1(1 − x, t), u1x(x, t) = −u1x(1 − x, t),

(3.2)
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hold. Equality (3.2) implies boundary relations

u2(0, t) = −u2(1, t), u2x(0, t) = u2x(1, t),
u1(0, t) = u1(1, t), u1x(0, t) = −u1x(1, t).

(3.3)

Substituting u1 and u2 into boundary conditions (1.3) and using (3.3), we obtain

u1(0, t) = 0, (a1 + b1) u2x(0, t) + a0u2(0, t) = (b1 − a1) u1x(0, t). (3.4)

Also, substituting u1 and u2 into (1.1), (1.2) and (1.4) and using (3.3) and (3.4), we have the first
problem of finding a pair of functions {r, u1} in the form

m∑
i=1

qi∂
αi
t u1 = u1xx + r(t) f1(x, t), (x, t) ∈ DT , (3.5)

u1(x, 0) = ϕ1(x), x ∈ [0, 1], (3.6)

u1(0, t) = 0, u1(1, t) = 0, t ∈ [0,T ], (3.7)
1∫

0

u1(x, t)dx = E(t), t ∈ [0,T ], (3.8)

where
2 f1(x, t) = f (x, t) + f (1 − x, t), 2ϕ1(x) = ϕ(x) + ϕ(1 − x).

And, for the function u2, we have the second problem in the form

m∑
i=1

qi∂
αi
t u2 = u2xx + r(t) f2(x, t), (x, t) ∈ DT , (3.9)

u2(x, 0) = ϕ2(x), x ∈ [0, 1], (3.10)

(a1 + b1) u2x(0, t) + a0u2(0, t) = (b1 − a1) u1x(0, t), t ∈ [0,T ],
(a1 + b1) u2x(1, t) − a0u2(1, t) = (b1 − a1) u1x(0, t), t ∈ [0,T ],

(3.11)

where
2 f2(x, t) = f (x, t) − f (1 − x, t), 2ϕ2(x) = ϕ(x) − ϕ(1 − x).

4. Well-posedness of the first problem

4.1. Existence and uniqueness of the solution of the first problem

Consider the spectral problem {
−y′′(x) = λy(x), x ∈ (0, 1),
y(0) = 0, y(1) = 0.

(4.1)

The spectral problem (4.1) has only eigenfunctions

yk(x) =
√

2 sin kπx, k = 1, 2, ...,
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and the eigenvalues are defined by

λk = (kπ)2 , k = 1, 2, ....

Since (4.1) is the self-adjoint problem, the system of eigenfunctions {yk(x)}, (k = 1, 2, ...) forms an
orthonormal basis in L2(0, 1).

Lemma 4.1. Let ϕ1(x) ∈ C4[0, 1] be a function satisfying the conditions

ϕ1(0) = ϕ′′1 (0) = 0, ϕ1(1) = ϕ′′1 (1) = 0. (4.2)

Then, the following inequality
∞∑

k=1

|λkϕ1k| ≤ ĉ1‖ϕ1‖C4[0,1] ≤ c1

holds, where c1 is a constant, ϕ1k = (ϕ1, yk) , (k = 1, 2, ...).

Proof. By using (4.2), integration by parts four times and the Schwarz and Bessel inequalities,
we obtain

∞∑
k=1

|λkϕ1k| =

∞∑
k=1

∣∣∣∣∣λk
λk

λk
ϕ1k

∣∣∣∣∣ ≤
 ∞∑

k=1

1
|λk|

2


1
2
 ∞∑

k=1

∣∣∣λ2
kϕ1k

∣∣∣2
1
2

≤ ĉ1‖ϕ
(4)
1 ‖L2[0,1] ≤ ĉ1‖ϕ

(4)
1 ‖C[0,1].

�

Theorem 4.2. Let the following conditions be satisfied:
(A1) ϕ1 ∈ C4[0, 1], ϕ1(0) = ϕ′′1 (0) = 0, ϕ1(1) = ϕ′′1 (1) = 0;
(A2) f1 ∈ C(DT ), f1(·, t) ∈ C4[0, 1], f1(0, t) = f1xx(0, t) = 0, f1(1, t) = f1xx(1, t) = 0, 0 < 1

m0
≤

min
0≤t≤T

∣∣∣∣∫ 1

0
f1(x, t)dx

∣∣∣∣;
(A3) E(t) ∈ C1[0,T ], E(0) =

1∫
0
ϕ1(x)dx,

where m0 is a constant. Then, the inverse problem (3.5)–(3.8) has a unique classical solution.

Proof. (Existence of the solution of the first problem) To construct a formal solution of problem
(3.5)–(3.8), we will use the Fourier method. Following this method, we seek the solution of (3.5)–
(3.8) in a Fourier series as

u1(x, t) =

∞∑
k=1

u1k(t)yk(x),

where u1k(t) = (u1(·, t), yk), (k = 1, 2, ...). For the functions u1k we obtain the Cauchy problem
m∑

i=1

qi∂
αi
t u1k(t) + λku1k(t) = r(t) f1k(t),

u1k(0) = ϕ1k,

where f1k(t) = ( f1(·, t), yk) , ϕ1k = (ϕ1, yk), (k = 1, 2, ...). The solution of this Cauchy problem is given
in [24] by

u1k(t) =
(
tα1−1E(·),α1(t)

)
∗ r(t) f1k(t) + ϕ1kû1k(t), (4.3)
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where
E(·),α1(t) = E(α1,α1−α2,...,α1−αm),α1

(
−λktα1 ,−q2tα1−α2 , ...,−qmtα1−αm

)
,

û1k(t) = 1 − λktα1 E(·),1+α1(t)
− q2tα1−α2 E(·),1+α1−α2(t) − · · · − qmtα1−αm E(·),1+α1−αm(t),

(
tα1−1E(·),α1(t)

)
∗ r(t) f1k(t) =

t∫
0

(t − τ)α1−1 E(·),α1 (t − τ) r(τ) f1k(τ)dτ.

According to Lemma 2.1, we rewrite (4.3) as

u1k(t) =
(
tα1−1E(·),α1(t)

)
∗ r(t) f1k(t) + ϕ1kE(·),1(t). (4.4)

Hence, the formal solution of problem (3.5)–(3.8) is expressed via the series

u1(x, t) =

∞∑
k=1

[(
tα1−1E(·),α1(t)

)
∗ r(t) f1k(t) + ϕ1kE(·),1(t)

]
yk(x). (4.5)

Now, we get the expression of the term r. Integrating Eq (3.5) between 0 and 1, we obtain

1∫
0

 m∑
i=1

qi∂
αi
t u1(x, t)

 dx =

1∫
0

[
u1xx(x, t) + r(t) f1(x, t)

]
dx.

By using the overdetermination conditions (3.8) and (3.3), it is easy to deduce that

r(t) = h(t)

 m∑
i=1

qi∂
αi
t E(t) + 2u1x(0, t)

 , (4.6)

where

u1x(0, t) =
√

2
∞∑

k=1

kπ
((

tα1−1E(·),α1(t)
)
∗ r(t) f1k(t) + ϕ1kE(·),1(t)

)
.

h(t) =


1∫

0

f1(x, t)dx


−1

.

Let us denote

L(t) := h(t)

 m∑
i=1

qi∂
αi
t E(t) +

√
2
∞∑

k=1

kπϕ1kE(·),1(t)
(
1 − (−1)k

) ,
K(t, τ) :=

√
2(t − τ)α1−1

∞∑
k=1

kπ f1k(τ)E(·),α1(t − τ)
(
1 − (−1)k

)
.

Then, we obtain the Volterra integral equation of the second kind with respect to r in the form

r(t) = h(t)

t∫
0

K(t, τ)r(τ)dτ + L(t). (4.7)
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Before we proceed further, notice that, under assumption (A2), the series
∞∑

k=1

|λk f1k(t)| ≤ ĉ2 max
0≤t≤T

‖ f1(·, t)‖C4[0,1] ≤ c2,

is uniformly convergent, and for E(t) ∈ C1[0,T ] the term
∑m

i=1 qi∂
αi
t E(t) is continuous, being the

difference of m pieces of continuous functions. According to Lemma 2.2, we estimate the kernel
of (4.7) and L(t) in the form

|L| ≤ m0 (m1 + cc1) := m2, |K(t, τ)| ≤ m0cc2(t − τ)α1−1 := c0(t − τ)α1−1, (4.8)

where m1 is a bound of
∑m

i=1 qi∂
αi
t E(t) and c, c1 are constants defined in Lemmas 2.2 and 4.1,

respectively. Therefore, the kernel of Eq (4.7) is weakly singular and, by Lemma 2.5, there exists
a unique solution r ∈ C[0,T ].

Due to assumptions (A1) and (A2) in Theorem 4.2, we have

ϕ1k =

√
2

(kπ)4

1∫
0

ϕ(4)
1 (x) sin kπxdx :=

1
(kπ)4ϕ

(4)
1k ,

f1k(t) =

√
2

(kπ)4

1∫
0

f (4)
1x (x, t) sin kπxdx :=

1
(kπ)4 f (4)

1k (t).

Since the solution u1 is formally given by series (4.5), we need to show that the series corresponding
to u1, u1xx, and

∑m
i=1 qi∂

αi
t u1 converge. Under assumptions (A1)–(A3), for all (x, t) ∈ DT , the series

corresponding to u1, u1xx are bounded from above by the series

|u1| ≤ c
∞∑

k=1

1
(kπ)4

[
m3‖ f

(4)
1k ‖C[0,T ]

Tα1

α1
+

∣∣∣ϕ(4)
1k

∣∣∣],
|u1xx| ≤ c

∞∑
k=1

1
(kπ)2

[
m3‖ f

(4)
1k ‖C[0,T ]

Tα1

α1
+

∣∣∣ϕ(4)
1k

∣∣∣],
where m3 := ‖r‖C[0,T ]. Obviously, these majorizing series are convergent.

Now we show that
∑m

i=1 qi∂
αi
t u1(x, t) are continuous functions on DT . For this, we first calculate

u′1k(t), then we estimate ∂α1
t u1k(t) on [ε,T ] for all ε > 0. The estimates for ∂α2

t u1k(t), ..., ∂
αm
t u1k(t) on

[ε,T ] are obtained in a similar way.
First, let us get an estimate for u′1k. According to Lemma 2.3, we obtain the estimate

|u′1k(t)| ≤
c

(kπ)4

∣∣∣∣∣∣∣∣
t∫

0

(t − τ)α1−1

∣∣∣∣∣∣∣∣ m3‖ f
(4)
1k ‖C[0,T ]

+
c

(kπ)4

∣∣∣ϕ(4)
1k

∣∣∣ ∣∣∣λktα1−1 + q2tα1−α2−1 + · · · + qmtα1−αm−1
∣∣∣

=
c

(kπ)4

tα1−1

1 − α1
m3‖ f

(4)
1k ‖C[0,T ]

+
c

(kπ)4

∣∣∣ϕ(4)
1k

∣∣∣ ∣∣∣λktα1−1 + q2tα1−α2−1 + · · · + qmtα1−αm−1
∣∣∣ .
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Then, for ∂α1
t u1k, we have the estimate

|∂α1
t u1k(t)| ≤

1
Γ (1 − α1)

t∫
0

∣∣∣u′1k(τ)
∣∣∣

(t − τ)α1
dτ

≤
m3m4‖ f

(4)
1k ‖C[0,T ]

Γ (1 − α1) (1 − α1)

t∫
0

τα1−1

(t − τ)α1
dτ

+
m4

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

t∫
0

1
(t − τ)α1

∣∣∣λkτ
α1−1

∣∣∣ dτ
+

m4

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

t∫
0

1
(t − τ)α1

∣∣∣q2τ
α1−α2−1

∣∣∣ dτ
+ · · ·

+
m4

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

t∫
0

1
(t − τ)α1

∣∣∣qmτ
α1−αm−1

∣∣∣ dτ,

(4.9)

where m4 := c/(kπ)4. By applying the change of variable s = τ/t in (4.9), we have

|∂α1
t u1k(t)| ≤

m3m4‖ f
(4)
1k ‖C[0,T ]

Γ (1 − α1) (1 − α1)

1∫
0

sα1−1 (1 − s)−α1 ds

+
λkm4

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

1∫
0

(1 − s)−α1 sα1−1ds

+
q2m4t−α2

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

1∫
0

(1 − s)−α1 sα1−α2−1ds

+ · · ·

+
m4qmt−αm

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

1∫
0

(1 − s)−α1 sα1−αm−1ds

=
m3m4‖ f

(4)
1k ‖C[0,T ]

Γ (1 − α1) (1 − α1)
B (α1, 1 − α1) +

λkm4

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

B (α1, 1 − α1)

+
m4q2t−α2

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

B (α1 − α2, 1 − α1)

+ · · ·

+
m4qmt−αm

∣∣∣ϕ(4)
1k

∣∣∣
Γ (1 − α1)

B (α1 − αm, 1 − α1) ,

(4.10)
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where

B(z1, z2) =

1∫
0

(1 − s)z2−1 sz1−1ds.

Consequently, by (4.10), the functions
∑m

i=1 qi∂
αi
t u1(x, t) are continuous on DT . �

Proof. (Uniqueness of the solution of the first problem) Let us show that the solution of problem
(3.5)–(3.8) is unique. Suppose that there are two pairs of solutions {̂r, û1} and {r̃, ũ1} of the inverse
problem (3.5)–(3.8). Then from (4.5) and (4.7), we have

û1(x, t) − ũ1(x, t) =

∞∑
k=1

[(
tα1−1E(·),α1(t)

)
∗
(̂
r(t) − r̃(t)

)
f1k(t)

]
yk(x), (4.11)

and

r̂(t) − r̃(t) = h(t)


t∫

0

K(t, τ)
(̂
r(τ) − r̃(τ)

)
dτ

 . (4.12)

Then, (4.12) yields r̂ = r̃. After substituting r̂ = r̃ in (4.11), we have û1 = ũ1. �

4.2. Continuous dependence of the solution of the first problem on the data

Theorem 4.3. Let F be the set of triples {ϕ1, f1, E} where the functions ϕ1, f1 and E satisfy the
assumptions of Theorem 4.2, and

‖ϕ1‖C4[0,1] ≤ M0, ‖ f1‖C4,0(DT ) ≤ M1, ‖E‖C1[0,T ] ≤ M2,

for some positive constants M0, M1 and M2. Then, the solution (r, u1) of the inverse problem (3.5)–(3.8)
depends continuously upon the data on F.

Proof. Let F = {ϕ1, f1, E} and F = {ϕ1, f 1, E} be two sets of data, and ‖F‖ = ‖ f1‖C4,0(DT ) + ‖ϕ1‖C4[0,1] +

‖E‖C1[0,T ], (r, u1) and (r, u1) be the solutions of the inverse problem (3.5)–(3.8) corresponding to the
data F and F, respectively.

Let us denote

h(t) :=


1∫

0

f 1(x, t)dx


−1

, ψk :=
√

2kπ
(
1 − (−1)k

)
.

For the difference E − E we have the estimate

m∑
i=1

qi∂
αi
t

∣∣∣E − E
∣∣∣ ≤ M3‖E − E‖C1[0,T ],

∣∣∣∣h − h
∣∣∣∣ ≤ m2

0‖h − h‖C[0,T ], (4.13)

where

M3 =
q1

Γ(1 − α1)
T 1−α1

1 − α1
+ · · · +

qm

Γ(1 − αm)
T 1−αm

1 − αm
.
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First, we write the function L, the difference r − r, and the integral from 0 to t of the kernel of
Eq (4.7) as

t∫
0

(
K(t, τ) − K(t, τ)

)
dτ

=

t∫
0

∞∑
k=1

(t − τ)α1−1 ψk

(
f1k − f 1k

)
(τ)E(·),α1 (t − τ) dτ,

(4.14)

L(t) − L(t) =h(t)

 m∑
i=1

qi∂
αi
t

(
E − E

)
(t) +

∞∑
k=1

ψk
(
ϕ1k − ϕ1k

)
E(·),1(t)


+

(
h(t) − h(t)

)  m∑
i=1

qi∂
αi
t E(t) +

∞∑
k=1

ψkϕ1kE(·),1(t)

 , (4.15)

r(t) − r(t) =L(t) − L(t) + h(t)

t∫
0

(
K(t, τ) − K(t, τ)

)
r(τ)dτ

+ h(t)

t∫
0

K(t, τ) (r(τ) − r(τ)) dτ +
(
h(t) − h(t)

) t∫
0

K(t, τ)r(τ)dτ.

(4.16)

Then, from Lemma 2.2 and equality (4.15) we obtain

‖L − L‖C[0,T ] ≤ M4‖ϕ1 − ϕ1‖C4[0,1] + M5‖ f1 − f 1‖C4,0(DT ) + M6‖E − E‖C1[0,T ], (4.17)

where M4 = m2
0 (m1 + cc1) , M5 = m0ĉc1, and M6 = m0M3.

By Lemma 2.2, equality (4.14) we arrive at

‖K − K‖C[0,T ]×C[0,T ] ≤ M7‖ f1 − f 1‖C4,0(DT ), (4.18)

where M7 = m0cTα1/α1
(̂
c2 + m0c2

)
.

According to inequalities (4.17) and (4.18) from (4.16), we have

‖r − r‖C[0,T ] ≤ M9

(
‖ϕ1 − ϕ1‖C4[0,1] + ‖ f1 − f 1‖C4,0(DT ) + ‖E − E‖C1[0,T ]

)
,

where

M9 = max
(

M4 + m3T M7

M8
,

M5

M8
,

M6

M8

)
, M8 = 1 − c0

Tα1

α1
.

From (4.5), a similar estimate can be obtained for u1 − u1. �

5. Well-posedness of the second problem

To begin with, let us rewrite problem (3.9)–(3.11) as

m∑
i=1

qi∂
αi
t u2 = u2xx + r(t) f2(x, t), (x, t) ∈ DT , (5.1)
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u2(x, 0) = ϕ2(x), x ∈ [0, 1], (5.2)

u2x(0, t) + αu2(0, t) = γ(t), t ∈ [0,T ],
u2x(1, t) − αu2(1, t) = γ(t), t ∈ [0,T ],

(5.3)

where

γ(t) =
√

2
b1 − a1

b1 + a1

∞∑
k=1

kπ
[
tα1−1E(·),α1(t) ∗ r(t) f1k(t) + ϕ1kE(·),1(t)

]
,

α =
a0

b1 + a1
.

We search for the solution to problem (5.1)–(5.3) in the form

u2(x, t) = u0(x, t) + a(x)γ(t),

where a(x) = 20x7 − 70x6 + 84x5 − 35x4 + x. Consequently, for the unknown function u0 we have
the problem

m∑
i=1

qi∂
αi
t u0 = u0xx + f0(x, t), (x, t) ∈ DT , (5.4)

u0(x, 0) = ϕ0(x), x ∈ [0, 1], (5.5)

u0x(0, t) + αu0(0, t) = 0, t ∈ [0,T ],
u0x(1, t) − αu0(1, t) = 0, t ∈ [0,T ],

(5.6)

where
f0(x, t) = f2(x, t)r(t) − a(x)b(t) + a′′(x)γ(t), ϕ0(x) = ϕ2(x) − a(x)γ(0),

b(t) =

m∑
i=1

qi∂
αi
t γ(t).

The auxiliary spectral problem for the considered direct problem (5.4)–(5.6) is
µ′′(x) + λµ(x) = 0, x ∈ (0, 1),
µ′(0) + αµ(0) = 0,
µ′(1) − αµ(1) = 0.

(5.7)

The spectral problem (5.7) has only eigenfunctions

µk(x) =
√

2
(
cos(

√
λkx) −

α
√
λk

sin(
√
λkx)

)
, k = 1, 2, ...,

and the eigenvalues are defined by

tan
√
λk =

2α
√
λk

α2 − λk
, k = 1, 2, ....

Since problem (5.7) is self-adjoint, the system of eigenfunctions {µk(x)}, (k = 1, 2, ...) forms an
orthonormal basis in L2(0, 1). We consider only the case α > 0. The case α < 0 will be similar.

For sufficiently large k, the asymptotic representation of eigenvalues of problem (5.7) has the form√
λk = kπ + O

(
1
k

)
.
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Lemma 5.1. Let ϕ0 ∈ C4[0, 1] be a function satisfying the conditions

ϕ′0(0) + αϕ0(0) = 0, ϕ′′′0 (0) + αϕ′′0 (0) = 0,
ϕ′0(1) − αϕ0(1) = 0, ϕ′′′0 (1) − αϕ′′0 (1) = 0.

(5.8)

Then, the inequality
∞∑

k=1

|λkϕ0k| ≤ ĉ3‖ϕ0‖C4[0,1] ≤ c3

holds, where c3 is a constant and ϕ0k = (ϕ0, µk) , (k = 1, 2, ...).

Proof. By using (5.8), integration by parts four times, and the Schwarz and Bessel inequalities,
we obtain

∞∑
k=1

|λkϕ0k| =

∞∑
k=1

∣∣∣∣∣λk
λk

λk
ϕ0k

∣∣∣∣∣ ≤
 ∞∑

k=1

1
|λk|

2


1
2
 ∞∑

k=1

∣∣∣λ2
kϕ0k

∣∣∣2
1
2

≤ ĉ3‖ϕ
(4)
0 ‖L2[0,1] ≤ ĉ3‖ϕ

(4)
0 ‖C[0,1].

�

The class of functions which satisfy the conditions of Lemma 5.1 will be denoted by

Φ ≡

{
ϕ0 ∈ C4[0, 1] : ϕ′0(0) + αϕ0(0) = 0, ϕ′′′0 (0) + αϕ′′0 (0) = 0,

ϕ′0(1) − αϕ0(1) = 0, ϕ′′′0 (1) − αϕ′′0 (1) = 0

}
.

Similarly, as for the inverse problem (3.5)–(3.8), we search for a solution to problem (5.4)–(5.6) by
the Fourier method. Then, we have

u0(x, t) =

∞∑
k=1

[(
tα1−1E(·),α1(t)

)
∗ f0k(t) + ϕ0kE(·),1(t)

]
µk(x), (5.9)

where f0k(t) = ( f0(·, t), µk) , ϕ0k = (ϕ0, µk), (k = 1, 2, ...).

Theorem 5.2. Suppose ϕ0 ∈ Φ, f0 ∈ C
(
DT

)
and f0(·, t) ∈ Φ for every t ∈ [0,T ]. Then, (5.9) gives a

classical solution u0 to (5.4)–(5.6) and u0(·, t) ∈ C2[0, 1], ∂αi
t u0(x, ·) ∈ C(0,T ], (i = 1, ...,m).

Proof. Let us denote

ϕ0k =

√
2

λ2
k

1∫
0

ϕ(4)
0 (x)µk(x)dx :=

1
λ2

k

ϕ(4)
0k ,

f0k(t) =

√
2

λ2
k

1∫
0

f (4)
0x (x, t)µk(x)dx :=

1
λ2

k

f (4)
0k (t).

As in the previous section, we need to show that the series corresponding to u0, u0xx, and
∑m

i=1 qi∂
αi
t u0

converge. The series corresponding to u0 and u0xx are bounded from above by the series

|u0| ≤ c
∞∑

k=1

1
λ2

k

[
‖ f (4)

0k ‖C[0,T ]
Tα1

α1
+

∣∣∣ϕ(4)
0k

∣∣∣],
|u0xx| ≤ c

∞∑
k=1

1
λk

[
‖ f (4)

0k ‖C[0,T ]
Tα1

α1
+

∣∣∣ϕ(4)
0k

∣∣∣].
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According to Lemma 2.3, we obtain the estimate of ∂α1
t u0k(t) on [ε,T ] for all ε > 0 as

|∂α1
t u0k(t)| ≤

c‖ f (4)
0k ‖C[0,T ]

λ2
kΓ (1 − α1) (1 − α1)

B (α1, 1 − α1)

+
c
∣∣∣ϕ(4)

0k

∣∣∣
λkΓ (1 − α1)

B (α1, 1 − α1)

+
cq2t−α2

∣∣∣ϕ(4)
0k

∣∣∣
λ2

kΓ (1 − α1)
B (α1 − α2, 1 − α1)

+ · · ·

+
cqmt−αm

∣∣∣ϕ(4)
0k

∣∣∣
λ2

kΓ (1 − α1)
B (α1 − αm, 1 − α1) .

Therefore, ∂α1
t u0k(t) represent the continuous function on [ε,T ] for all ε > 0. �

Remark 5.3. The uniqueness of the solution of problem (5.4)–(5.6), under the conditions of
Theorem 5.2 is obtained from the uniqueness of the representation (5.9).

Lemma 5.4. [30] Let u0 satisfy Eq (5.4) in DT . If f0(x, t) ≤ 0 in DT , then

u0(x, t) ≤ max
{
0, max

0≤x≤1
u0(x, 0), max

0≤t≤T
u0(0, t), max

0≤t≤T
u0(1, t)

}
.

If f0(x, t) ≥ 0 in DT , then

u0(x, t) ≥ min
{
0, min

0≤x≤1
u0(x, 0), min

0≤t≤T
u0(0, t), min

0≤t≤T
u0(1, t)

}
.

Theorem 5.5. The classical solution of problem (5.4)–(5.6) depends continuously on ϕ0 ∈ C[0, 1], f0 ∈

C(DT ) in the sense that

‖u0 − u0‖C(DT ) ≤ ‖ϕ0 − ϕ0‖C[0,1]] + (α + 1)‖ f0 − f 0‖C(DT ), (5.10)

where u0 and u0 are classical solutions of (5.4)–(5.6) with the data f0, ϕ0, and f 0, ϕ0, respectively.

Proof. Let u0 be a classical solution of problem (5.4)–(5.6). We introduce the following:

R = ‖ f0‖C(DT ), M = ‖ϕ0‖C[0,1].

Let us construct the function

ω(x, t) = u0(x, t) −
Rx2

2
.

The function ω is the classical solution of problem
m∑

i=1

qi∂
αi
t ω − ωxx = f0(x, t) − R,

ω(x, 0) = ϕ0(x) −
Rx2

2
,

ωx(0, t) + αω(0, t) = 0,

ωx(1, t) − αω(1, t) =
R
2

(α − 1).
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Using the maximum principle, we obtain the estimates

ω(x, t) ≤ max
{

0, ϕ0(x) −
Rx2

2
,

R
2

(α − 1)
}

and

u0(x, t) ≤ max
{

0, ϕ0(x) −
Rx2

2
,

R
2

(α − 1)
}

+ R

≤ ϕ0(x) −
Rx2

2
+

R
2

(α − 1) + R ≤ (α + 1)R + M.

Similarly, if we introduce the function

h(x, t) = u0(x, t) +
Rx2

2
and using the minimum principle we arrive at the opposite estimate

u0(x, t) ≥ −(α + 1)R − M.

Hence, if u0 is the classical solution of problem (5.4)–(5.6), we have the estimate

‖u0‖C(DT ) ≤ ‖ϕ0‖C[0,1]] + (α + 1)‖ f0‖C(DT ). (5.11)

To prove the continuous dependence on the data, we study the difference g(x, t) = u0(x, t) − u0(x, t).
This function is the classical solution of (5.4)–(5.6) with f0 − f 0 and ϕ0 − ϕ0 replaced by f0 and ϕ0,
respectively. Applying inequality (5.11) to g, we arrive at estimate (5.10). �

As a consequence of Theorem 5.2, we obtain the following main theorem for problem (5.1)–(5.3):

Theorem 5.6. Let ϕ2 ∈ C4[0, 1], f2 ∈ C
(
DT

)
, f2(·, t) ∈ C4[0, 1] for every t ∈ [0,T ], and the

following conditions

ϕ′2(0) + αϕ2(0) = γ(0), ϕ′′′2 (0) + αϕ′′2 (0) = 0,
ϕ′2(1) − αϕ2(1) = γ(0), ϕ′′′2 (1) − αϕ′′2 (1) = 0,

f2x(0, t) + α f2(0, t) =
b(t)
r(t)

, f2xxx(0, t) + α f2xx(0, t) = 0,

f2x(1, t) − α f2(1, t) =
b(t)
r(t)

, f2xxx(1, t) − α f2xx(1, t) = 0

(5.12)

be satisfied. Then, the classical solution u2 of problem (5.1)–(5.3) exists, is unique and u2(·, t) ∈
C2[0, 1], ∂αi

t u2(x, ·) ∈ C(0,T ], (i = 1, ...,m).

Proof. The solution to problem (5.1)–(5.3) has the form

u2(x, t) = a(x)γ(t) +

∞∑
k=1

[(
tα1−1E(·),α1(t)

)
∗ f0k(t) + ϕ0kE(·),1(t)

]
µk(x). (5.13)

It can be seen from (5.13) that the majorizing series for (5.13) and (5.9) are the same and these series
converge when conditions (5.12) are met. The uniqueness comes from the fact that the homogeneous
problem (5.1)–(5.3) (that is, when ϕ2, γ, r f2 ≡ 0) has only a trivial solution.

�
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6. The main results

Theorem 6.1. Let the following conditions be satisfied:
(H1) ϕ ∈ C1[0, 1], ϕ(0) + ϕ(1) = 0, a1ϕ

′(0) + b1ϕ
′(1) + a0ϕ(0) = 0;

(H2) f ∈ C
(
DT

)
, f (·, t) ∈ C1[0, 1], f (0, t) + f (1, t) = 0, fx(0, t) + fx(1, t) + α ( f (0, t) − f (1, t)) = 0;

(H3) E ∈ C1[0,T ], E(0) =
1∫

0
ϕ(x)dx.

Then the classical solution u of problem (1.1)–(1.4) exists, is unique and u(·, t) ∈ C2[0, 1], ∂αi
t u(x, ·) ∈

C(0,T ], (i = 1, ...,m).

Proof. The smoothness conditions specified in assumptions (H1)–(H3) are derived from Theorems 4.2
and 5.6. To prove the consistency conditions in Theorem 6.1, it is enough for us to prove the
following lemma. �

Lemma 6.2. Let assumptions (H1)–(H3) be fulfilled. Then, the conditions

ϕ1(0) = ϕ1(1) = 0, ϕ′2(0) + αϕ2(0) = γ(0), ϕ′2(1) − αϕ2(1) = γ(0),

f1(0, t) = f1(1, t) = 0, f2x(0, t) + α f2(0, t) =
b(t)
r(t)

, f2x(1, t) − α f2(1, t) =
b(t)
r(t)

,

E(0) =

1∫
0

ϕ2(x)dx

are satisfied.

Proof. It is easy to see from the representation γ that

γ(0) =
b1 − a1

b1 + a1
ϕ′1(0). (6.1)

Substituting the expression ϕ(x) = ϕ1(x) + ϕ2(x) into ϕ(0) + ϕ(1) = 0, we have

ϕ1(0) + ϕ1(1) + ϕ2(0) + ϕ2(1) = 0. (6.2)

Using the conditions ϕ2(0) + ϕ2(1) = 0, ϕ1(0) = ϕ1(1) from (6.2), we obtain ϕ1(0) = ϕ1(1) = 0. Also,
substituting the expression ϕ(x) = ϕ1(x) + ϕ2(x) into a1ϕ

′(0) + b1ϕ
′(1) + a0ϕ(0) = 0, we have

a1
(
ϕ′1(0) + ϕ′2(0)

)
+ b1

(
ϕ′1(1) + ϕ′2(1)

)
+ a0 (ϕ1(0) + ϕ2(0)) = 0.

The conditions ϕ′1(0) = −ϕ1(1), ϕ1(0) = 0, ϕ′2(0) = ϕ′2(1) imply that

ϕ′2(0) +
a0

b1 + a1
ϕ2(0) =

b1 − a1

b1 + a1
ϕ′1(0),

which, from (6.1), becomes ϕ′2(0) + αϕ2(0) = γ(0).
Similarly, we get ϕ′2(1) − αϕ2(1) = γ(0).
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Substituting the expression f (x, t) = f1(x, t) + f2(x, t) into f (0, t) + f (1, t) = 0, we have

f1(0, t) + f2(0, t) + f1(1, t) + f2(1, t) = 0. (6.3)

Then using conditions f1(0, t) = f1(1, t), f2(0, t) + f2(1, t) = 0 from (6.3), we arrive at f1(0, t) =

f1(1, t) = 0.
Applying f (x, t) = f1(x, t) + f2(x, t) and the conditions f1(0, t) = f1(1, t), f2(0, t) + f2(1, t) =

0, f1x(0, t) + f1x(1, t) = 0, f2x(0, t) = f2x(1, t) from fx(0, t) + fx(1, t) + α ( f (0, t) − f (1, t)) = 0, we
obtain f2x(0, t) + α f2(0, t) =

b(t)
r(t) .

Similarly, we have f2x(1, t) − α f2(1, t) =
b(t)
r(t) .

Substituting the expression ϕ(x) = ϕ1(x) + ϕ2(x) into (H3), we obtain E(0) =
1∫

0
ϕ2(x)dx.

The uniqueness of the solution of problem (1.1)–(1.4) comes from the fact that u1 and u2 are unique.
This completes the proof. �

Remark 6.3. If we consider the direct problem (1.1)–(1.3), it is easy to see that, for the direct problem
(1.1)–(1.3), we have a theorem of existence and uniqueness, which is similar to Theorem 6.1 without
assumption (H3).

7. Conclusions

In this paper, we considered the inverse source problem with the nonlocal boundary conditions
for the heat equation involving multi-term time-fractional derivatives. Since the eigenvalues of the
auxiliary spectral problem do not form a basis, we have divided the problem into two sub-problems, one
of which is the inverse problem, and the second the direct problem. The well-posedness of the inverse
and direct problems are shown by Fourier expansion in terms of eigenfunctions of the corresponding
spectral problems. Also, for the well-posedness of the inverse problem, the properties of the Volterra
integral equation of the second kind were used. The continuous dependence on the data of the solutions
of the inverse and direct problems was proved.

Since a feature of this paper is the nonlocal boundary condition (1.3), performing some numerical
tests is more difficult even without the fractional derivative (see for example [31]). This is due to the
fact that the sufficient conditions for the existence of a solution are not satisfied using standard methods.
It is also difficult to show the convergence of the series that arises when solving (1.1)–(1.4) using the
Fourier method.
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