Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article Special Issues

Construction of nonlinear component of block cipher using coset graph

  • In recent times, the research community has shown interest in information security due to the increasing usage of internet-based mobile and web applications. This research presents a novel approach to constructing the nonlinear component or Substitution Box (S-box) of block ciphers by employing coset graphs over the Galois field. Cryptographic techniques are employed to enhance data security and address current security concerns and obstacles with ease. Nonlinear component is a keystone of cryptography that hides the association between plaintext and cipher-text. Cryptographic strength of nonlinear component is directly proportional to the data security provided by the cipher. This research aims to develop a novel approach for construction of dynamic S-boxes or nonlinear components by employing special linear group PSL(2,Z) over the Galois Field GF(210). The vertices of coset diagram belong to GF(210) and can be expressed as powers of α, where α represents the root of an irreducible polynomial p(x)=x10+x3+1. We constructed several nonlinear components by using GF(210). Furthermore, we have introduced an exceptionally effective algorithm for optimizing nonlinearity, which significantly enhances the cryptographic properties of the nonlinear component. This algorithm leverages advanced techniques to systematically search for and select optimal S-box designs that exhibit improved resistance against various cryptographic attacks.

    Citation: Adil Waheed, Fazli Subhan, Mazliham Mohd Suud, Muhammad Yasir Hayat Malik, Alina Mirza, Farkhanda Afzal. Construction of nonlinear component of block cipher using coset graph[J]. AIMS Mathematics, 2023, 8(9): 21644-21667. doi: 10.3934/math.20231104

    Related Papers:

    [1] Abdul Razaq, Muhammad Mahboob Ahsan, Hanan Alolaiyan, Musheer Ahmad, Qin Xin . Enhancing the robustness of block ciphers through a graphical S-box evolution scheme for secure multimedia applications. AIMS Mathematics, 2024, 9(12): 35377-35400. doi: 10.3934/math.20241681
    [2] Muhammad Sajjad, Tariq Shah, Huda Alsaud, Maha Alammari . Designing pair of nonlinear components of a block cipher over quaternion integers. AIMS Mathematics, 2023, 8(9): 21089-21105. doi: 10.3934/math.20231074
    [3] Mohammad Mazyad Hazzazi, Farooq E Azam, Rashad Ali, Muhammad Kamran Jamil, Sameer Abdullah Nooh, Fahad Alblehai . Batch generated strongly nonlinear S-Boxes using enhanced quadratic maps. AIMS Mathematics, 2025, 10(3): 5671-5695. doi: 10.3934/math.2025262
    [4] Mohammad Mazyad Hazzazi, Gulraiz, Rashad Ali, Muhammad Kamran Jamil, Sameer Abdullah Nooh, Fahad Alblehai . Cryptanalysis of hyperchaotic S-box generation and image encryption. AIMS Mathematics, 2024, 9(12): 36116-36139. doi: 10.3934/math.20241714
    [5] Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao . Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations. AIMS Mathematics, 2023, 8(12): 29759-29796. doi: 10.3934/math.20231523
    [6] Ziqiang Wang, Qin Liu, Junying Cao . A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. AIMS Mathematics, 2023, 8(6): 13096-13122. doi: 10.3934/math.2023661
    [7] Aman Ullah, Muhammad Ibrahim, Tareq Saeed . Fuzzy cosets in AG-groups. AIMS Mathematics, 2022, 7(3): 3321-3344. doi: 10.3934/math.2022185
    [8] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065
    [9] Jean-Guy Caputo, Imene Khames, Arnaud Knippel . Nonlinear normal modes in a network with cubic couplings. AIMS Mathematics, 2022, 7(12): 20565-20578. doi: 10.3934/math.20221127
    [10] Ziqiang Wang, Jiaojiao Ma, Junying Cao . A higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel. AIMS Mathematics, 2024, 9(6): 14325-14357. doi: 10.3934/math.2024697
  • In recent times, the research community has shown interest in information security due to the increasing usage of internet-based mobile and web applications. This research presents a novel approach to constructing the nonlinear component or Substitution Box (S-box) of block ciphers by employing coset graphs over the Galois field. Cryptographic techniques are employed to enhance data security and address current security concerns and obstacles with ease. Nonlinear component is a keystone of cryptography that hides the association between plaintext and cipher-text. Cryptographic strength of nonlinear component is directly proportional to the data security provided by the cipher. This research aims to develop a novel approach for construction of dynamic S-boxes or nonlinear components by employing special linear group PSL(2,Z) over the Galois Field GF(210). The vertices of coset diagram belong to GF(210) and can be expressed as powers of α, where α represents the root of an irreducible polynomial p(x)=x10+x3+1. We constructed several nonlinear components by using GF(210). Furthermore, we have introduced an exceptionally effective algorithm for optimizing nonlinearity, which significantly enhances the cryptographic properties of the nonlinear component. This algorithm leverages advanced techniques to systematically search for and select optimal S-box designs that exhibit improved resistance against various cryptographic attacks.



    Cryptology has two basic areas, cryptography and cryptanalysis, in which one sees the sketch and cracking of cryptosystems. While re-arranging a cryptosystem, the inspection of its security plays a vital role. In cryptosystems, the key role features are confidentiality, authentication and integrity of data [1]. Earlier in [2], cryptosystems have been handled by armed forces. In this century, now-a-days everyone wants a fully controlled security by means of cryptographic skills.

    The day-by-day advancements in growing industries, particularly the communication sector, have facilitated the flow of huge data over vast areas within a short period of time. It has been a hot topic to discuss how modern security systems can be improved to allow for reliable data communication. The cryptographic roots are adopted to understand secure contact between credible parties for giving hidden data in a protected way [3]. The block ciphering method has been widely used for protected communication and storage in the last era. Cryptographers constructed advanced block ciphers to go with the pace of the modern era [4]. Shanon in 1949 gave the idea to deal with confusion and diffusion occurring in block ciphers via substitution boxes [5]. Well known block ciphers are AES, DES, RC4, Blowfish, IDEA, RC5, RC6, and many more. These ciphers actuate the nonlinearity for secure information. S-boxes play a vital role in communicating the information/data more securely. Nonlinear components are an integral part of encryption algorithms and play a crucial role in achieving confusion and nonlinearity, which are necessary for thwarting attacks and protecting sensitive data. The motivation for studying nonlinear components also includes the field of image encryption [6] owing to the growing reliance on digital images for storage, transmission, and communication of sensitive information. Overall, the motivation behind nonlinear component is to improve cryptographic systems and address the particular difficulties associated with image encryption, ultimately advancing secure communication, data security, and privacy preservation.

    Mathematically, an n×m S-box does not follow a linear mapping. This indicates that confusion component has a nonlinear mapping S from Galois field GF(2n)GF(2m), where nm. It works as a Boolean function, which is comprised of bits. The effectiveness of an 8×8 S-box in encrypting data is so high that it catches the attention of cryptographers as a strong encryption method [7,8]. Numerous design patterns are examined and they came with an 8×8 S-box with best cryptographic features. The methods involved in the construction process are: Mobius transformation, linear trigonometric transformation, complete latin square, Bent function and logistic chaotic system, affine transformation, and symmetric group composition. S-boxes are also playing vital role in image encryption algorithms. Liu et al. [9] introduced a color image encryption scheme based on chaos, emphasizing the utilization of a randomly sampled noise signal. In [10], the encryption scheme involves creating six pseudo-random arrays to cyclically shift the red, green- and blue components both horizontally and vertically, followed by using the exclusive OR (XOR) operation to diffuse three color components. Liu et al. [11] proposed an image encryption scheme based on GF and chaotic systems to transmit pathological images over the network.

    Currently, there is a lot of focus on robust S-box construction methods, and significant research has been proposed in [12,13,14,15,16,17,18,19,20]. This paper [21] introduces a new system model with improved chaotic characteristics by suggesting a piece-wise quadratic polynomial chaotic map that operates in one dimension (1D). In [12], a projective general linear group is used as a method of construction for the S-box for block ciphers. Islam et al. [13] explores the construction of an S-box with four dimensions and four wings hyperchaotic system. Husain et al. [14] designed cryptographically a strong nonlinear component based on a particular class of linear fractional transformation. Ahmad et al. [15] presents a technique, which involves utilizing chaotic maps and artificial intelligence based methodology. Attaullah et al. [16] employed algebraic techniques to create the S-box. Özkaynak et al. [17] derived the S-box from a fractional order chaotic Chen system. In [22] a new S-box for encryption that utilizes the Lorenz equation was presented. In [23], a combination of chaotic maps is used to develop the S-box by improving chaotic range. Zheng et. al [24] outlines a dynamic S-box dependent image encryption method, comprising of four stages: creating encryption keys, S-box construction, image permutation, and image diffusion. In [25], the authors introduced a technique for constructing an S-box that fulfills the strict avalanche criterion. This paper [26] puts forth a three-layer optimization technique for producing high-performance S-boxes using a novel chaotic map and artificial jellyfish optimization algorithm.

    A new method for creating S-boxes using coset diagrams and a one-to-one mapping was developed by Razaq et al. [18] in their study. Si et. al [27] created a chaotic map with an exponential quadratic function in two dimensions that has the capability to function as a generator of pseudo-random numbers. The article [19] describes the design of a confusion component using tangent delay chaotic sequence and a special kind of permutation from a symmetric group. Liu [20] et al. presented a technique in which S-box elements are shuffled randomly using a permutation operation performed between independent chaotic sequences. Liu et al. [28] gave an image encryption algorithm for the new dynamic S-box. In [29], confusion component is constructed based on linear fractional transformation using Galois field GF(28). Farah et al. [30] used a teaching-learning based optimization to the design S-box. Jamal et al. [31] S-box construction method is controlled by a linear group over the finite commutative ring. In [32], Lambić demonstrated an efficient technique of designing a confusion component by composition method. Azam et al. [33] introduced a nonlinear component that is both cryptographically robust and injective specifically for elliptic curves. The paper [34] introduces the Q-learning naked mole rat algorithm, a new variant of the metaheuristic algorithm based on the naked mole rat, for building and optimizing substitution boxes. As opposed to the majority of competing works, which frequently include five chaotic maps (Singer, Chebyshev, logistic, circle, and sinusoidal) as a part of the algorithm itself. The key innovation and distinctive features of this paper are outlined below:

    1) Our proposal presents a method for constructing S-boxes in a way that is highly efficient, by utilizing coset graph for the action of PSL(2,Z) over the Galois field GF(210).

    2) The proposed nonlinear components undergo a comprehensive analysis and are compared to other commonly used nonlinear components, which are generated through various algebraic structures. The purpose of this comparison is to evaluate the performance and potency of the proposed S-boxes in terms of their capacity to add nonlinearity to cryptographic systems. The findings demonstrate that the proposed nonlinear components are more efficient and resistant to algebraic attacks.

    The rest of this article is structured as follows: coset diagrams for modular group background knowledge is introduced in Section 2. Use of coset diagram in the construction of the proposed nonlinear component is presented in Section 3. In Section 4, we propose a novel nonlinear enhancement algorithm for increasing the nonlinearity of any confusion component of the block cipher. Section 5 presents statistical analysis and simulation results. The results of the proposed S-box and performance analysis criteria are evaluated in the same section. Moreover, the proposed S-box construction scheme is compared with well-known S-boxes according to good S-box criteria and is also examined in the same section. In conclusion, this article presents a summary of a coset based S-box generation scheme.

    The modular group PSL(2,Z) is comprised of a set of linear fractional mappings, which include by l:s1/sandm:ss1/s. The finite display of PSL(2,Z) is <l,m:l2=m3=1>. The modular group is the most significant infinite discrete group due to its extensive utilization in number theory, advanced group theory, geometry, and topology. There is a rich history of studying the actions of the modular group, particularly on finite sets, dating back to the late 19th century. G. Higman for the very first time used coset diagrams for this group in 1978. The coset diagrams [35,36,37] are derived from the way PSL(2,Z) operates on the projective line over the finite field GF(pn), which is represented as PL(Fpn)=GF(pn){}. Here, p represents a prime number. We use triangles to represents cycles of m because of order three. The elements of GF(pn){} that form the nodes of the triangles undergo an anti-clockwise permutation by m. We utilize an edge in the coset diagram to connect a pair of nodes belonging to the triangles due to the presence of order two. The term "order two" indicates that these elements/nodes have a specific property where, when combined with themselves, they return to their original state after two repetitions. This property may be relevant or significant in the context of the coset diagram, influencing the decision to connect the corresponding nodes with an edge. Fixed points are denoted by thick dots, if they exist. Consider the action of a modular group on GF(23){}={0,1,2,3,,22,}. The permutation representations of l and m can be calculated by l:s1/sandm:ss1/s.

    l:(0)(122)(211)(315)(417)(59)(619)(713)(820)(1016)(1221)(1418)
    m:(01)(21222)(31611)(41815)(51017)(6209)(71419)(82113).

    It is evident that the permutation of results in 8 cycles, thus implying the existence of 8 triangles in the coset diagrams. The vertices 2, 12 and 22 of a triangle corresponds to a cycle. So 8 triangles can be drawn. Subsequently, we connect these triangles by permuting. For example, the cycle (1 22) in mean the nodes 1 and 22 are connected by an edge. The following coset diagram appears as a result of permutations of and. Since the image of under does not exist in, it is essential to consider alternative mappings or transformations to ensure a comprehensive coverage of the desired range. Thus, it is not feasible for to act in this scenario. For this, we add for the action of The utilization of coset diagrams has led to the resolution of numerous problems in group theory. This paper explores the implementation of these coset diagrams in the field of cryptography. Here, we formulate the coset diagram that we utilized in the designing of the proposed S-boxes.

    In Figure 1, coset diagram illustrates the action of the modular group on GF(23){}. Aslo, Figure 1 gives a clear understanding of how modular group operates on GF(23){} and distinguish the resulting cosets.

    Figure 1.  The coset graph for the modular group's action on GF(23)∪{∞}.

    Let's examine a primitive polynomial p(x)=x10+x3+1 that cannot be factored into lower-degree polynomials over Z2, then GF(210)=Z2[x]<x10+x3+1>. In Table 1, the components of GF(210) are represented as certain exponents of α, where α corresponds to the root of p(x). Let's examine how PSL(2,Z) operates on PL(F210)=GF(210). The permutation representations of l and m can be computed using the operation of (s)l=1sand(s)m=s1s. So,

    l:(0)(1)(α1α1022)(α2α1021)(α3α1020)(α4α1019)(α5α1018)(α6α1017)(α7α1016)(α8α1015)
    (α9α1014)(α10α1013)(α11α1012)(α12α1011)(α13α1010)(α14α1009)(α15α1008)(α16α1007)...
    ...(α497α526)(α498α525)(α499α524)(α500α523)(α501α522)(α502α521)(α503α520)(α504α519)
    (α505α518)(α506α517)(α507α516)(α508α515)(α509α514)(α510α513)(α511α512),
    m:(10)(α341)(α682)(α1α76α946)(α2α152α869)(α3α7α1013)(α4α304α715)(α5α508α510)
    (α6α14α1003)(α8α608α407)(α9α315α699)(α10α1016α1020)(α11α189α823)(α12α28α983)...
    ...(α599α668α779)(α604α833α609)(α614α807α625)(α617α636α793)(α620α680α746)
    (α633α760α653)(α635α658α753)(α641α677α728)(α650α683α713)
    (α652α738α656)(α654α697α695).
    Table 1.  Demonstration of the components belonging to GF(210).

    GF(210) Binary values GF(210) Binary values GF(210) Binary values GF(210)
    0000000000 0 0000000001 1 0000000010 α1 0000000100 α2
    0000001000 α3 0000010000 α4 0000100000 α5 0001000000 α6
    0100100110 α1015 1001001100 α1016 0010010001 α1017 0100100010 α1018
    1001000100 α1019 0010000001 α1020 0100000010 α1021 1000000100 α1022

     | Show Table
    DownLoad: CSV

    The action's coset diagram comprises a sole instance of both π and Δ, alongside 170 iterations of γ, constituting a total of 172 orbits.

    By refereeing to Figure 2, for the depiction of the orbit, labeled as γ, in the coset diagram. The operation of modular group on the set of GF(210){} is shown in this figure. By examining Figure 2, we can see interaction between the elements of modular group and the resulting orbit. From Figure 3, a deeper understanding can be obtained regarding the orbit labeled as γj in the coset diagram. By referencing the Figure 4, there is distinct replica of γj within which the vertex a1 is located. A specific element or state within the mathematical structure is indicated by the presence of a1 in the coset diagram.

    Figure 2.  Representation of modular group on GF(210){} in the form of a coset diagram contains the orbit λ [18].
    Figure 3.  Representation of modular group on GF(210){} in the form of a coset diagram contains the orbit γj [18].
    Figure 4.  A copy of γj with the vertex α1 in the coset diagram.

    Algebraic approaches have been employed in the study of Galois fields in various publications. According to this novel methodology, the nodes of the coset diagram are used to disrupt the initial sequence of the Galois field. GF(210) represents the subset of GF(210) consisting of elements that can be expressed as even powers of α. Our initial objective is to compose a 16×16 matrix of the coset diagram nodes. To accomplish this, we exclusively choose nodes that are a part of GF(210). The following is the procedure for constructing an S-box using a coset graph.

    Table 1 provides an illustrative display showcasing the elements in binary form that are part of GF(210). This table enables a comprehensive examination of each element, making it possible to examine each of its elements thoroughly. Table 2 consists of 256 elements between 0 to 255 for GF(28), each element is represented by an 8-bit binary sequence. Table 3 displays the results obtained after completing the second step of the procedure. This table present data into matrix of size 16×16, when each item in the matrix, as a result of the proposed calculations, has a remainder of zero. In Table 4, the proposed S-boxes (S-box-1) is presented in a manner where each of its elements displays a remainder of zero. Table 5 presented matrix of size 16×16, where element in the matrix has reminder of one. Table 6 shows proposed S-box-2 for remainder one after application of permutation. In Table 7, all elements of matrix have reminder two, which is obtained after completing the second step. Table 8 depicts proposed S-box-3 developed after applying process of permutation. In Table 9, elements are organized into 16×16 matrix, where all elements have remainder of three. Table 10 demonstrates proposed S-box-4, designed through the application of permutation.

    Table 2.  Demonstration of the components belonging to GF(28).
    Binary values GF(28) Binary values GF(28) Binary values GF(28) Binary values GF(28)
    11011000 ϖ251 10101101 ϖ252 01000111 ϖ253 10001110 ϖ254
    10000011 ϖ247 00011011 ϖ248 00110110 ϖ249 01101100 ϖ250
    01111101 ϖ243 11111010 ϖ244 11101001 ϖ245 11001111 ϖ246
    10000000 ϖ7 00011101 ϖ8 00111010 ϖ9 01110100 ϖ10
    00001000 ϖ3 00010000 ϖ4 00100000 ϖ5 01000000 ϖ6
    00000000 0 00000001 1 00000010 ϖ1 00000100 ϖ2

     | Show Table
    DownLoad: CSV
    Table 3.  After the 2nd step, 16×16 square matrix having remainder zero.
    245 243 222 162 150 233 131 178 17 16 71 73 60 1 148 90
    84 3 201 118 66 125 232 58 54 44 171 8 57 204 2 142
    218 252 48 161 203 7 135 87 192 149 108 191 128 231 32 30
    67 228 72 244 177 127 22 104 28 133 137 64 95 116 219 4
    212 225 101 96 6 21 235 152 136 238 154 27 19 220 91 5
    190 241 46 153 210 196 255 117 37 176 9 207 29 180 216 173
    35 193 239 86 146 40 113 221 34 139 88 119 112 134 223 188
    189 170 92 147 74 69 217 122 247 109 186 38 250 42 145 213
    115 208 70 227 181 151 156 18 12 143 251 187 249 205 59 41
    103 107 14 129 13 160 209 62 157 75 93 234 11 82 24 51
    169 199 31 182 230 89 183 68 164 33 83 253 56 45 76 106
    194 50 55 141 124 184 159 242 248 26 85 240 206 254 140 25
    15 120 130 100 202 224 79 102 163 43 110 39 94 229 20 36
    99 168 77 246 111 197 165 237 123 81 155 63 53 61 158 49
    214 198 114 175 65 52 200 80 10 226 236 195 179 138 167 97
    0 211 98 215 47 174 126 185 132 105 166 121 23 172 78 144

     | Show Table
    DownLoad: CSV
    Table 4.  Proposed S-box 1 for remainder zero evolved after permutations.
    190 241 46 153 210 196 255 117 37 176 9 207 29 180 216 173
    212 225 101 96 6 21 235 152 136 238 154 27 19 220 91 5
    67 228 72 244 177 127 22 104 28 133 137 64 95 116 219 4
    35 193 239 86 146 40 113 221 34 139 88 119 112 134 223 188
    84 3 201 118 66 125 232 58 54 44 171 8 57 204 2 142
    214 198 114 175 65 52 200 80 10 226 236 195 179 138 167 97
    245 243 222 162 150 233 131 178 17 16 71 73 60 1 148 90
    15 120 130 100 202 224 79 102 163 43 110 39 94 229 20 36
    194 50 55 141 124 184 159 242 248 26 85 240 206 254 140 25
    169 199 31 182 230 89 183 68 164 33 83 253 56 45 76 106
    99 168 77 246 111 197 165 237 123 81 155 63 53 61 158 49
    103 107 14 129 13 160 209 62 157 75 93 234 11 82 24 51
    0 211 98 215 47 174 126 185 132 105 166 121 23 172 78 144
    189 170 92 147 74 69 217 122 247 109 186 38 250 42 145 213
    115 208 70 227 181 151 156 18 12 143 251 187 249 205 59 41
    218 252 48 161 203 7 135 87 192 149 108 191 128 231 32 30

     | Show Table
    DownLoad: CSV
    Table 5.  16×16 matrix having remainder one evolved after 2nd step.
    174 180 148 149 193 250 58 170 26 30 20 15 142 71 155 90
    244 201 82 160 175 105 18 106 115 221 108 16 219 173 2 1
    187 85 198 235 152 129 135 252 199 29 218 209 98 8 4 133
    132 72 92 186 200 49 38 59 134 207 17 62 251 216 254 35
    169 196 33 66 247 253 11 122 176 93 79 131 128 64 67 70
    226 86 138 192 145 150 24 190 44 63 220 116 144 27 217 32
    55 249 50 211 111 6 143 140 147 197 40 205 121 74 240 54
    167 159 213 242 166 96 162 245 127 158 76 195 161 136 210 97
    228 87 113 14 231 77 225 194 84 41 45 114 189 125 233 153
    109 107 10 21 119 223 75 123 164 212 117 255 22 184 12 232
    202 25 237 103 81 120 102 78 36 61 13 236 139 137 19 88
    163 130 185 80 224 73 154 53 69 95 181 23 168 34 203 177
    94 165 204 215 28 222 83 178 42 43 46 227 141 234 238 37
    182 188 47 208 60 179 112 246 52 146 156 191 124 39 9 65
    241 171 229 31 183 100 7 118 5 89 239 172 157 206 3 243
    0 214 91 230 101 99 151 57 68 110 248 126 51 104 48 56

     | Show Table
    DownLoad: CSV
    Table 6.  Proposed S-box 2 for remainder one evolved after permutations.
    174 180 148 149 193 250 58 170 26 30 20 15 142 71 155 90
    132 72 92 186 200 49 38 59 134 207 17 62 251 216 254 35
    0 214 91 230 101 99 151 57 68 110 248 126 51 104 48 56
    244 201 82 160 175 105 18 106 115 221 108 16 219 173 2 1
    182 188 47 208 60 179 112 246 52 146 156 191 124 39 9 65
    226 86 138 192 145 150 24 190 44 63 220 116 144 27 217 32
    241 171 229 31 183 100 7 118 5 89 239 172 157 206 3 243
    55 249 50 211 111 6 143 140 147 197 40 205 121 74 240 54
    109 107 10 21 119 223 75 123 164 212 117 255 22 184 12 232
    202 25 237 103 81 120 102 78 36 61 13 236 139 137 19 88
    94 165 204 215 28 222 83 178 42 43 46 227 141 234 238 37
    163 130 185 80 224 73 154 53 69 95 181 23 168 34 203 177
    169 196 33 66 247 253 11 122 176 93 79 131 128 64 67 70
    167 159 213 242 166 96 162 245 127 158 76 195 161 136 210 97
    187 85 198 235 152 129 135 252 199 29 218 209 98 8 4 133
    228 87 113 14 231 77 225 194 84 41 45 114 189 125 233 153

     | Show Table
    DownLoad: CSV
    Table 7.  16×16 matrix having remainder two evolved after 2nd step.
    234 95 28 188 141 192 239 217 64 108 166 173 8 4 1 203
    80 163 180 155 84 89 232 207 13 10 113 202 150 2 204 148
    48 26 247 104 11 183 169 127 58 131 27 32 216 120 71 142
    82 123 151 201 210 152 6 176 228 158 29 118 117 213 126 81
    59 39 237 223 7 255 137 44 225 125 147 114 21 115 16 224
    212 111 101 50 248 15 83 174 184 135 14 119 24 227 54 75
    94 230 37 246 18 159 245 144 199 38 112 153 233 43 128 85
    97 162 93 181 70 63 122 129 251 79 17 53 205 116 220 87
    146 5 62 67 241 30 36 165 143 252 139 22 88 130 73 200
    222 56 221 209 121 195 103 96 12 249 208 45 49 154 61 250
    98 236 179 20 136 219 23 69 187 52 102 206 253 76 197 19
    194 133 214 33 77 35 238 145 74 65 242 170 109 57 90 229
    196 198 161 100 107 25 211 189 31 78 182 240 244 157 235 86
    60 149 110 41 185 160 218 140 193 68 172 51 72 105 243 178
    99 191 177 55 175 171 34 40 47 164 254 46 9 132 138 190
    0 215 231 226 42 91 92 186 134 167 66 106 156 124 168 3

     | Show Table
    DownLoad: CSV
    Table 8.  Proposed S-box 3 for remainder two evolved after permutations.
    82 123 151 201 210 152 6 176 228 158 29 118 117 213 126 81
    59 39 237 223 7 255 137 44 225 125 147 114 21 115 16 224
    234 95 28 188 141 192 239 217 64 108 166 173 8 4 1 203
    98 236 179 20 136 219 23 69 187 52 102 206 253 76 197 19
    48 26 247 104 11 183 169 127 58 131 27 32 216 120 71 142
    97 162 93 181 70 63 122 129 251 79 17 53 205 116 220 87
    99 191 177 55 175 171 34 40 47 164 254 46 9 132 138 190
    222 56 221 209 121 195 103 96 12 249 208 45 49 154 61 250
    146 5 62 67 241 30 36 165 143 252 139 22 88 130 73 200
    212 111 101 50 248 15 83 174 184 135 14 119 24 227 54 75
    60 149 110 41 185 160 218 140 193 68 172 51 72 105 243 178
    80 163 180 155 84 89 232 207 13 10 113 202 150 2 204 148
    194 133 214 33 77 35 238 145 74 65 242 170 109 57 90 229
    0 215 231 226 42 91 92 186 134 167 66 106 156 124 168 3
    94 230 37 246 18 159 245 144 199 38 112 153 233 43 128 85
    196 198 161 100 107 25 211 189 31 78 182 240 244 157 235 86

     | Show Table
    DownLoad: CSV
    Table 9.  16×16 matrix having remainder three evolved after 2nd step.
    244 229 218 248 205 160 207 64 38 60 233 136 133 171 155 203
    127 72 247 90 186 176 250 18 188 32 182 173 120 108 142 2
    118 48 3 130 252 76 82 97 204 49 235 16 27 241 34 75
    37 196 36 122 62 180 11 73 178 189 128 54 153 99 167 71
    231 63 78 200 101 253 251 45 135 157 58 131 88 65 8 4
    240 249 51 220 112 209 10 117 86 19 121 40 228 145 149 216
    13 89 79 113 68 115 6 201 236 7 44 232 31 223 67 114
    41 226 151 242 43 52 192 140 255 57 123 212 239 116 208 238
    105 93 166 170 181 92 172 9 61 245 243 152 104 125 169 29
    158 179 191 84 193 175 74 21 26 30 14 80 139 159 144 46
    111 94 42 132 197 187 28 66 85 237 227 168 126 96 22 15
    165 161 185 210 20 147 162 35 146 47 138 55 177 234 83 222
    150 219 211 254 98 194 33 23 198 148 225 195 12 199 224 25
    163 214 183 95 50 184 56 154 230 109 53 107 39 5 87 137
    246 202 17 206 190 164 100 124 221 70 119 102 156 69 24 143
    0 1 215 91 110 103 59 77 217 141 81 174 106 213 134 129

     | Show Table
    DownLoad: CSV
    Table 10.  Proposed S-box 4 for remainder three evolved after permutations.
    150 219 211 254 98 194 33 23 198 148 225 195 12 199 224 25
    105 93 166 170 181 92 172 9 61 245 243 152 104 125 169 29
    165 161 185 210 20 147 162 35 146 47 138 55 177 234 83 222
    37 196 36 122 62 180 11 73 178 189 128 54 153 99 167 71
    118 48 3 130 252 76 82 97 204 49 235 16 27 241 34 75
    0 1 215 91 110 103 59 77 217 141 81 174 106 213 134 129
    231 63 78 200 101 253 251 45 135 157 58 131 88 65 8 4
    111 94 42 132 197 187 28 66 85 237 227 168 126 96 22 15
    41 226 151 242 43 52 192 140 255 57 123 212 239 116 208 238
    240 249 51 220 112 209 10 117 86 19 121 40 228 145 149 216
    246 202 17 206 190 164 100 124 221 70 119 102 156 69 24 143
    163 214 183 95 50 184 56 154 230 109 53 107 39 5 87 137
    244 229 218 248 205 160 207 64 38 60 233 136 133 171 155 203
    13 89 79 113 68 115 6 201 236 7 44 232 31 223 67 114
    127 72 247 90 186 176 250 18 188 32 182 173 120 108 142 2
    158 179 191 84 193 175 74 21 26 30 14 80 139 159 144 46

     | Show Table
    DownLoad: CSV

    Step 1. We generate a 16x16 matrix using elements from GF(210) by implementing the subsequent approach, taking into account that our coset diagram encompasses 172 orbits.

    We can begin by examining the orbit in the coset diagram that contains α1. We can refer to this orbit as γ1, and we can apply the transformation lmlm1l l to α1 which will result in α947. While traversing through this path, we encounter α1022,α77,α946andα76 before finally arriving at α947. We can represent α76 as the final element of the first row of the 16×16 look-up table. After writing 1 node of any {\gamma }_{k}ϵ\{{\gamma }_{j}:j = 1, 2, 3, \dots, 170\} , in order to choose the next copy from {\gamma }_{j} , we find a node v = {\alpha }^{{i}_{1}+1} , where {\alpha }^{{i}_{1}}, {\alpha }^{{i}_{2}}, {\alpha }^{{i}_{3}}, {\alpha }^{{i}_{4}}, {\alpha }^{{i}_{5}}, \;\mathrm{a}\mathrm{n}\mathrm{d}\;{\alpha }^{{i}_{6}} are the nodes of {\gamma }_{k} , such that {i}_{1} < {i}_{j} , where j = 2, 3, 4, 5, 6 . If {\alpha }^{{i}_{1}+1} is utilized in earlier selected copies of {\gamma }_{j} , then we go on to the copy of {\gamma }_{j} containing v = {\alpha }^{{i}_{1}+2} and so on. For moving on to each node we apply lml{m}^{-1}l\;\mathrm{o}\mathrm{n}\;v . Note that, in each {\gamma }_{j} , there are 0, 1, 2\;\mathrm{o}\mathrm{r}\;3 nodes belonging to G{F}^{*}\left({2}^{10}\right) out of 6 . Write these nodes in the 16\times 16 lookup table in a specific order. The function keeps iterating until all the 1022 nodes of {\gamma }_{j} are utilized. Next, select 0 from π and place it as the first element of the last row.

    Step 2. Let \mathrm{h}\mathrm{ }:\mathrm{G}{\mathrm{F}}^{\mathrm{*}}\left({2}^{10}\right)\to \mathrm{G}\mathrm{F}\left({2}^{8}\right) be defined by the equation \mathrm{f}\left({\mathrm{\alpha }}^{\mathrm{n}}\right) = {\mathrm{\omega }}^{\frac{\mathrm{n}}{4}} , where the elements of {\mathrm{F}}_{{2}^{8}} are represented using powers of \mathrm{\omega } as demonstrated in Table 2. The irreducible polynomial \mathrm{p}\left(\mathrm{x}\right) = {\mathrm{x}}^{10}+{\mathrm{x}}^{3}+1 over {\mathbb{Z}}_{2} is used in this context. In this stage, we execute the function \mathrm{h} on every matrix utilized in the initial step. By following this approach, we generate a 16x16 matrix consisting of elements from \mathrm{G}\mathrm{F}\left({2}^{8}\right) . Subsequently, we transform each element of the matrix into binary form, and eventually, we convert them into decimal form. Similarly we have done the same task for remainders 1, 2 and 3. For the remainders 1, 2 and 3, we use mappings f\left({\alpha }^{n}\right) = {\omega }^{\frac{n-1}{4}}, {\omega }^{\frac{n-2}{4}}\;\mathrm{a}\mathrm{n}\mathrm{d}\;{\omega }^{\frac{n-3}{4}} respectively. In this way we have obtained 4 S-boxes (Tables 3, 5, 7, 9) having nonlinearity 101,102,103 and 104 respectively. These S-boxes are acceptable in encryption processes and are up to the mark. We increase their strength by utilizing permutations of the group {S}_{16} in the following manner:

    Algorithm 1: Permutations of the group {S}_{16} .
    a. In Table 4, we apply the following permutation \left(1 \; 7 \; 4\; 3\; 16\; 13\; 8\; 14\; 11\; 10\; 12\; 9\; 15\; 6\right)\left(2 5\right) of the group {S}_{16} to generate our proposed S-box 1.
    b. In Table 6, we apply the following permutation \left(1\right)\left(2 \; 4\right)\left(3\; 15\; 7\; 8\; 14\; 5\; 13\; 11\; 10\; 9\; 16\right) of the group {S}_{16} to generate our proposed S-box 2.
    c. In Table 8, we apply the following permutation \left(1\; 3\; 5\; 2\; 12\; 13\; 16\; 14\; 11\; 4\right)\left(6\; 10\; 8\right)\left(7 \; 15\right)\left(9\right) of the group {S}_{16} to generate our proposed S-box 3.
    d. In Table 10, we apply the following permutation \left(1 13\right)\left(2 15 11 8 9\right)\left(3\; 5\; 7\; 14\; 12\right)\left(4\right)\left(6 \; 10 \; 16\right) of the group {S}_{16} to generate our proposed S-box 4.

     | Show Table
    DownLoad: CSV

    In order to increase the nonlinearity of bijective S-box (n×m), a strategy of dividing a larger S-box into smaller S-boxes makes sense. In this strategy, a larger S-box of 2048 bits is arranged into 16 smaller blocks. Each element of the S-box consists of one byte and each smaller S-box contains 128 bits. In the first round, start dividing the standard/required S-box into smaller S-boxes column wise and store them in an arrayList. In the second round, repeat the same process row wise. After that, in order to increase the nonlinearity [38], swap each smaller S-box with another S-box while keeping an eye on nonlinearity.

    Algorithm 2 is introduced, which utilizes the divide and conquer approach, beginning with the development of an S-box using a coset graph.

    Algorithm 2: Divide and conquer strategy based nonlinear booster algorithm.
    Step1: S1 \leftarrow the function F(n) generates bijective S-box S1(n×m) using coset graph.
    Step2: S2 \leftarrow S1 \therefore Here we are generating temporary copy of actual S-box,
    While 1: n \therefore Setting a loop that continue to execute loop body (Step 3 to 7) as long as condition holds true
    Step 3: Received 16 blocks of size 4\times 4 \leftarrow divide the S-box (S2) into blocks of size 128 bits.
    Step4: Received updated S-box (S2) \leftarrow Swap the one block size 4\times 4 with another one.
    Step5: NewNL \leftarrow calculate the nonlinearity of updated S-box.
    Step 6: Compare new NL with NL of actual S-box.
    Stept 7: If the new nonlinearity (NL) is greater than the actual NL, make this change permanent. Otherwise, reverse the change.
    end
    Step 8: We will receive an S-box with improved nonlinearity.

     | Show Table
    DownLoad: CSV

    Results after applying Algorithm 1

    In Tables 1114, we are presenting optimized S-boxes using Algorithm 2. The proposed S-boxes have a nonlinearity of 112.

    Table 11.  An optimized proposed S-box 1 with nonlinearity 112 using Algorithm 2.
    7 167 60 72 84 183 100 3 157 238 228 20 69 226 123 40
    152 204 44 208 255 166 141 24 162 89 215 148 224 142 30 249
    116 160 77 79 195 59 177 156 117 207 219 15 35 17 91 66
    185 143 222 225 173 254 104 139 94 65 102 196 197 36 31 145
    5 172 233 239 76 78 227 25 6 92 223 158 232 55 179 41
    26 62 114 43 137 129 51 186 206 176 90 237 112 198 1 135
    211 111 190 230 241 163 9 180 110 250 146 113 16 47 133 96
    33 19 242 125 18 121 68 107 52 147 122 23 56 81 210 61
    217 216 201 103 109 67 63 144 236 251 205 161 153 99 29 27
    182 71 0 150 32 235 170 73 138 247 155 85 203 88 130 22
    192 64 120 80 252 253 119 234 189 115 220 214 70 169 159 229
    97 98 118 187 231 14 175 191 154 171 13 106 57 93 53 202
    11 174 54 38 132 199 101 82 188 164 21 128 74 10 2 45
    105 50 39 149 75 140 87 194 221 213 178 124 34 134 127 108
    212 248 245 136 58 184 8 48 240 168 200 151 244 209 95 83
    37 4 246 218 46 28 12 193 126 49 42 243 165 181 131 86

     | Show Table
    DownLoad: CSV
    Table 12.  An optimized proposed S-box 2 with nonlinearity 112 using Algorithm 2.
    20 116 237 8 167 218 0 185 93 9 94 166 176 182 102 106
    129 115 118 208 78 160 143 165 22 157 112 179 145 124 16 225
    212 219 226 72 25 215 98 50 42 152 26 198 28 149 70 59
    201 85 103 247 180 38 134 69 49 95 249 213 105 121 138 181
    45 14 41 144 29 195 161 67 47 220 254 132 27 60 206 51
    76 87 120 48 139 12 199 37 240 174 189 34 63 211 99 131
    104 128 141 56 194 100 233 183 170 108 5 153 113 10 130 142
    173 58 217 1 110 65 151 43 190 97 33 96 89 178 238 83
    252 6 196 216 82 150 31 11 19 135 68 123 228 21 122 158
    175 55 214 3 162 86 17 184 30 36 133 171 188 127 197 146
    18 80 227 40 13 200 92 159 154 77 79 234 54 156 2 177
    44 101 224 137 91 209 64 15 109 46 210 53 248 231 192 230
    187 117 126 202 81 232 7 88 207 168 71 169 193 253 23 111
    164 186 222 239 74 172 24 39 236 203 61 163 119 148 245 62
    235 229 140 250 205 251 242 241 155 223 125 244 246 204 75 243
    221 57 84 191 107 35 136 255 114 52 32 4 90 147 66 73

     | Show Table
    DownLoad: CSV
    Table 13.  An optimized proposed S-box 3 with nonlinearity 112 using Algorithm 2.
    082 123 151 201 210 152 006 176 228 158 029 118 117 213 126 081
    171 248 032 121 080 120 025 012 155 194 203 156 150 084 250 061
    148 038 063 089 231 141 197 095 056 107 030 221 208 161 115 053
    255 185 237 193 218 241 192 196 005 235 190 128 022 187 039 251
    083 175 183 130 142 062 002 238 104 099 067 143 229 047 106 108
    059 239 249 073 233 180 090 091 163 174 004 114 222 068 064 100
    207 140 055 027 125 102 164 216 093 076 243 060 111 145 077 230
    058 186 041 028 014 070 031 189 166 212 159 088 247 000 078 253
    045 160 103 219 036 157 169 065 105 177 016 245 240 001 003 127
    232 136 138 252 037 225 162 168 096 137 023 110 149 008 098 195
    170 009 033 215 226 011 085 050 153 021 206 191 013 094 246 242
    182 042 181 113 79 179 122 224 133 204 109 217 147 040 154 057
    167 205 173 178 044 043 198 112 086 046 017 024 026 072 200 132
    188 139 172 071 124 209 054 010 034 075 244 116 097 101 066 007
    254 214 087 052 236 165 144 131 019 146 184 051 015 223 119 220
    211 049 069 020 129 234 135 092 199 227 134 202 048 018 074 035

     | Show Table
    DownLoad: CSV
    Table 14.  An optimized proposed S-box 4 with nonlinearity 112 using Algorithm 2.
    150 219 211 254 098 194 033 023 198 148 225 195 012 199 224 025
    131 107 015 084 160 109 203 240 034 141 166 218 209 068 003 132
    065 061 044 100 137 040 181 094 035 041 011 173 079 083 247 237
    016 031 054 202 167 136 077 006 182 248 170 037 221 104 253 067
    081 060 215 189 080 128 097 164 039 106 184 046 186 200 208 112
    056 102 146 214 229 062 233 238 116 122 156 169 021 127 070 174
    178 239 180 045 117 147 246 192 222 206 129 172 118 099 171 119
    213 090 130 149 216 242 126 087 022 210 110 075 052 093 236 232
    140 008 051 004 145 227 074 176 228 066 095 013 059 231 076 155
    036 255 201 055 157 153 159 175 103 017 113 071 001 252 187 154
    005 020 250 096 125 057 092 196 197 124 072 142 163 101 204 115
    028 042 029 114 089 053 193 223 027 191 135 220 226 014 120 165
    134 111 241 230 139 082 235 207 058 143 019 002 177 162 190 158
    188 030 151 078 185 064 088 026 108 183 018 243 212 000 050 152
    105 032 179 121 091 038 069 217 048 234 024 063 144 009 123 138
    161 007 073 245 010 249 043 049 168 086 133 251 085 047 244 205

     | Show Table
    DownLoad: CSV

    In order to keep security precautions in place, we have worked on cryptanalysis in this section. We ran a number of security measure tests to determine key characteristics of our proposed S-boxes. We can utilize the proposed S-boxes in various coding schemes and secure communication by examining its cryptographic properties. Our proposed S-boxes are evaluated by standard evaluation criteria including, nonlinearity, bit independence criterion (BIC), strict avalanche criterion (SAC), linear approximation probability (LP), differential approximation probability (DP), fixed point (Fp), and reverse fixed point (OFp). We examined the proposed S-box's outcomes and contrasted them with those of known S-boxes. Let's look at these tests in more detail for a better understanding.

    In Table 15, average nonlinearity values of well-known S-boxes are shown, including the comparison of these values with the value of our proposed S-boxes. Table 16 presents a detailed Bit Independence Criterion analysis for the proposed S-box-4. This table provides an in-depth exploration of BIC. Table 17 depicts a comprehensive BIC comparison between our proposed S-boxes and other existing S-boxes. Table 18 shows a detailed breakdowns of the SAC for our S-boxes. Additionally, this table also includes the average SAC. Table 19 demonstrates the LP analysis for our S-boxes, along with comparison to other S-boxes. Table 20 contains comprehensive DP analysis for proposed S-box-4. Table 21 illustrates the analysis of fixed point, reverse fixed pint for our S-boxes, alongside a comparative assessment with other S-boxes.

    Table 15.  Average nonlinearity values of robust well-known S-boxes.
    S-box {\boldsymbol{f}}_\bf{1} {\boldsymbol{f}}_\bf{2} {\boldsymbol{f}}_\bf{3} {\boldsymbol{f}}_\bf{4} {\boldsymbol{f}}_\bf{5} {\boldsymbol{f}}_\bf{6} {\boldsymbol{f}}_\bf{7} {\boldsymbol{f}}_\bf{8} Average
    Proposed 1 (Table 11) 112 112 112 112 112 112 112 112 112
    Proposed 2 (Table 12) 112 112 112 112 112 112 112 112 112
    Proposed 3 (Table 13) 112 112 112 112 112 112 112 112 112
    Proposed 4 (Table 14) 112 112 112 112 112 112 112 112 112
    Zhu [40] 108 108 106 102 108 102 108 104 105.75
    Zahid [41] 110 112 112 112 112 112 112 112 111.75
    Hussain [42] 112 112 112 112 112 112 112 112 112
    Gautam et al. [43] 108 106 104 98 102 102 98 74 99
    Prime [44] 94 100 104 104 102 100 98 94 99.5
    S8 AES [45] 112 112 112 112 112 112 112 112 112
    Xhi [46] 106 104 106 106 104 106 104 106 105
    AES [47] 112 112 112 112 112 112 112 112 112
    Skipjac and Kea [48] 104 108 108 108 108 104 104 106 106.75
    Alkhaldi et al. [19] 108 104 106 106 102 98 104 108 104
    Chen et al. [49] 100 102 103 104 106 106 106 108 104.3
    Tang et al. [50] 100 103 104 104 105 105 106 109 104.5
    Khan et al. [37] 102 108 106 102 106 106 106 98 104.25
    Belazi et al. [51] 106 106 106 104 108 102 106 104 105.25
    Hua [52] 106 106 108 106 102 102 108 104 105.25
    Javeed [53] 108 106 106 110 106 108 108 108 107.50

     | Show Table
    DownLoad: CSV
    Table 16.  Detailed BIC analysis for proposed S-box-4.
    Detailed BIC Analysis for proposed S-box-4 0 1 2 3 4 5 6 7
    ---- 102 104 100 106 106 106 106
    102 ---- 102 108 104 108 104 102
    104 102 ---- 104 108 108 102 104
    100 108 104 ---- 104 108 106 108
    106 104 108 104 ---- 96 104 98
    106 108 108 108 96 ---- 104 106
    106 104 102 106 104 104 ---- 104
    106 102 104 108 98 106 104 ----
    Average BIC: 104.35

     | Show Table
    DownLoad: CSV
    Table 17.  BIC comparison of the proposed S-boxes with various well-known S-boxes.
    S-boxes Minimum value Average Square deviation
    Proposed 1 96 103.42 2.56
    Proposed 2 98 102.86 2.38
    Proposed 3 96 104.57 2.41
    Proposed 4 96 104.35 2.81
    Hussain [42] 112 112 0
    Gautam [43] 92 103 3.5225
    Prime [44] 94 101.71 3.53
    S8 AES [54] 112 112 0
    Xyi [46] 98 103.78 2.743
    AES [47] 112 112 0
    Skipjac [48] 102 104.14 1.767

     | Show Table
    DownLoad: CSV
    Table 18.  Strict avalanche criterion of the proposed S-box (Table 11).
    SAC Results (S-box-1) 0 1 2 3 4 5 6 7
    0.484375 0.531250 0.484375 0.546875 0.484375 0.515625 0.484375 0.468750
    0.546875 0.500000 0.515625 0.546875 0.453125 0.515625 0.515625 0.468750
    0.484375 0.500000 0.500000 0.484375 0.515625 0.500000 0.500000 0.515625
    0.453125 0.546875 0.578125 0.515625 0.500000 0.578125 0.531250 0.484375
    0.531250 0.562500 0.484375 0.515625 0.515625 0.515625 0.515625 0.484375
    0.531250 0.468750 0.500000 0.500000 0.484375 0.484375 0.484375 0.515625
    0.515625 0.515625 0.531250 0.468750 0.500000 0.562500 0.500000 0.531250
    0.453125 0.484375 0.546875 0.562500 0.500000 0.484375 0.500000 0.531250
    Average SAC (S-box-1) 0.508301
    Average SAC (S-box-2) 0.504150
    Average SAC (S-box-3) 0.499756
    Average SAC (S-box-4) 0.506348

     | Show Table
    DownLoad: CSV
    Table 19.  LP analysis of various S-boxes.
    S-boxes Max value Max LP
    Proposed 1 (Table 11) 160 0.125
    Proposed 2 (Table 12) 162 0.133
    Proposed 3 (Table 13) 164 0.141
    Proposed 4 (Table 14) 158 0.117
    AES [47] 144 0.062
    Hussain [42] 144 0.062
    Skipjack [48] 156 0.109
    Prime [44] 162 0.132
    Gautam [43] 164 0.2109
    S8 AES [54] 144 0.062
    Xyi [46] 168 0.156

     | Show Table
    DownLoad: CSV
    Table 20.  Detailed DP analysis for proposed S-box-4.
    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    0 8 6 6 8 6 6 6 6 6 8 6 8 6 6 6
    6 6 8 6 6 6 6 6 6 8 6 6 6 8 6 6
    6 6 8 8 6 8 8 6 6 6 6 6 8 6 8 6
    6 8 6 8 6 6 6 6 6 10 8 6 6 6 6 6
    8 8 6 8 8 6 8 4 6 8 8 6 6 6 6 6
    6 8 6 6 6 8 6 4 6 6 8 6 8 6 4 8
    6 10 12 6 6 6 8 6 6 6 6 6 6 6 6 6
    6 8 6 6 6 8 6 6 6 8 6 6 6 6 8 6
    6 8 6 6 6 6 8 6 6 6 6 10 8 6 6 8
    8 6 6 6 6 6 6 8 6 8 6 6 4 8 6 6
    6 6 6 8 6 6 6 6 8 8 6 8 6 6 8 6
    8 6 6 6 6 8 8 6 6 6 6 6 6 6 8 6
    6 6 8 8 6 8 8 6 6 6 6 8 6 6 6 6
    8 6 8 8 6 6 6 6 8 8 8 6 6 6 8 6
    8 6 8 8 8 6 8 8 6 6 6 6 6 8 8 6
    6 8 8 8 8 8 6 8 6 6 6 6 8 8 6 6
    Max Val: 12

     | Show Table
    DownLoad: CSV
    Table 21.  Fixed point and revers fixed point analysis.
    S-box No. of fixed point No. of reverse fixed point
    Lambić [32] 2 3
    Jamal [58] 18 None
    Tian [59] 1 1
    Çavuşoğlu [60] 0 2
    Özkaynak [61] 4 1
    Ullah [23] 4 None
    Proposed S-box-1 (Table-11) 3 1
    Proposed S-box-2 (Table-12) 1 1
    Proposed S-box-3 (Table-13) 2 None
    Proposed S-box-4 (Table-14) 3 1

     | Show Table
    DownLoad: CSV

    In 1988, Pieprzyk and Finkelstein [39] introduced the term nonlinearity. The strength of the S-box is measured by this tool. It is very important in order to know the non-linear properties of the encrypted or coded material. A nonlinear component (S-box) with greater nonlinearity is generally considered more secure than one with lower nonlinearity. The mathematical formula is as follows:

    {N}_{k} = {2}^{l-1}\left(1-{2}^{-l}max\left|{S}_{\left(k\right)}\left(j\right)\right|\right),

    where

    {S}_{\left(k\right)}\left(j\right) = {\sum }_{j\in {F}_{2}^{l}}(-1)^\left(k\right(x)\otimes ⍭.j .

    The newly proposed S-boxes have an average nonlinearity value of 112. Table 15 presents a comparison between the proposed S-boxes and other robust S-boxes.

    The pairwise avalanche vectors' independent behavior and the variations in input bits are primarily evaluated using the bit independence criterion [29,30]. We have tested and sorted out the nonlinearity of the proposed S-box via BIC. In Table 17, the proposed S-box's minimum and average BIC values are compared with other well-known S-boxes' square deviation values.

    Tavares and Webster [39] introduced Strict Avalanche Criterion. In this article, they gave the idea of avalanche and completeness effect. The purpose of the SAC component is achieved if there is a 0.5 probability that each output bit is changed by modifying a single input bit. In Table 18, the SAC of proposed S-box is displayed.

    We investigate about the highest imbalance of an event in Linear Approximation Probability [55]. The uniformity of the input bits should be similar to that of output bits. Every input bit is examined separately and its results are scrutinizing by output bits. The masks denoted by {\omega }_{x} and {\omega }_{y} respectively are applied on the uniformity of both input and output bits. It is given as

    LP = \underset{{\omega }_{x}, {\omega }_{y}\ne 0}{\mathrm{max}}\left|\frac{\#\left\{f\right|f.{\omega }_{x} = S\left(f\right)*{\omega }_{y}\}}{{2}^{n}}-\frac{1}{2}\right|,

    where f is the collection of all possible inputs and {2}^{n} represents the total number of elements. The results of our proposed S-box and different renowned S-boxes via LP are shown in Table 15. Our proposed S-box is built so well and strong enough to avoid the linear attacks while comparison.

    A non-linear mapping is used to sort out the differential uniformity. It is a relation between input and output bits. The input differential has a distinct transformation with the output differential. It is given as

    {D}_{{p}^{s}}\left(\Delta g\to \Delta h\right) = \frac{[\#\left\{g\in I|S\left(g\right) \oplus S\left(g \oplus \Delta g\right) = \Delta h\right\}]}{{2}^{n}} .

    Here, \Delta g and \Delta h refer to the differentials of the input and output, respectively. We applied this test on our S-box and the results are as follows (Table 20).

    A fixed point in an S-box refers to an input value that remains unchanged after undergoing the substitution process. In other words, if a specific input value maps to the same value as the output, that input value is said to be a fixed point. Fixed points potentially impact the resistance of the S-box against certain attacks. Therefore, an S-box designer ensures that there are no fixed points (FP) in the particular S-box and such an S-box is very useful in image encryption [6]. On the other hand, when an output value is used as an input, it yields the original input value, which is known as a reverse fixed point. Additionally, short cycles are specific patterns that appear in the output values of an S-box. Liu et al. [56] proposed an improved coupling quadratic map (ICQM) algorithm for S-box design, and in order to remove fixed point and reverse fixed point criteria. To prevent leakage in any statistical cryptanalysis, the number of {F}_{p} and {OF}_{p} should be kept as low as possible. In modern S-box designs, researchers have successfully eliminated the {F}_{p} and {OF}_{p} by employing a 2D enhanced quadratic map [57].

    The main accomplishment of this research is to create a way to use coset graph and optimization algorithms to develop secure S-boxes with enhanced nonlinearity. In this article, we propose a new, simple, and efficient S-box construction scheme based on a coset graph over the finite field GF\left({2}^{10}\right) . Various evaluations are conducted to determine the efficacy of the proposed S-box construction method, and the results are completely satisfactory. The experimental results demonstrated that the proposed S-boxes are strong enough to provide security against various algebraic attacks. Furthermore, the proposed nonlinearity enhancement algorithm improves the cryptographic properties of the constructed S-boxes. The application of the proposed algorithm is not restricted to the proposed S-boxes, but it can also improve the nonlinearity of any S-box.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors have no conflicts of interest to declare that are relevant to the content of this article.



    [1] H. C. A. Tilborg, Fundamentals of cryptology: a professional reference and interactive tutorial, Boston: Kluwer Academic Publishers, 2000.
    [2] K. Larew, D. Kahn, The codebreakers: the story of secret writing, 1 Ed., New Yourk: McMillan, 1967.
    [3] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, Handbook of applied cryptography, 1 Ed., CRC Press, 1996.
    [4] D. R. Stinson, M. B. Paterson, Cryptography: theory and practice, 4 Eds., CRC Press, 1995.
    [5] C. E. Shannon, Communication theory of secrecy systems, Bell Syst. Tech. J., 28 (1949), 656–715.
    [6] H. Liu, J. Liu, C. Ma, Constructing dynamic strong S-box using 3D chaotic map and application to image encryption, Multimed. Tools Appl., 82 (2023), 23899–23914. https://doi.org/10.1007/s11042-022-12069-x doi: 10.1007/s11042-022-12069-x
    [7] L. Cui, Y. Cao, A new S-box structure named affine-power-affine, Int. J. Innov. Comput. Inf. Control, 3 (2007), 751–759.
    [8] I. Hussain, T. Shah, Literature survey on nonlinear components and chaotic nonlinear components of block ciphers, Nonlinear Dyn., 74 (2013), 869–904. https://doi.org/10.1007/s11071-013-1011-8 doi: 10.1007/s11071-013-1011-8
    [9] H. Liu, A. Kadir, X. Sun, Chaos-based fast colour image encryption scheme with true random number keys from environmental noise, IET Image Process., 11 (2017), 324–332. https://doi.org/10.1049/iet-ipr.2016.0040 doi: 10.1049/iet-ipr.2016.0040
    [10] H. Liu, A. Kadir, Asymmetric color image encryption scheme using 2D discrete-time map, Signal Process., 113 (2015), 104–112. https://doi.org/10.1016/j.sigpro.2015.01.016 doi: 10.1016/j.sigpro.2015.01.016
    [11] H. Liu, A. Kadir, J. Liu, Color pathological image encryption algorithm using arithmetic over Galois field and coupled hyper chaotic system, Opt. Lasers Eng., 122 (2019), 123–133. https://doi.org/10.1016/j.optlaseng.2019.05.027 doi: 10.1016/j.optlaseng.2019.05.027
    [12] I. Hussain, T. Shah, H. Mahmood, M. A. Gondal, A projective general linear group based algorithm for the construction of substitution box for block ciphers, Neural Comput. Appl., 22 (2013), 1085–1093. https://doi.org/10.1007/s00521-012-0870-0 doi: 10.1007/s00521-012-0870-0
    [13] F. ul Islam, G. Liu, Designing S-box based on 4D-4wing hyperchaotic system, 3D Res., 8 (2017), 9. https://doi.org/10.1007/s13319-017-0119-x doi: 10.1007/s13319-017-0119-x
    [14] I. Hussain, T. Shah, M. A. Gondal, W. A. Khan, Construction of cryptographically strong 8x8 S-boxes, World Appl. Sci. J., 13 (2011), 2389–2395.
    [15] M. Ahmad, M. N. Doja, M. M. S. Beg, ABC optimization based construction of strong substitution-boxes, Wirel. Pers. Commun., 101 (2018), 1715–1729. https://doi.org/10.1007/s11277-018-5787-1 doi: 10.1007/s11277-018-5787-1
    [16] Attaullah, S. S. Jamal, T. Shah, A novel algebraic technique for the construction of strong substitution box, Wireless Pers. Commun., 99 (2018), 213–226. https://doi.org/10.1007/s11277-017-5054-x doi: 10.1007/s11277-017-5054-x
    [17] F. Özkaynak, V. Çelik, A. B. Özer, A new S-box construction method based on the fractional-order chaotic Chen system, Signal, Image Video Process., 11 (2017), 659–664. https://doi.org/10.1007/s11760-016-1007-1 doi: 10.1007/s11760-016-1007-1
    [18] A. Razaq, A. Yousaf, U. Shuaib, N. Siddiqui, A. Ullah, A. Waheed, A novel construction of substitution box involving coset diagram and a bijective map, Secur. Commun. Networks, 2017 (2017), 5101934. https://doi.org/10.1155/2017/5101934 doi: 10.1155/2017/5101934
    [19] A. Hussain Alkhaldi, I. Hussain, M. A. Gondal, A novel design for the construction of safe S-boxes based on TD ERC sequence, Alex. Eng. J., 54 (2015), 65–69. https://doi.org/10.1016/j.aej.2015.01.003 doi: 10.1016/j.aej.2015.01.003
    [20] L. Liu, Y. Zhang, X. Wang, A novel method for constructing the S-box based on spatiotemporal chaotic dynamics, Appl. Sci., 8 (2018), 2650. https://doi.org/10.3390/app8122650 doi: 10.3390/app8122650
    [21] S. Zhu, X. Deng, W. Zhang, C. Zhu, Secure image encryption scheme based on a new robust chaotic map and strong S-box, Math. Comput. Simul., 207 (2023), 322–346. https://doi.org/10.1016/j.matcom.2022.12.025 doi: 10.1016/j.matcom.2022.12.025
    [22] F. A. Khan, J. Ahmed, J. S. Khan, J. Ahmad, M. A. Khan, A novel substitution box for encryption based on Lorenz equations, 2017 International Conference on Circuits, System and Simulation (ICCSS), 2017, 32–36. https://doi.org/10.1109/CIRSYSSIM.2017.8023176 doi: 10.1109/CIRSYSSIM.2017.8023176
    [23] A. Ullah, S. S. Jamal, T. Shah, A novel construction of substitution box using a combination of chaotic maps with improved chaotic range, Nonlinear Dyn., 88 (2017), 2757–2769. https://doi.org/10.1007/s11071-017-3409-1 doi: 10.1007/s11071-017-3409-1
    [24] J. Zheng, Q. Zeng, An image encryption algorithm using a dynamic S-box and chaotic maps, Appl. Intell., 52 (2022), 15703–15717. https://doi.org/10.1007/s10489-022-03174-3 doi: 10.1007/s10489-022-03174-3
    [25] L. Li, J. Liu, Y. Guo, B. Liu, A new S-box construction method meeting strict avalanche criterion, J. Inf. Secur. Appl., 66 (2022), 103135. https://doi.org/10.1016/j.jisa.2022.103135 doi: 10.1016/j.jisa.2022.103135
    [26] Y. Su, X. Tong, M. Zhang, Z. Wang, A new S-box three-layer optimization method and its application, Nonlinear Dyn., 111 (2023), 2841–2867. https://doi.org/10.1007/s11071-022-07956-9 doi: 10.1007/s11071-022-07956-9
    [27] Y. Si, H. Liu, M. Zhao, Constructing keyed strong S-box with higher nonlinearity based on 2D hyper chaotic map and algebraic operation, Integration, 88 (2023), 269–277. https://doi.org/10.1016/j.vlsi.2022.10.011 doi: 10.1016/j.vlsi.2022.10.011
    [28] Y. Liu, X. Tong, J. Ma, Image encryption algorithm based on hyper-chaotic system and dynamic S-box, Multimed. Tools Appl., 75 (2016), 7739–7759. https://doi.org/10.1007/s11042-015-2691-5 doi: 10.1007/s11042-015-2691-5
    [29] I. Hussain, T. Shah, M. A. Gondal, M. Khan, W. A. Khan, Construction of new S-box using a linear fractional transformation, World Appl. Sci. J., 14 (2011), 1779–1785.
    [30] T. Farah, R. Rhouma, S. Belghith, A novel method for designing S-box based on chaotic map and Teaching–Learning-Based Optimization, Nonlinear Dyn., 88 (2017), 1059–1074. https://doi.org/10.1007/s11071-016-3295-y doi: 10.1007/s11071-016-3295-y
    [31] D. Shah, T. Shah, Y. Naseer, S. S. Jamal, S. Hussain, Cryptographically strong S-P boxes and their application in steganography, J. Inf. Secur. Appl., 67 (2022), 103174. https://doi.org/10.1016/j.jisa.2022.103174 doi: 10.1016/j.jisa.2022.103174
    [32] D. Lambić, A novel method of S-box design based on discrete chaotic map, Nonlinear Dyn., 87 (2017), 2407–2413. https://doi.org/10.1007/s11071-016-3199-x doi: 10.1007/s11071-016-3199-x
    [33] N. A. Azam, U. Hayat, I. Ullah, An injective S-box design scheme over an ordered isomorphic elliptic curve and its characterization, Secur. Commun. Networks, 2018 (2018), 3421725. https://doi.org/10.1155/2018/3421725 doi: 10.1155/2018/3421725
    [34] K. Z. Zamli, F. Din, H. S. Alhadawi, Exploring a Q-learning-based chaotic naked mole rat algorithm for S-box construction and optimization, Neural Comput. Appl., 35 (2023), 10449–10471. https://doi.org/10.1007/s00521-023-08243-3 doi: 10.1007/s00521-023-08243-3
    [35] P. J. Cameron, Cayley graphs and coset diagrams group actions, Encycl. Des. Theory, 1 (2006), 1–9.
    [36] P. M. Cohn, W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory., 74 (1967). https://doi.org/10.2307/2314941
    [37] M. Khan, T. Shah, M. A. Gondal, An efficient technique for the construction of substitution box with chaotic partial differential equation, Nonlinear Dyn., 73 (2013), 1795–1801. https://doi.org/10.1007/s11071-013-0904-x doi: 10.1007/s11071-013-0904-x
    [38] M. M. Dimitrov, On the design of chaos-based S-boxes, IEEE Access, 8 (2020), 117173–117181. https://doi.org/10.1109/ACCESS.2020.3004526 doi: 10.1109/ACCESS.2020.3004526
    [39] J. Pieprzyk, G. Finkelstein, Towards effective nonlinear cryptosystem design, IEE Proc. E-Comput. Digital Tech., 135 (1988), 325–335.
    [40] D. Zhu, X. Tong, M. Zhang, Z. Wang, A new s-box generation method and advanced design based on combined chaotic system, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12122087 doi: 10.3390/sym12122087
    [41] A. H. Zahid, A. M. Iliyasu, M. Ahmad, M. M. U. Shaban, M. J. Arshad, H. S. Alhadawi, et al., A novel construction of dynamic S-box with high nonlinearity using heuristic evolution, IEEE Access, 9 (2021), 67797–67812. https://doi.org/10.1109/ACCESS.2021.3077194 doi: 10.1109/ACCESS.2021.3077194
    [42] I. Hussain, T. Shah, M. A. Gondal, H. Mahmood, Generalized majority logic criterion to analyze the statistical strength of S-boxes, Z. Naturforsch. A, 67 (2012), 282–288. https://doi.org/10.5560/ZNA.2012-0022 doi: 10.5560/ZNA.2012-0022
    [43] A. Gautam, G. S. Gaba, R. Miglani, R. Pasricha, Application of chaotic functions for construction of strong substitution boxes, Indian J. Sci. Technol., 8 (2015), 1–5. https://doi.org/10.17485/ijst/2015/v8i28/71759 doi: 10.17485/ijst/2015/v8i28/71759
    [44] I. Hussain, T. Shah, H. Mahmood, M. A. Gondal, U. Y. Bhatti, Some analysis of S-box based on residue of prime number, Proc. Pakistan Acad. Sci., 48 (2011), 111–115.
    [45] I. Hussain, A new algorithm to construct secure keys for AES, 5 (2010), 1263–1270.
    [46] X. Yi, S. X. Cheng, X. H. You, K. Y. Lam, Method for obtaining cryptographically strong 8×8 S-boxes, GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record, 1997,689–693. https://doi.org/10.1109/glocom.1997.638418 doi: 10.1109/glocom.1997.638418
    [47] J. Daemen, V. Rijmen, The design of rijndael, New York: Springer, 2002.
    [48] National Institute of Standards and Technology, SKIPJACK and KEA Algorithm Specifications, 1998. Available From: https://csrc.nist.gov/Presentations/1998/Skipjack-and-KEA-Algorithm-Specifications.
    [49] G. Chen, Y. Chen, X. Liao, An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps, Chaos, Solitons Fract., 31 (2007), 571–579. https://doi.org/10.1016/j.chaos.2005.10.022 doi: 10.1016/j.chaos.2005.10.022
    [50] G. Tang, X. Liao, Y. Chen, A novel method for designing S-boxes based on chaotic maps, Chaos, Solitons Fract., 23 (2005), 413–419. https://doi.org/10.1016/j.chaos.2004.04.023 doi: 10.1016/j.chaos.2004.04.023
    [51] A. Belazi, M. Khan, A. A. A. El-Latif, S. Belghith, Efficient cryptosystem approaches: S-boxes and permutation–substitution-based encryption, Nonlinear Dyn., 87 (2017), 337–361. https://doi.org/10.1007/s11071-016-3046-0 doi: 10.1007/s11071-016-3046-0
    [52] Z. Hua, J. Li, Y. Chen, S. Yi, Design and application of an S-box using complete Latin square, Nonlinear Dyn., 104 (2021), 807–825. https://doi.org/10.1007/s11071-021-06308-3 doi: 10.1007/s11071-021-06308-3
    [53] A. Javeed, T. Shah, Attaullah, Design of an S-box using Rabinovich-Fabrikant system of differential equations perceiving third order nonlinearity, Multimed. Tools Appl., 79 (2020), 6649–6660. https://doi.org/10.1007/s11042-019-08393-4 doi: 10.1007/s11042-019-08393-4
    [54] I. Hussain, A new algorithm to construct secure keys for AES, Int. J. Contemp. Math. Sci., 5 (2010), 1263–1270.
    [55] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptol., 4 (1991), 3–72. https://doi.org/10.1007/BF00630563 doi: 10.1007/BF00630563
    [56] H. Liu, A. Kadir, C. Xu, Cryptanalysis and constructing S-box based on chaotic map and backtracking, Appl. Math. Comput., 376 (2020), 125153. https://doi.org/10.1016/j.amc.2020.125153 doi: 10.1016/j.amc.2020.125153
    [57] Y. Si, H. Liu, Y. Chen, Constructing keyed strong S-box using an enhanced quadratic map, Int. J. Bifurcat. Chaos, 31 (2021), 2150146. https://doi.org/10.1142/S0218127421501467 doi: 10.1142/S0218127421501467
    [58] S. S. Jamal, M. U. Khan, T. Shah, A watermarking technique with chaotic fractional S-box transformation, Wireless Pers. Commun., 90 (2016), 2033–2049. https://doi.org/10.1007/s11277-016-3436-0 doi: 10.1007/s11277-016-3436-0
    [59] Y. Tian, Q. Liu, D. Liu, Y. Kang, P. Deng, F. He, Updates to Grasselli's peak shear strength model, Rock Mech. Rock Eng., 51 (2018), 2115–2133. https://doi.org/10.1007/s00603-018-1469-2 doi: 10.1007/s00603-018-1469-2
    [60] Ü. Çavuşoğlu, A. Zengin, I. Pehlivan, S. Kaçar, A novel approach for strong S-box generation algorithm design based on chaotic scaled Zhongtang system, Nonlinear Dyn., 87 (2017), 1081–1094. https://doi.rog/10.1007/s11071-016-3099-0 doi: 10.1007/s11071-016-3099-0
    [61] F. Özkaynak, Construction of robust substitution boxes based on chaotic systems, Neural Comput. Appl., 31 (2019), 3317–3326. https://doi.org/10.1007/s00521-017-3287-y doi: 10.1007/s00521-017-3287-y
  • This article has been cited by:

    1. Adil Waheed, Fazli Subhan, Mazliham Mohd Suud, Muhammad Mansoor Alam, Sajjad Haider, Design and optimization of nonlinear component of block cipher: Applications to multimedia security, 2024, 15, 20904479, 102507, 10.1016/j.asej.2023.102507
    2. Adil Waheed, Fazli Subhan, Mazliham Mohd Su'ud, Muhammad Mansoor Alam, Molding robust S-box design based on linear fractional transformation and multilayer Perceptron: Applications to multimedia security, 2024, 26, 11108665, 100480, 10.1016/j.eij.2024.100480
    3. Muhammad Umair Safdar, Tariq Shah, Asif Ali, Enhancing image data security with chain and non-chain Galois ring structures, 2024, 225, 03784754, 659, 10.1016/j.matcom.2024.06.008
    4. Adil Waheed, Fazli Subhan, S-box design based on logistic skewed chaotic map and modified Rabin-Karp algorithm: applications to multimedia security, 2024, 99, 0031-8949, 055236, 10.1088/1402-4896/ad3991
    5. Saeed Ullah, Xinge Liu, Adil Waheed, Shuailei Zhang, S-box using fractional-order 4D hyperchaotic system and its application to RSA cryptosystem-based color image encryption, 2025, 09205489, 103980, 10.1016/j.csi.2025.103980
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2017) PDF downloads(122) Cited by(5)

Figures and Tables

Figures(4)  /  Tables(21)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog