
In recent times, the research community has shown interest in information security due to the increasing usage of internet-based mobile and web applications. This research presents a novel approach to constructing the nonlinear component or Substitution Box (S-box) of block ciphers by employing coset graphs over the Galois field. Cryptographic techniques are employed to enhance data security and address current security concerns and obstacles with ease. Nonlinear component is a keystone of cryptography that hides the association between plaintext and cipher-text. Cryptographic strength of nonlinear component is directly proportional to the data security provided by the cipher. This research aims to develop a novel approach for construction of dynamic S-boxes or nonlinear components by employing special linear group PSL(2,Z) over the Galois Field GF(210). The vertices of coset diagram belong to GF(210) and can be expressed as powers of α, where α represents the root of an irreducible polynomial p(x)=x10+x3+1. We constructed several nonlinear components by using GF∗(210). Furthermore, we have introduced an exceptionally effective algorithm for optimizing nonlinearity, which significantly enhances the cryptographic properties of the nonlinear component. This algorithm leverages advanced techniques to systematically search for and select optimal S-box designs that exhibit improved resistance against various cryptographic attacks.
Citation: Adil Waheed, Fazli Subhan, Mazliham Mohd Suud, Muhammad Yasir Hayat Malik, Alina Mirza, Farkhanda Afzal. Construction of nonlinear component of block cipher using coset graph[J]. AIMS Mathematics, 2023, 8(9): 21644-21667. doi: 10.3934/math.20231104
[1] | Abdul Razaq, Muhammad Mahboob Ahsan, Hanan Alolaiyan, Musheer Ahmad, Qin Xin . Enhancing the robustness of block ciphers through a graphical S-box evolution scheme for secure multimedia applications. AIMS Mathematics, 2024, 9(12): 35377-35400. doi: 10.3934/math.20241681 |
[2] | Muhammad Sajjad, Tariq Shah, Huda Alsaud, Maha Alammari . Designing pair of nonlinear components of a block cipher over quaternion integers. AIMS Mathematics, 2023, 8(9): 21089-21105. doi: 10.3934/math.20231074 |
[3] | Mohammad Mazyad Hazzazi, Farooq E Azam, Rashad Ali, Muhammad Kamran Jamil, Sameer Abdullah Nooh, Fahad Alblehai . Batch generated strongly nonlinear S-Boxes using enhanced quadratic maps. AIMS Mathematics, 2025, 10(3): 5671-5695. doi: 10.3934/math.2025262 |
[4] | Mohammad Mazyad Hazzazi, Gulraiz, Rashad Ali, Muhammad Kamran Jamil, Sameer Abdullah Nooh, Fahad Alblehai . Cryptanalysis of hyperchaotic S-box generation and image encryption. AIMS Mathematics, 2024, 9(12): 36116-36139. doi: 10.3934/math.20241714 |
[5] | Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao . Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations. AIMS Mathematics, 2023, 8(12): 29759-29796. doi: 10.3934/math.20231523 |
[6] | Ziqiang Wang, Qin Liu, Junying Cao . A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. AIMS Mathematics, 2023, 8(6): 13096-13122. doi: 10.3934/math.2023661 |
[7] | Aman Ullah, Muhammad Ibrahim, Tareq Saeed . Fuzzy cosets in AG-groups. AIMS Mathematics, 2022, 7(3): 3321-3344. doi: 10.3934/math.2022185 |
[8] | Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065 |
[9] | Jean-Guy Caputo, Imene Khames, Arnaud Knippel . Nonlinear normal modes in a network with cubic couplings. AIMS Mathematics, 2022, 7(12): 20565-20578. doi: 10.3934/math.20221127 |
[10] | Ziqiang Wang, Jiaojiao Ma, Junying Cao . A higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel. AIMS Mathematics, 2024, 9(6): 14325-14357. doi: 10.3934/math.2024697 |
In recent times, the research community has shown interest in information security due to the increasing usage of internet-based mobile and web applications. This research presents a novel approach to constructing the nonlinear component or Substitution Box (S-box) of block ciphers by employing coset graphs over the Galois field. Cryptographic techniques are employed to enhance data security and address current security concerns and obstacles with ease. Nonlinear component is a keystone of cryptography that hides the association between plaintext and cipher-text. Cryptographic strength of nonlinear component is directly proportional to the data security provided by the cipher. This research aims to develop a novel approach for construction of dynamic S-boxes or nonlinear components by employing special linear group PSL(2,Z) over the Galois Field GF(210). The vertices of coset diagram belong to GF(210) and can be expressed as powers of α, where α represents the root of an irreducible polynomial p(x)=x10+x3+1. We constructed several nonlinear components by using GF∗(210). Furthermore, we have introduced an exceptionally effective algorithm for optimizing nonlinearity, which significantly enhances the cryptographic properties of the nonlinear component. This algorithm leverages advanced techniques to systematically search for and select optimal S-box designs that exhibit improved resistance against various cryptographic attacks.
Cryptology has two basic areas, cryptography and cryptanalysis, in which one sees the sketch and cracking of cryptosystems. While re-arranging a cryptosystem, the inspection of its security plays a vital role. In cryptosystems, the key role features are confidentiality, authentication and integrity of data [1]. Earlier in [2], cryptosystems have been handled by armed forces. In this century, now-a-days everyone wants a fully controlled security by means of cryptographic skills.
The day-by-day advancements in growing industries, particularly the communication sector, have facilitated the flow of huge data over vast areas within a short period of time. It has been a hot topic to discuss how modern security systems can be improved to allow for reliable data communication. The cryptographic roots are adopted to understand secure contact between credible parties for giving hidden data in a protected way [3]. The block ciphering method has been widely used for protected communication and storage in the last era. Cryptographers constructed advanced block ciphers to go with the pace of the modern era [4]. Shanon in 1949 gave the idea to deal with confusion and diffusion occurring in block ciphers via substitution boxes [5]. Well known block ciphers are AES, DES, RC4, Blowfish, IDEA, RC5, RC6, and many more. These ciphers actuate the nonlinearity for secure information. S-boxes play a vital role in communicating the information/data more securely. Nonlinear components are an integral part of encryption algorithms and play a crucial role in achieving confusion and nonlinearity, which are necessary for thwarting attacks and protecting sensitive data. The motivation for studying nonlinear components also includes the field of image encryption [6] owing to the growing reliance on digital images for storage, transmission, and communication of sensitive information. Overall, the motivation behind nonlinear component is to improve cryptographic systems and address the particular difficulties associated with image encryption, ultimately advancing secure communication, data security, and privacy preservation.
Mathematically, an n×m S-box does not follow a linear mapping. This indicates that confusion component has a nonlinear mapping S from Galois field GF(2n)→GF(2m), where n≥m. It works as a Boolean function, which is comprised of bits. The effectiveness of an 8×8 S-box in encrypting data is so high that it catches the attention of cryptographers as a strong encryption method [7,8]. Numerous design patterns are examined and they came with an 8×8 S-box with best cryptographic features. The methods involved in the construction process are: Mobius transformation, linear trigonometric transformation, complete latin square, Bent function and logistic chaotic system, affine transformation, and symmetric group composition. S-boxes are also playing vital role in image encryption algorithms. Liu et al. [9] introduced a color image encryption scheme based on chaos, emphasizing the utilization of a randomly sampled noise signal. In [10], the encryption scheme involves creating six pseudo-random arrays to cyclically shift the red, green- and blue components both horizontally and vertically, followed by using the exclusive OR (XOR) operation to diffuse three color components. Liu et al. [11] proposed an image encryption scheme based on GF and chaotic systems to transmit pathological images over the network.
Currently, there is a lot of focus on robust S-box construction methods, and significant research has been proposed in [12,13,14,15,16,17,18,19,20]. This paper [21] introduces a new system model with improved chaotic characteristics by suggesting a piece-wise quadratic polynomial chaotic map that operates in one dimension (1D). In [12], a projective general linear group is used as a method of construction for the S-box for block ciphers. Islam et al. [13] explores the construction of an S-box with four dimensions and four wings hyperchaotic system. Husain et al. [14] designed cryptographically a strong nonlinear component based on a particular class of linear fractional transformation. Ahmad et al. [15] presents a technique, which involves utilizing chaotic maps and artificial intelligence based methodology. Attaullah et al. [16] employed algebraic techniques to create the S-box. Özkaynak et al. [17] derived the S-box from a fractional order chaotic Chen system. In [22] a new S-box for encryption that utilizes the Lorenz equation was presented. In [23], a combination of chaotic maps is used to develop the S-box by improving chaotic range. Zheng et. al [24] outlines a dynamic S-box dependent image encryption method, comprising of four stages: creating encryption keys, S-box construction, image permutation, and image diffusion. In [25], the authors introduced a technique for constructing an S-box that fulfills the strict avalanche criterion. This paper [26] puts forth a three-layer optimization technique for producing high-performance S-boxes using a novel chaotic map and artificial jellyfish optimization algorithm.
A new method for creating S-boxes using coset diagrams and a one-to-one mapping was developed by Razaq et al. [18] in their study. Si et. al [27] created a chaotic map with an exponential quadratic function in two dimensions that has the capability to function as a generator of pseudo-random numbers. The article [19] describes the design of a confusion component using tangent delay chaotic sequence and a special kind of permutation from a symmetric group. Liu [20] et al. presented a technique in which S-box elements are shuffled randomly using a permutation operation performed between independent chaotic sequences. Liu et al. [28] gave an image encryption algorithm for the new dynamic S-box. In [29], confusion component is constructed based on linear fractional transformation using Galois field GF(28). Farah et al. [30] used a teaching-learning based optimization to the design S-box. Jamal et al. [31] S-box construction method is controlled by a linear group over the finite commutative ring. In [32], Lambić demonstrated an efficient technique of designing a confusion component by composition method. Azam et al. [33] introduced a nonlinear component that is both cryptographically robust and injective specifically for elliptic curves. The paper [34] introduces the Q-learning naked mole rat algorithm, a new variant of the metaheuristic algorithm based on the naked mole rat, for building and optimizing substitution boxes. As opposed to the majority of competing works, which frequently include five chaotic maps (Singer, Chebyshev, logistic, circle, and sinusoidal) as a part of the algorithm itself. The key innovation and distinctive features of this paper are outlined below:
1) Our proposal presents a method for constructing S-boxes in a way that is highly efficient, by utilizing coset graph for the action of PSL(2,Z) over the Galois field GF(210).
2) The proposed nonlinear components undergo a comprehensive analysis and are compared to other commonly used nonlinear components, which are generated through various algebraic structures. The purpose of this comparison is to evaluate the performance and potency of the proposed S-boxes in terms of their capacity to add nonlinearity to cryptographic systems. The findings demonstrate that the proposed nonlinear components are more efficient and resistant to algebraic attacks.
The rest of this article is structured as follows: coset diagrams for modular group background knowledge is introduced in Section 2. Use of coset diagram in the construction of the proposed nonlinear component is presented in Section 3. In Section 4, we propose a novel nonlinear enhancement algorithm for increasing the nonlinearity of any confusion component of the block cipher. Section 5 presents statistical analysis and simulation results. The results of the proposed S-box and performance analysis criteria are evaluated in the same section. Moreover, the proposed S-box construction scheme is compared with well-known S-boxes according to good S-box criteria and is also examined in the same section. In conclusion, this article presents a summary of a coset based S-box generation scheme.
The modular group PSL(2,Z) is comprised of a set of linear fractional mappings, which include by l:s→−1/sandm:s→s−1/s. The finite display of PSL(2,Z) is <l,m:l2=m3=1>. The modular group is the most significant infinite discrete group due to its extensive utilization in number theory, advanced group theory, geometry, and topology. There is a rich history of studying the actions of the modular group, particularly on finite sets, dating back to the late 19th century. G. Higman for the very first time used coset diagrams for this group in 1978. The coset diagrams [35,36,37] are derived from the way PSL(2,Z) operates on the projective line over the finite field GF(pn), which is represented as PL(Fpn)=GF(pn)∪{∞}. Here, p represents a prime number. We use triangles to represents cycles of m because of order three. The elements of GF(pn)∪{∞} that form the nodes of the triangles undergo an anti-clockwise permutation by m. We utilize an edge in the coset diagram to connect a pair of nodes belonging to the triangles due to the presence of order two. The term "order two" indicates that these elements/nodes have a specific property where, when combined with themselves, they return to their original state after two repetitions. This property may be relevant or significant in the context of the coset diagram, influencing the decision to connect the corresponding nodes with an edge. Fixed points are denoted by thick dots, if they exist. Consider the action of a modular group on GF(23)∪{∞}={0,1,2,3,…,22,∞}. The permutation representations of l and m can be calculated by l:s→−1/sandm:s→s−1/s.
l:(0∞)(122)(211)(315)(417)(59)(619)(713)(820)(1016)(1221)(1418) |
m:(0∞1)(21222)(31611)(41815)(51017)(6209)(71419)(82113). |
It is evident that the permutation of results in 8 cycles, thus implying the existence of 8 triangles in the coset diagrams. The vertices 2, 12 and 22 of a triangle corresponds to a cycle. So 8 triangles can be drawn. Subsequently, we connect these triangles by permuting. For example, the cycle (1 22) in mean the nodes 1 and 22 are connected by an edge. The following coset diagram appears as a result of permutations of and. Since the image of under does not exist in, it is essential to consider alternative mappings or transformations to ensure a comprehensive coverage of the desired range. Thus, it is not feasible for to act in this scenario. For this, we add for the action of The utilization of coset diagrams has led to the resolution of numerous problems in group theory. This paper explores the implementation of these coset diagrams in the field of cryptography. Here, we formulate the coset diagram that we utilized in the designing of the proposed S-boxes.
In Figure 1, coset diagram illustrates the action of the modular group on GF(23)∪{∞}. Aslo, Figure 1 gives a clear understanding of how modular group operates on GF(23)∪{∞} and distinguish the resulting cosets.
Let's examine a primitive polynomial p(x)=x10+x3+1 that cannot be factored into lower-degree polynomials over Z2, then GF(210)=Z2[x]<x10+x3+1>. In Table 1, the components of GF(210) are represented as certain exponents of α, where α corresponds to the root of p(x). Let's examine how PSL(2,Z) operates on PL(F210)=GF(210)∪∞. The permutation representations of l and m can be computed using the operation of (s)l=−1sand(s)m=s−1s. So,
l:(0∞)(1)(α1α1022)(α2α1021)(α3α1020)(α4α1019)(α5α1018)(α6α1017)(α7α1016)(α8α1015) |
(α9α1014)(α10α1013)(α11α1012)(α12α1011)(α13α1010)(α14α1009)(α15α1008)(α16α1007)... |
...(α497α526)(α498α525)(α499α524)(α500α523)(α501α522)(α502α521)(α503α520)(α504α519) |
(α505α518)(α506α517)(α507α516)(α508α515)(α509α514)(α510α513)(α511α512), |
m:(∞10)(α341)(α682)(α1α76α946)(α2α152α869)(α3α7α1013)(α4α304α715)(α5α508α510) |
(α6α14α1003)(α8α608α407)(α9α315α699)(α10α1016α1020)(α11α189α823)(α12α28α983)... |
...(α599α668α779)(α604α833α609)(α614α807α625)(α617α636α793)(α620α680α746) |
(α633α760α653)(α635α658α753)(α641α677α728)(α650α683α713) |
(α652α738α656)(α654α697α695). |
GF(210) | Binary values | GF(210) | Binary values | GF(210) | Binary values | GF(210) | |
0000000000 | 0 | 0000000001 | 1 | 0000000010 | α1 | 0000000100 | α2 |
0000001000 | α3 | 0000010000 | α4 | 0000100000 | α5 | 0001000000 | α6 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
0100100110 | α1015 | 1001001100 | α1016 | 0010010001 | α1017 | 0100100010 | α1018 |
1001000100 | α1019 | 0010000001 | α1020 | 0100000010 | α1021 | 1000000100 | α1022 |
The action's coset diagram comprises a sole instance of both π and Δ, alongside 170 iterations of γ, constituting a total of 172 orbits.
By refereeing to Figure 2, for the depiction of the orbit, labeled as γ, in the coset diagram. The operation of modular group on the set of GF(210)∪{∞} is shown in this figure. By examining Figure 2, we can see interaction between the elements of modular group and the resulting orbit. From Figure 3, a deeper understanding can be obtained regarding the orbit labeled as γj in the coset diagram. By referencing the Figure 4, there is distinct replica of γj within which the vertex a1 is located. A specific element or state within the mathematical structure is indicated by the presence of a1 in the coset diagram.
Algebraic approaches have been employed in the study of Galois fields in various publications. According to this novel methodology, the nodes of the coset diagram are used to disrupt the initial sequence of the Galois field. GF∗(210) represents the subset of GF(210) consisting of elements that can be expressed as even powers of α. Our initial objective is to compose a 16×16 matrix of the coset diagram nodes. To accomplish this, we exclusively choose nodes that are a part of GF∗(210). The following is the procedure for constructing an S-box using a coset graph.
Table 1 provides an illustrative display showcasing the elements in binary form that are part of GF(210). This table enables a comprehensive examination of each element, making it possible to examine each of its elements thoroughly. Table 2 consists of 256 elements between 0 to 255 for GF(28), each element is represented by an 8-bit binary sequence. Table 3 displays the results obtained after completing the second step of the procedure. This table present data into matrix of size 16×16, when each item in the matrix, as a result of the proposed calculations, has a remainder of zero. In Table 4, the proposed S-boxes (S-box-1) is presented in a manner where each of its elements displays a remainder of zero. Table 5 presented matrix of size 16×16, where element in the matrix has reminder of one. Table 6 shows proposed S-box-2 for remainder one after application of permutation. In Table 7, all elements of matrix have reminder two, which is obtained after completing the second step. Table 8 depicts proposed S-box-3 developed after applying process of permutation. In Table 9, elements are organized into 16×16 matrix, where all elements have remainder of three. Table 10 demonstrates proposed S-box-4, designed through the application of permutation.
Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) |
11011000 | ϖ251 | 10101101 | ϖ252 | 01000111 | ϖ253 | 10001110 | ϖ254 |
10000011 | ϖ247 | 00011011 | ϖ248 | 00110110 | ϖ249 | 01101100 | ϖ250 |
01111101 | ϖ243 | 11111010 | ϖ244 | 11101001 | ϖ245 | 11001111 | ϖ246 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
10000000 | ϖ7 | 00011101 | ϖ8 | 00111010 | ϖ9 | 01110100 | ϖ10 |
00001000 | ϖ3 | 00010000 | ϖ4 | 00100000 | ϖ5 | 01000000 | ϖ6 |
00000000 | 0 | 00000001 | 1 | 00000010 | ϖ1 | 00000100 | ϖ2 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
Step 1. We generate a 16x16 matrix using elements from GF∗(210) by implementing the subsequent approach, taking into account that our coset diagram encompasses 172 orbits.
We can begin by examining the orbit in the coset diagram that contains α1. We can refer to this orbit as γ1, and we can apply the transformation lmlm−1l l to α1 which will result in α947. While traversing through this path, we encounter α1022,α77,α946andα76 before finally arriving at α947. We can represent α76 as the final element of the first row of the 16×16 look-up table. After writing 1 node of any {\gamma }_{k}ϵ\{{\gamma }_{j}:j = 1, 2, 3, \dots, 170\} , in order to choose the next copy from {\gamma }_{j} , we find a node v = {\alpha }^{{i}_{1}+1} , where {\alpha }^{{i}_{1}}, {\alpha }^{{i}_{2}}, {\alpha }^{{i}_{3}}, {\alpha }^{{i}_{4}}, {\alpha }^{{i}_{5}}, \;\mathrm{a}\mathrm{n}\mathrm{d}\;{\alpha }^{{i}_{6}} are the nodes of {\gamma }_{k} , such that {i}_{1} < {i}_{j} , where j = 2, 3, 4, 5, 6 . If {\alpha }^{{i}_{1}+1} is utilized in earlier selected copies of {\gamma }_{j} , then we go on to the copy of {\gamma }_{j} containing v = {\alpha }^{{i}_{1}+2} and so on. For moving on to each node we apply lml{m}^{-1}l\;\mathrm{o}\mathrm{n}\;v . Note that, in each {\gamma }_{j} , there are 0, 1, 2\;\mathrm{o}\mathrm{r}\;3 nodes belonging to G{F}^{*}\left({2}^{10}\right) out of 6 . Write these nodes in the 16\times 16 lookup table in a specific order. The function keeps iterating until all the 1022 nodes of {\gamma }_{j} are utilized. Next, select 0 from π and place it as the first element of the last row.
Step 2. Let \mathrm{h}\mathrm{ }:\mathrm{G}{\mathrm{F}}^{\mathrm{*}}\left({2}^{10}\right)\to \mathrm{G}\mathrm{F}\left({2}^{8}\right) be defined by the equation \mathrm{f}\left({\mathrm{\alpha }}^{\mathrm{n}}\right) = {\mathrm{\omega }}^{\frac{\mathrm{n}}{4}} , where the elements of {\mathrm{F}}_{{2}^{8}} are represented using powers of \mathrm{\omega } as demonstrated in Table 2. The irreducible polynomial \mathrm{p}\left(\mathrm{x}\right) = {\mathrm{x}}^{10}+{\mathrm{x}}^{3}+1 over {\mathbb{Z}}_{2} is used in this context. In this stage, we execute the function \mathrm{h} on every matrix utilized in the initial step. By following this approach, we generate a 16x16 matrix consisting of elements from \mathrm{G}\mathrm{F}\left({2}^{8}\right) . Subsequently, we transform each element of the matrix into binary form, and eventually, we convert them into decimal form. Similarly we have done the same task for remainders 1, 2 and 3. For the remainders 1, 2 and 3, we use mappings f\left({\alpha }^{n}\right) = {\omega }^{\frac{n-1}{4}}, {\omega }^{\frac{n-2}{4}}\;\mathrm{a}\mathrm{n}\mathrm{d}\;{\omega }^{\frac{n-3}{4}} respectively. In this way we have obtained 4 S-boxes (Tables 3, 5, 7, 9) having nonlinearity 101,102,103 and 104 respectively. These S-boxes are acceptable in encryption processes and are up to the mark. We increase their strength by utilizing permutations of the group {S}_{16} in the following manner:
Algorithm 1: Permutations of the group {S}_{16} . |
a. In Table 4, we apply the following permutation \left(1 \; 7 \; 4\; 3\; 16\; 13\; 8\; 14\; 11\; 10\; 12\; 9\; 15\; 6\right)\left(2 5\right) of the group {S}_{16} to generate our proposed S-box 1. |
b. In Table 6, we apply the following permutation \left(1\right)\left(2 \; 4\right)\left(3\; 15\; 7\; 8\; 14\; 5\; 13\; 11\; 10\; 9\; 16\right) of the group {S}_{16} to generate our proposed S-box 2. |
c. In Table 8, we apply the following permutation \left(1\; 3\; 5\; 2\; 12\; 13\; 16\; 14\; 11\; 4\right)\left(6\; 10\; 8\right)\left(7 \; 15\right)\left(9\right) of the group {S}_{16} to generate our proposed S-box 3. |
d. In Table 10, we apply the following permutation \left(1 13\right)\left(2 15 11 8 9\right)\left(3\; 5\; 7\; 14\; 12\right)\left(4\right)\left(6 \; 10 \; 16\right) of the group {S}_{16} to generate our proposed S-box 4. |
In order to increase the nonlinearity of bijective S-box (n×m), a strategy of dividing a larger S-box into smaller S-boxes makes sense. In this strategy, a larger S-box of 2048 bits is arranged into 16 smaller blocks. Each element of the S-box consists of one byte and each smaller S-box contains 128 bits. In the first round, start dividing the standard/required S-box into smaller S-boxes column wise and store them in an arrayList. In the second round, repeat the same process row wise. After that, in order to increase the nonlinearity [38], swap each smaller S-box with another S-box while keeping an eye on nonlinearity.
Algorithm 2 is introduced, which utilizes the divide and conquer approach, beginning with the development of an S-box using a coset graph.
Algorithm 2: Divide and conquer strategy based nonlinear booster algorithm. |
Step1: S1 \leftarrow the function F(n) generates bijective S-box S1(n×m) using coset graph. |
Step2: S2 \leftarrow S1 \therefore Here we are generating temporary copy of actual S-box, |
While 1: n \therefore Setting a loop that continue to execute loop body (Step 3 to 7) as long as condition holds true |
Step 3: Received 16 blocks of size 4\times 4 \leftarrow divide the S-box (S2) into blocks of size 128 bits. |
Step4: Received updated S-box (S2) \leftarrow Swap the one block size 4\times 4 with another one. |
Step5: NewNL \leftarrow calculate the nonlinearity of updated S-box. |
Step 6: Compare new NL with NL of actual S-box. |
Stept 7: If the new nonlinearity (NL) is greater than the actual NL, make this change permanent. Otherwise, reverse the change. |
end |
Step 8: We will receive an S-box with improved nonlinearity. |
Results after applying Algorithm 1
In Tables 11–14, we are presenting optimized S-boxes using Algorithm 2. The proposed S-boxes have a nonlinearity of 112.
7 | 167 | 60 | 72 | 84 | 183 | 100 | 3 | 157 | 238 | 228 | 20 | 69 | 226 | 123 | 40 |
152 | 204 | 44 | 208 | 255 | 166 | 141 | 24 | 162 | 89 | 215 | 148 | 224 | 142 | 30 | 249 |
116 | 160 | 77 | 79 | 195 | 59 | 177 | 156 | 117 | 207 | 219 | 15 | 35 | 17 | 91 | 66 |
185 | 143 | 222 | 225 | 173 | 254 | 104 | 139 | 94 | 65 | 102 | 196 | 197 | 36 | 31 | 145 |
5 | 172 | 233 | 239 | 76 | 78 | 227 | 25 | 6 | 92 | 223 | 158 | 232 | 55 | 179 | 41 |
26 | 62 | 114 | 43 | 137 | 129 | 51 | 186 | 206 | 176 | 90 | 237 | 112 | 198 | 1 | 135 |
211 | 111 | 190 | 230 | 241 | 163 | 9 | 180 | 110 | 250 | 146 | 113 | 16 | 47 | 133 | 96 |
33 | 19 | 242 | 125 | 18 | 121 | 68 | 107 | 52 | 147 | 122 | 23 | 56 | 81 | 210 | 61 |
217 | 216 | 201 | 103 | 109 | 67 | 63 | 144 | 236 | 251 | 205 | 161 | 153 | 99 | 29 | 27 |
182 | 71 | 0 | 150 | 32 | 235 | 170 | 73 | 138 | 247 | 155 | 85 | 203 | 88 | 130 | 22 |
192 | 64 | 120 | 80 | 252 | 253 | 119 | 234 | 189 | 115 | 220 | 214 | 70 | 169 | 159 | 229 |
97 | 98 | 118 | 187 | 231 | 14 | 175 | 191 | 154 | 171 | 13 | 106 | 57 | 93 | 53 | 202 |
11 | 174 | 54 | 38 | 132 | 199 | 101 | 82 | 188 | 164 | 21 | 128 | 74 | 10 | 2 | 45 |
105 | 50 | 39 | 149 | 75 | 140 | 87 | 194 | 221 | 213 | 178 | 124 | 34 | 134 | 127 | 108 |
212 | 248 | 245 | 136 | 58 | 184 | 8 | 48 | 240 | 168 | 200 | 151 | 244 | 209 | 95 | 83 |
37 | 4 | 246 | 218 | 46 | 28 | 12 | 193 | 126 | 49 | 42 | 243 | 165 | 181 | 131 | 86 |
20 | 116 | 237 | 8 | 167 | 218 | 0 | 185 | 93 | 9 | 94 | 166 | 176 | 182 | 102 | 106 |
129 | 115 | 118 | 208 | 78 | 160 | 143 | 165 | 22 | 157 | 112 | 179 | 145 | 124 | 16 | 225 |
212 | 219 | 226 | 72 | 25 | 215 | 98 | 50 | 42 | 152 | 26 | 198 | 28 | 149 | 70 | 59 |
201 | 85 | 103 | 247 | 180 | 38 | 134 | 69 | 49 | 95 | 249 | 213 | 105 | 121 | 138 | 181 |
45 | 14 | 41 | 144 | 29 | 195 | 161 | 67 | 47 | 220 | 254 | 132 | 27 | 60 | 206 | 51 |
76 | 87 | 120 | 48 | 139 | 12 | 199 | 37 | 240 | 174 | 189 | 34 | 63 | 211 | 99 | 131 |
104 | 128 | 141 | 56 | 194 | 100 | 233 | 183 | 170 | 108 | 5 | 153 | 113 | 10 | 130 | 142 |
173 | 58 | 217 | 1 | 110 | 65 | 151 | 43 | 190 | 97 | 33 | 96 | 89 | 178 | 238 | 83 |
252 | 6 | 196 | 216 | 82 | 150 | 31 | 11 | 19 | 135 | 68 | 123 | 228 | 21 | 122 | 158 |
175 | 55 | 214 | 3 | 162 | 86 | 17 | 184 | 30 | 36 | 133 | 171 | 188 | 127 | 197 | 146 |
18 | 80 | 227 | 40 | 13 | 200 | 92 | 159 | 154 | 77 | 79 | 234 | 54 | 156 | 2 | 177 |
44 | 101 | 224 | 137 | 91 | 209 | 64 | 15 | 109 | 46 | 210 | 53 | 248 | 231 | 192 | 230 |
187 | 117 | 126 | 202 | 81 | 232 | 7 | 88 | 207 | 168 | 71 | 169 | 193 | 253 | 23 | 111 |
164 | 186 | 222 | 239 | 74 | 172 | 24 | 39 | 236 | 203 | 61 | 163 | 119 | 148 | 245 | 62 |
235 | 229 | 140 | 250 | 205 | 251 | 242 | 241 | 155 | 223 | 125 | 244 | 246 | 204 | 75 | 243 |
221 | 57 | 84 | 191 | 107 | 35 | 136 | 255 | 114 | 52 | 32 | 4 | 90 | 147 | 66 | 73 |
082 | 123 | 151 | 201 | 210 | 152 | 006 | 176 | 228 | 158 | 029 | 118 | 117 | 213 | 126 | 081 |
171 | 248 | 032 | 121 | 080 | 120 | 025 | 012 | 155 | 194 | 203 | 156 | 150 | 084 | 250 | 061 |
148 | 038 | 063 | 089 | 231 | 141 | 197 | 095 | 056 | 107 | 030 | 221 | 208 | 161 | 115 | 053 |
255 | 185 | 237 | 193 | 218 | 241 | 192 | 196 | 005 | 235 | 190 | 128 | 022 | 187 | 039 | 251 |
083 | 175 | 183 | 130 | 142 | 062 | 002 | 238 | 104 | 099 | 067 | 143 | 229 | 047 | 106 | 108 |
059 | 239 | 249 | 073 | 233 | 180 | 090 | 091 | 163 | 174 | 004 | 114 | 222 | 068 | 064 | 100 |
207 | 140 | 055 | 027 | 125 | 102 | 164 | 216 | 093 | 076 | 243 | 060 | 111 | 145 | 077 | 230 |
058 | 186 | 041 | 028 | 014 | 070 | 031 | 189 | 166 | 212 | 159 | 088 | 247 | 000 | 078 | 253 |
045 | 160 | 103 | 219 | 036 | 157 | 169 | 065 | 105 | 177 | 016 | 245 | 240 | 001 | 003 | 127 |
232 | 136 | 138 | 252 | 037 | 225 | 162 | 168 | 096 | 137 | 023 | 110 | 149 | 008 | 098 | 195 |
170 | 009 | 033 | 215 | 226 | 011 | 085 | 050 | 153 | 021 | 206 | 191 | 013 | 094 | 246 | 242 |
182 | 042 | 181 | 113 | 79 | 179 | 122 | 224 | 133 | 204 | 109 | 217 | 147 | 040 | 154 | 057 |
167 | 205 | 173 | 178 | 044 | 043 | 198 | 112 | 086 | 046 | 017 | 024 | 026 | 072 | 200 | 132 |
188 | 139 | 172 | 071 | 124 | 209 | 054 | 010 | 034 | 075 | 244 | 116 | 097 | 101 | 066 | 007 |
254 | 214 | 087 | 052 | 236 | 165 | 144 | 131 | 019 | 146 | 184 | 051 | 015 | 223 | 119 | 220 |
211 | 049 | 069 | 020 | 129 | 234 | 135 | 092 | 199 | 227 | 134 | 202 | 048 | 018 | 074 | 035 |
150 | 219 | 211 | 254 | 098 | 194 | 033 | 023 | 198 | 148 | 225 | 195 | 012 | 199 | 224 | 025 |
131 | 107 | 015 | 084 | 160 | 109 | 203 | 240 | 034 | 141 | 166 | 218 | 209 | 068 | 003 | 132 |
065 | 061 | 044 | 100 | 137 | 040 | 181 | 094 | 035 | 041 | 011 | 173 | 079 | 083 | 247 | 237 |
016 | 031 | 054 | 202 | 167 | 136 | 077 | 006 | 182 | 248 | 170 | 037 | 221 | 104 | 253 | 067 |
081 | 060 | 215 | 189 | 080 | 128 | 097 | 164 | 039 | 106 | 184 | 046 | 186 | 200 | 208 | 112 |
056 | 102 | 146 | 214 | 229 | 062 | 233 | 238 | 116 | 122 | 156 | 169 | 021 | 127 | 070 | 174 |
178 | 239 | 180 | 045 | 117 | 147 | 246 | 192 | 222 | 206 | 129 | 172 | 118 | 099 | 171 | 119 |
213 | 090 | 130 | 149 | 216 | 242 | 126 | 087 | 022 | 210 | 110 | 075 | 052 | 093 | 236 | 232 |
140 | 008 | 051 | 004 | 145 | 227 | 074 | 176 | 228 | 066 | 095 | 013 | 059 | 231 | 076 | 155 |
036 | 255 | 201 | 055 | 157 | 153 | 159 | 175 | 103 | 017 | 113 | 071 | 001 | 252 | 187 | 154 |
005 | 020 | 250 | 096 | 125 | 057 | 092 | 196 | 197 | 124 | 072 | 142 | 163 | 101 | 204 | 115 |
028 | 042 | 029 | 114 | 089 | 053 | 193 | 223 | 027 | 191 | 135 | 220 | 226 | 014 | 120 | 165 |
134 | 111 | 241 | 230 | 139 | 082 | 235 | 207 | 058 | 143 | 019 | 002 | 177 | 162 | 190 | 158 |
188 | 030 | 151 | 078 | 185 | 064 | 088 | 026 | 108 | 183 | 018 | 243 | 212 | 000 | 050 | 152 |
105 | 032 | 179 | 121 | 091 | 038 | 069 | 217 | 048 | 234 | 024 | 063 | 144 | 009 | 123 | 138 |
161 | 007 | 073 | 245 | 010 | 249 | 043 | 049 | 168 | 086 | 133 | 251 | 085 | 047 | 244 | 205 |
In order to keep security precautions in place, we have worked on cryptanalysis in this section. We ran a number of security measure tests to determine key characteristics of our proposed S-boxes. We can utilize the proposed S-boxes in various coding schemes and secure communication by examining its cryptographic properties. Our proposed S-boxes are evaluated by standard evaluation criteria including, nonlinearity, bit independence criterion (BIC), strict avalanche criterion (SAC), linear approximation probability (LP), differential approximation probability (DP), fixed point (Fp), and reverse fixed point (OFp). We examined the proposed S-box's outcomes and contrasted them with those of known S-boxes. Let's look at these tests in more detail for a better understanding.
In Table 15, average nonlinearity values of well-known S-boxes are shown, including the comparison of these values with the value of our proposed S-boxes. Table 16 presents a detailed Bit Independence Criterion analysis for the proposed S-box-4. This table provides an in-depth exploration of BIC. Table 17 depicts a comprehensive BIC comparison between our proposed S-boxes and other existing S-boxes. Table 18 shows a detailed breakdowns of the SAC for our S-boxes. Additionally, this table also includes the average SAC. Table 19 demonstrates the LP analysis for our S-boxes, along with comparison to other S-boxes. Table 20 contains comprehensive DP analysis for proposed S-box-4. Table 21 illustrates the analysis of fixed point, reverse fixed pint for our S-boxes, alongside a comparative assessment with other S-boxes.
S-box | {\boldsymbol{f}}_\bf{1} | {\boldsymbol{f}}_\bf{2} | {\boldsymbol{f}}_\bf{3} | {\boldsymbol{f}}_\bf{4} | {\boldsymbol{f}}_\bf{5} | {\boldsymbol{f}}_\bf{6} | {\boldsymbol{f}}_\bf{7} | {\boldsymbol{f}}_\bf{8} | Average |
Proposed 1 (Table 11) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 2 (Table 12) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 3 (Table 13) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 4 (Table 14) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Zhu [40] | 108 | 108 | 106 | 102 | 108 | 102 | 108 | 104 | 105.75 |
Zahid [41] | 110 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 111.75 |
Hussain [42] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Gautam et al. [43] | 108 | 106 | 104 | 98 | 102 | 102 | 98 | 74 | 99 |
Prime [44] | 94 | 100 | 104 | 104 | 102 | 100 | 98 | 94 | 99.5 |
S8 AES [45] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Xhi [46] | 106 | 104 | 106 | 106 | 104 | 106 | 104 | 106 | 105 |
AES [47] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Skipjac and Kea [48] | 104 | 108 | 108 | 108 | 108 | 104 | 104 | 106 | 106.75 |
Alkhaldi et al. [19] | 108 | 104 | 106 | 106 | 102 | 98 | 104 | 108 | 104 |
Chen et al. [49] | 100 | 102 | 103 | 104 | 106 | 106 | 106 | 108 | 104.3 |
Tang et al. [50] | 100 | 103 | 104 | 104 | 105 | 105 | 106 | 109 | 104.5 |
Khan et al. [37] | 102 | 108 | 106 | 102 | 106 | 106 | 106 | 98 | 104.25 |
Belazi et al. [51] | 106 | 106 | 106 | 104 | 108 | 102 | 106 | 104 | 105.25 |
Hua [52] | 106 | 106 | 108 | 106 | 102 | 102 | 108 | 104 | 105.25 |
Javeed [53] | 108 | 106 | 106 | 110 | 106 | 108 | 108 | 108 | 107.50 |
Detailed BIC Analysis for proposed S-box-4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---- | 102 | 104 | 100 | 106 | 106 | 106 | 106 | |
102 | ---- | 102 | 108 | 104 | 108 | 104 | 102 | |
104 | 102 | ---- | 104 | 108 | 108 | 102 | 104 | |
100 | 108 | 104 | ---- | 104 | 108 | 106 | 108 | |
106 | 104 | 108 | 104 | ---- | 96 | 104 | 98 | |
106 | 108 | 108 | 108 | 96 | ---- | 104 | 106 | |
106 | 104 | 102 | 106 | 104 | 104 | ---- | 104 | |
106 | 102 | 104 | 108 | 98 | 106 | 104 | ---- | |
Average BIC: 104.35 |
S-boxes | Minimum value | Average | Square deviation |
Proposed 1 | 96 | 103.42 | 2.56 |
Proposed 2 | 98 | 102.86 | 2.38 |
Proposed 3 | 96 | 104.57 | 2.41 |
Proposed 4 | 96 | 104.35 | 2.81 |
Hussain [42] | 112 | 112 | 0 |
Gautam [43] | 92 | 103 | 3.5225 |
Prime [44] | 94 | 101.71 | 3.53 |
S8 AES [54] | 112 | 112 | 0 |
Xyi [46] | 98 | 103.78 | 2.743 |
AES [47] | 112 | 112 | 0 |
Skipjac [48] | 102 | 104.14 | 1.767 |
SAC Results (S-box-1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0.484375 | 0.531250 | 0.484375 | 0.546875 | 0.484375 | 0.515625 | 0.484375 | 0.468750 | |
0.546875 | 0.500000 | 0.515625 | 0.546875 | 0.453125 | 0.515625 | 0.515625 | 0.468750 | |
0.484375 | 0.500000 | 0.500000 | 0.484375 | 0.515625 | 0.500000 | 0.500000 | 0.515625 | |
0.453125 | 0.546875 | 0.578125 | 0.515625 | 0.500000 | 0.578125 | 0.531250 | 0.484375 | |
0.531250 | 0.562500 | 0.484375 | 0.515625 | 0.515625 | 0.515625 | 0.515625 | 0.484375 | |
0.531250 | 0.468750 | 0.500000 | 0.500000 | 0.484375 | 0.484375 | 0.484375 | 0.515625 | |
0.515625 | 0.515625 | 0.531250 | 0.468750 | 0.500000 | 0.562500 | 0.500000 | 0.531250 | |
0.453125 | 0.484375 | 0.546875 | 0.562500 | 0.500000 | 0.484375 | 0.500000 | 0.531250 | |
Average SAC (S-box-1) | 0.508301 | |||||||
Average SAC (S-box-2) | 0.504150 | |||||||
Average SAC (S-box-3) | 0.499756 | |||||||
Average SAC (S-box-4) | 0.506348 |
S-boxes | Max value | Max LP |
Proposed 1 (Table 11) | 160 | 0.125 |
Proposed 2 (Table 12) | 162 | 0.133 |
Proposed 3 (Table 13) | 164 | 0.141 |
Proposed 4 (Table 14) | 158 | 0.117 |
AES [47] | 144 | 0.062 |
Hussain [42] | 144 | 0.062 |
Skipjack [48] | 156 | 0.109 |
Prime [44] | 162 | 0.132 |
Gautam [43] | 164 | 0.2109 |
S8 AES [54] | 144 | 0.062 |
Xyi [46] | 168 | 0.156 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 8 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 6 |
6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 |
6 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 6 | 6 | 6 |
8 | 8 | 6 | 8 | 8 | 6 | 8 | 4 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 4 | 6 | 6 | 8 | 6 | 8 | 6 | 4 | 8 |
6 | 10 | 12 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 8 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 4 | 8 | 6 | 6 |
6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 6 | 8 | 6 |
8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 |
8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 8 | 6 |
8 | 6 | 8 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 6 |
6 | 8 | 8 | 8 | 8 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 |
Max Val: 12 |
S-box | No. of fixed point | No. of reverse fixed point |
Lambić [32] | 2 | 3 |
Jamal [58] | 18 | None |
Tian [59] | 1 | 1 |
Çavuşoğlu [60] | 0 | 2 |
Özkaynak [61] | 4 | 1 |
Ullah [23] | 4 | None |
Proposed S-box-1 (Table-11) | 3 | 1 |
Proposed S-box-2 (Table-12) | 1 | 1 |
Proposed S-box-3 (Table-13) | 2 | None |
Proposed S-box-4 (Table-14) | 3 | 1 |
In 1988, Pieprzyk and Finkelstein [39] introduced the term nonlinearity. The strength of the S-box is measured by this tool. It is very important in order to know the non-linear properties of the encrypted or coded material. A nonlinear component (S-box) with greater nonlinearity is generally considered more secure than one with lower nonlinearity. The mathematical formula is as follows:
{N}_{k} = {2}^{l-1}\left(1-{2}^{-l}max\left|{S}_{\left(k\right)}\left(j\right)\right|\right), |
where
{S}_{\left(k\right)}\left(j\right) = {\sum }_{j\in {F}_{2}^{l}}(-1)^\left(k\right(x)\otimes ⍭.j . |
The newly proposed S-boxes have an average nonlinearity value of 112. Table 15 presents a comparison between the proposed S-boxes and other robust S-boxes.
The pairwise avalanche vectors' independent behavior and the variations in input bits are primarily evaluated using the bit independence criterion [29,30]. We have tested and sorted out the nonlinearity of the proposed S-box via BIC. In Table 17, the proposed S-box's minimum and average BIC values are compared with other well-known S-boxes' square deviation values.
Tavares and Webster [39] introduced Strict Avalanche Criterion. In this article, they gave the idea of avalanche and completeness effect. The purpose of the SAC component is achieved if there is a 0.5 probability that each output bit is changed by modifying a single input bit. In Table 18, the SAC of proposed S-box is displayed.
We investigate about the highest imbalance of an event in Linear Approximation Probability [55]. The uniformity of the input bits should be similar to that of output bits. Every input bit is examined separately and its results are scrutinizing by output bits. The masks denoted by {\omega }_{x} and {\omega }_{y} respectively are applied on the uniformity of both input and output bits. It is given as
LP = \underset{{\omega }_{x}, {\omega }_{y}\ne 0}{\mathrm{max}}\left|\frac{\#\left\{f\right|f.{\omega }_{x} = S\left(f\right)*{\omega }_{y}\}}{{2}^{n}}-\frac{1}{2}\right|, |
where f is the collection of all possible inputs and {2}^{n} represents the total number of elements. The results of our proposed S-box and different renowned S-boxes via LP are shown in Table 15. Our proposed S-box is built so well and strong enough to avoid the linear attacks while comparison.
A non-linear mapping is used to sort out the differential uniformity. It is a relation between input and output bits. The input differential has a distinct transformation with the output differential. It is given as
{D}_{{p}^{s}}\left(\Delta g\to \Delta h\right) = \frac{[\#\left\{g\in I|S\left(g\right) \oplus S\left(g \oplus \Delta g\right) = \Delta h\right\}]}{{2}^{n}} . |
Here, \Delta g and \Delta h refer to the differentials of the input and output, respectively. We applied this test on our S-box and the results are as follows (Table 20).
A fixed point in an S-box refers to an input value that remains unchanged after undergoing the substitution process. In other words, if a specific input value maps to the same value as the output, that input value is said to be a fixed point. Fixed points potentially impact the resistance of the S-box against certain attacks. Therefore, an S-box designer ensures that there are no fixed points (FP) in the particular S-box and such an S-box is very useful in image encryption [6]. On the other hand, when an output value is used as an input, it yields the original input value, which is known as a reverse fixed point. Additionally, short cycles are specific patterns that appear in the output values of an S-box. Liu et al. [56] proposed an improved coupling quadratic map (ICQM) algorithm for S-box design, and in order to remove fixed point and reverse fixed point criteria. To prevent leakage in any statistical cryptanalysis, the number of {F}_{p} and {OF}_{p} should be kept as low as possible. In modern S-box designs, researchers have successfully eliminated the {F}_{p} and {OF}_{p} by employing a 2D enhanced quadratic map [57].
The main accomplishment of this research is to create a way to use coset graph and optimization algorithms to develop secure S-boxes with enhanced nonlinearity. In this article, we propose a new, simple, and efficient S-box construction scheme based on a coset graph over the finite field GF\left({2}^{10}\right) . Various evaluations are conducted to determine the efficacy of the proposed S-box construction method, and the results are completely satisfactory. The experimental results demonstrated that the proposed S-boxes are strong enough to provide security against various algebraic attacks. Furthermore, the proposed nonlinearity enhancement algorithm improves the cryptographic properties of the constructed S-boxes. The application of the proposed algorithm is not restricted to the proposed S-boxes, but it can also improve the nonlinearity of any S-box.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors have no conflicts of interest to declare that are relevant to the content of this article.
[1] | H. C. A. Tilborg, Fundamentals of cryptology: a professional reference and interactive tutorial, Boston: Kluwer Academic Publishers, 2000. |
[2] | K. Larew, D. Kahn, The codebreakers: the story of secret writing, 1 Ed., New Yourk: McMillan, 1967. |
[3] | A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, Handbook of applied cryptography, 1 Ed., CRC Press, 1996. |
[4] | D. R. Stinson, M. B. Paterson, Cryptography: theory and practice, 4 Eds., CRC Press, 1995. |
[5] | C. E. Shannon, Communication theory of secrecy systems, Bell Syst. Tech. J., 28 (1949), 656–715. |
[6] |
H. Liu, J. Liu, C. Ma, Constructing dynamic strong S-box using 3D chaotic map and application to image encryption, Multimed. Tools Appl., 82 (2023), 23899–23914. https://doi.org/10.1007/s11042-022-12069-x doi: 10.1007/s11042-022-12069-x
![]() |
[7] | L. Cui, Y. Cao, A new S-box structure named affine-power-affine, Int. J. Innov. Comput. Inf. Control, 3 (2007), 751–759. |
[8] |
I. Hussain, T. Shah, Literature survey on nonlinear components and chaotic nonlinear components of block ciphers, Nonlinear Dyn., 74 (2013), 869–904. https://doi.org/10.1007/s11071-013-1011-8 doi: 10.1007/s11071-013-1011-8
![]() |
[9] |
H. Liu, A. Kadir, X. Sun, Chaos-based fast colour image encryption scheme with true random number keys from environmental noise, IET Image Process., 11 (2017), 324–332. https://doi.org/10.1049/iet-ipr.2016.0040 doi: 10.1049/iet-ipr.2016.0040
![]() |
[10] |
H. Liu, A. Kadir, Asymmetric color image encryption scheme using 2D discrete-time map, Signal Process., 113 (2015), 104–112. https://doi.org/10.1016/j.sigpro.2015.01.016 doi: 10.1016/j.sigpro.2015.01.016
![]() |
[11] |
H. Liu, A. Kadir, J. Liu, Color pathological image encryption algorithm using arithmetic over Galois field and coupled hyper chaotic system, Opt. Lasers Eng., 122 (2019), 123–133. https://doi.org/10.1016/j.optlaseng.2019.05.027 doi: 10.1016/j.optlaseng.2019.05.027
![]() |
[12] |
I. Hussain, T. Shah, H. Mahmood, M. A. Gondal, A projective general linear group based algorithm for the construction of substitution box for block ciphers, Neural Comput. Appl., 22 (2013), 1085–1093. https://doi.org/10.1007/s00521-012-0870-0 doi: 10.1007/s00521-012-0870-0
![]() |
[13] |
F. ul Islam, G. Liu, Designing S-box based on 4D-4wing hyperchaotic system, 3D Res., 8 (2017), 9. https://doi.org/10.1007/s13319-017-0119-x doi: 10.1007/s13319-017-0119-x
![]() |
[14] | I. Hussain, T. Shah, M. A. Gondal, W. A. Khan, Construction of cryptographically strong 8x8 S-boxes, World Appl. Sci. J., 13 (2011), 2389–2395. |
[15] |
M. Ahmad, M. N. Doja, M. M. S. Beg, ABC optimization based construction of strong substitution-boxes, Wirel. Pers. Commun., 101 (2018), 1715–1729. https://doi.org/10.1007/s11277-018-5787-1 doi: 10.1007/s11277-018-5787-1
![]() |
[16] |
Attaullah, S. S. Jamal, T. Shah, A novel algebraic technique for the construction of strong substitution box, Wireless Pers. Commun., 99 (2018), 213–226. https://doi.org/10.1007/s11277-017-5054-x doi: 10.1007/s11277-017-5054-x
![]() |
[17] |
F. Özkaynak, V. Çelik, A. B. Özer, A new S-box construction method based on the fractional-order chaotic Chen system, Signal, Image Video Process., 11 (2017), 659–664. https://doi.org/10.1007/s11760-016-1007-1 doi: 10.1007/s11760-016-1007-1
![]() |
[18] |
A. Razaq, A. Yousaf, U. Shuaib, N. Siddiqui, A. Ullah, A. Waheed, A novel construction of substitution box involving coset diagram and a bijective map, Secur. Commun. Networks, 2017 (2017), 5101934. https://doi.org/10.1155/2017/5101934 doi: 10.1155/2017/5101934
![]() |
[19] |
A. Hussain Alkhaldi, I. Hussain, M. A. Gondal, A novel design for the construction of safe S-boxes based on TD ERC sequence, Alex. Eng. J., 54 (2015), 65–69. https://doi.org/10.1016/j.aej.2015.01.003 doi: 10.1016/j.aej.2015.01.003
![]() |
[20] |
L. Liu, Y. Zhang, X. Wang, A novel method for constructing the S-box based on spatiotemporal chaotic dynamics, Appl. Sci., 8 (2018), 2650. https://doi.org/10.3390/app8122650 doi: 10.3390/app8122650
![]() |
[21] |
S. Zhu, X. Deng, W. Zhang, C. Zhu, Secure image encryption scheme based on a new robust chaotic map and strong S-box, Math. Comput. Simul., 207 (2023), 322–346. https://doi.org/10.1016/j.matcom.2022.12.025 doi: 10.1016/j.matcom.2022.12.025
![]() |
[22] |
F. A. Khan, J. Ahmed, J. S. Khan, J. Ahmad, M. A. Khan, A novel substitution box for encryption based on Lorenz equations, 2017 International Conference on Circuits, System and Simulation (ICCSS), 2017, 32–36. https://doi.org/10.1109/CIRSYSSIM.2017.8023176 doi: 10.1109/CIRSYSSIM.2017.8023176
![]() |
[23] |
A. Ullah, S. S. Jamal, T. Shah, A novel construction of substitution box using a combination of chaotic maps with improved chaotic range, Nonlinear Dyn., 88 (2017), 2757–2769. https://doi.org/10.1007/s11071-017-3409-1 doi: 10.1007/s11071-017-3409-1
![]() |
[24] |
J. Zheng, Q. Zeng, An image encryption algorithm using a dynamic S-box and chaotic maps, Appl. Intell., 52 (2022), 15703–15717. https://doi.org/10.1007/s10489-022-03174-3 doi: 10.1007/s10489-022-03174-3
![]() |
[25] |
L. Li, J. Liu, Y. Guo, B. Liu, A new S-box construction method meeting strict avalanche criterion, J. Inf. Secur. Appl., 66 (2022), 103135. https://doi.org/10.1016/j.jisa.2022.103135 doi: 10.1016/j.jisa.2022.103135
![]() |
[26] |
Y. Su, X. Tong, M. Zhang, Z. Wang, A new S-box three-layer optimization method and its application, Nonlinear Dyn., 111 (2023), 2841–2867. https://doi.org/10.1007/s11071-022-07956-9 doi: 10.1007/s11071-022-07956-9
![]() |
[27] |
Y. Si, H. Liu, M. Zhao, Constructing keyed strong S-box with higher nonlinearity based on 2D hyper chaotic map and algebraic operation, Integration, 88 (2023), 269–277. https://doi.org/10.1016/j.vlsi.2022.10.011 doi: 10.1016/j.vlsi.2022.10.011
![]() |
[28] |
Y. Liu, X. Tong, J. Ma, Image encryption algorithm based on hyper-chaotic system and dynamic S-box, Multimed. Tools Appl., 75 (2016), 7739–7759. https://doi.org/10.1007/s11042-015-2691-5 doi: 10.1007/s11042-015-2691-5
![]() |
[29] | I. Hussain, T. Shah, M. A. Gondal, M. Khan, W. A. Khan, Construction of new S-box using a linear fractional transformation, World Appl. Sci. J., 14 (2011), 1779–1785. |
[30] |
T. Farah, R. Rhouma, S. Belghith, A novel method for designing S-box based on chaotic map and Teaching–Learning-Based Optimization, Nonlinear Dyn., 88 (2017), 1059–1074. https://doi.org/10.1007/s11071-016-3295-y doi: 10.1007/s11071-016-3295-y
![]() |
[31] |
D. Shah, T. Shah, Y. Naseer, S. S. Jamal, S. Hussain, Cryptographically strong S-P boxes and their application in steganography, J. Inf. Secur. Appl., 67 (2022), 103174. https://doi.org/10.1016/j.jisa.2022.103174 doi: 10.1016/j.jisa.2022.103174
![]() |
[32] |
D. Lambić, A novel method of S-box design based on discrete chaotic map, Nonlinear Dyn., 87 (2017), 2407–2413. https://doi.org/10.1007/s11071-016-3199-x doi: 10.1007/s11071-016-3199-x
![]() |
[33] |
N. A. Azam, U. Hayat, I. Ullah, An injective S-box design scheme over an ordered isomorphic elliptic curve and its characterization, Secur. Commun. Networks, 2018 (2018), 3421725. https://doi.org/10.1155/2018/3421725 doi: 10.1155/2018/3421725
![]() |
[34] |
K. Z. Zamli, F. Din, H. S. Alhadawi, Exploring a Q-learning-based chaotic naked mole rat algorithm for S-box construction and optimization, Neural Comput. Appl., 35 (2023), 10449–10471. https://doi.org/10.1007/s00521-023-08243-3 doi: 10.1007/s00521-023-08243-3
![]() |
[35] | P. J. Cameron, Cayley graphs and coset diagrams group actions, Encycl. Des. Theory, 1 (2006), 1–9. |
[36] | P. M. Cohn, W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory., 74 (1967). https://doi.org/10.2307/2314941 |
[37] |
M. Khan, T. Shah, M. A. Gondal, An efficient technique for the construction of substitution box with chaotic partial differential equation, Nonlinear Dyn., 73 (2013), 1795–1801. https://doi.org/10.1007/s11071-013-0904-x doi: 10.1007/s11071-013-0904-x
![]() |
[38] |
M. M. Dimitrov, On the design of chaos-based S-boxes, IEEE Access, 8 (2020), 117173–117181. https://doi.org/10.1109/ACCESS.2020.3004526 doi: 10.1109/ACCESS.2020.3004526
![]() |
[39] | J. Pieprzyk, G. Finkelstein, Towards effective nonlinear cryptosystem design, IEE Proc. E-Comput. Digital Tech., 135 (1988), 325–335. |
[40] |
D. Zhu, X. Tong, M. Zhang, Z. Wang, A new s-box generation method and advanced design based on combined chaotic system, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12122087 doi: 10.3390/sym12122087
![]() |
[41] |
A. H. Zahid, A. M. Iliyasu, M. Ahmad, M. M. U. Shaban, M. J. Arshad, H. S. Alhadawi, et al., A novel construction of dynamic S-box with high nonlinearity using heuristic evolution, IEEE Access, 9 (2021), 67797–67812. https://doi.org/10.1109/ACCESS.2021.3077194 doi: 10.1109/ACCESS.2021.3077194
![]() |
[42] |
I. Hussain, T. Shah, M. A. Gondal, H. Mahmood, Generalized majority logic criterion to analyze the statistical strength of S-boxes, Z. Naturforsch. A, 67 (2012), 282–288. https://doi.org/10.5560/ZNA.2012-0022 doi: 10.5560/ZNA.2012-0022
![]() |
[43] |
A. Gautam, G. S. Gaba, R. Miglani, R. Pasricha, Application of chaotic functions for construction of strong substitution boxes, Indian J. Sci. Technol., 8 (2015), 1–5. https://doi.org/10.17485/ijst/2015/v8i28/71759 doi: 10.17485/ijst/2015/v8i28/71759
![]() |
[44] | I. Hussain, T. Shah, H. Mahmood, M. A. Gondal, U. Y. Bhatti, Some analysis of S-box based on residue of prime number, Proc. Pakistan Acad. Sci., 48 (2011), 111–115. |
[45] | I. Hussain, A new algorithm to construct secure keys for AES, 5 (2010), 1263–1270. |
[46] |
X. Yi, S. X. Cheng, X. H. You, K. Y. Lam, Method for obtaining cryptographically strong 8×8 S-boxes, GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record, 1997,689–693. https://doi.org/10.1109/glocom.1997.638418 doi: 10.1109/glocom.1997.638418
![]() |
[47] | J. Daemen, V. Rijmen, The design of rijndael, New York: Springer, 2002. |
[48] | National Institute of Standards and Technology, SKIPJACK and KEA Algorithm Specifications, 1998. Available From: https://csrc.nist.gov/Presentations/1998/Skipjack-and-KEA-Algorithm-Specifications. |
[49] |
G. Chen, Y. Chen, X. Liao, An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps, Chaos, Solitons Fract., 31 (2007), 571–579. https://doi.org/10.1016/j.chaos.2005.10.022 doi: 10.1016/j.chaos.2005.10.022
![]() |
[50] |
G. Tang, X. Liao, Y. Chen, A novel method for designing S-boxes based on chaotic maps, Chaos, Solitons Fract., 23 (2005), 413–419. https://doi.org/10.1016/j.chaos.2004.04.023 doi: 10.1016/j.chaos.2004.04.023
![]() |
[51] |
A. Belazi, M. Khan, A. A. A. El-Latif, S. Belghith, Efficient cryptosystem approaches: S-boxes and permutation–substitution-based encryption, Nonlinear Dyn., 87 (2017), 337–361. https://doi.org/10.1007/s11071-016-3046-0 doi: 10.1007/s11071-016-3046-0
![]() |
[52] |
Z. Hua, J. Li, Y. Chen, S. Yi, Design and application of an S-box using complete Latin square, Nonlinear Dyn., 104 (2021), 807–825. https://doi.org/10.1007/s11071-021-06308-3 doi: 10.1007/s11071-021-06308-3
![]() |
[53] |
A. Javeed, T. Shah, Attaullah, Design of an S-box using Rabinovich-Fabrikant system of differential equations perceiving third order nonlinearity, Multimed. Tools Appl., 79 (2020), 6649–6660. https://doi.org/10.1007/s11042-019-08393-4 doi: 10.1007/s11042-019-08393-4
![]() |
[54] | I. Hussain, A new algorithm to construct secure keys for AES, Int. J. Contemp. Math. Sci., 5 (2010), 1263–1270. |
[55] |
E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptol., 4 (1991), 3–72. https://doi.org/10.1007/BF00630563 doi: 10.1007/BF00630563
![]() |
[56] |
H. Liu, A. Kadir, C. Xu, Cryptanalysis and constructing S-box based on chaotic map and backtracking, Appl. Math. Comput., 376 (2020), 125153. https://doi.org/10.1016/j.amc.2020.125153 doi: 10.1016/j.amc.2020.125153
![]() |
[57] |
Y. Si, H. Liu, Y. Chen, Constructing keyed strong S-box using an enhanced quadratic map, Int. J. Bifurcat. Chaos, 31 (2021), 2150146. https://doi.org/10.1142/S0218127421501467 doi: 10.1142/S0218127421501467
![]() |
[58] |
S. S. Jamal, M. U. Khan, T. Shah, A watermarking technique with chaotic fractional S-box transformation, Wireless Pers. Commun., 90 (2016), 2033–2049. https://doi.org/10.1007/s11277-016-3436-0 doi: 10.1007/s11277-016-3436-0
![]() |
[59] |
Y. Tian, Q. Liu, D. Liu, Y. Kang, P. Deng, F. He, Updates to Grasselli's peak shear strength model, Rock Mech. Rock Eng., 51 (2018), 2115–2133. https://doi.org/10.1007/s00603-018-1469-2 doi: 10.1007/s00603-018-1469-2
![]() |
[60] |
Ü. Çavuşoğlu, A. Zengin, I. Pehlivan, S. Kaçar, A novel approach for strong S-box generation algorithm design based on chaotic scaled Zhongtang system, Nonlinear Dyn., 87 (2017), 1081–1094. https://doi.rog/10.1007/s11071-016-3099-0 doi: 10.1007/s11071-016-3099-0
![]() |
[61] |
F. Özkaynak, Construction of robust substitution boxes based on chaotic systems, Neural Comput. Appl., 31 (2019), 3317–3326. https://doi.org/10.1007/s00521-017-3287-y doi: 10.1007/s00521-017-3287-y
![]() |
1. | Adil Waheed, Fazli Subhan, Mazliham Mohd Suud, Muhammad Mansoor Alam, Sajjad Haider, Design and optimization of nonlinear component of block cipher: Applications to multimedia security, 2024, 15, 20904479, 102507, 10.1016/j.asej.2023.102507 | |
2. | Adil Waheed, Fazli Subhan, Mazliham Mohd Su'ud, Muhammad Mansoor Alam, Molding robust S-box design based on linear fractional transformation and multilayer Perceptron: Applications to multimedia security, 2024, 26, 11108665, 100480, 10.1016/j.eij.2024.100480 | |
3. | Muhammad Umair Safdar, Tariq Shah, Asif Ali, Enhancing image data security with chain and non-chain Galois ring structures, 2024, 225, 03784754, 659, 10.1016/j.matcom.2024.06.008 | |
4. | Adil Waheed, Fazli Subhan, S-box design based on logistic skewed chaotic map and modified Rabin-Karp algorithm: applications to multimedia security, 2024, 99, 0031-8949, 055236, 10.1088/1402-4896/ad3991 | |
5. | Saeed Ullah, Xinge Liu, Adil Waheed, Shuailei Zhang, S-box using fractional-order 4D hyperchaotic system and its application to RSA cryptosystem-based color image encryption, 2025, 09205489, 103980, 10.1016/j.csi.2025.103980 |
\boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | |
0000000000 | 0 | 0000000001 | 1 | 0000000010 | {\alpha }^{1} | 0000000100 | {\alpha }^{2} |
0000001000 | {\alpha }^{3} | 0000010000 | {\alpha }^{4} | 0000100000 | {\alpha }^{5} | 0001000000 | {\alpha }^{6} |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
0100100110 | {\alpha }^{1015} | 1001001100 | {\alpha }^{1016} | 0010010001 | {\alpha }^{1017} | 0100100010 | {\alpha }^{1018} |
1001000100 | {\alpha }^{1019} | 0010000001 | {\alpha }^{1020} | 0100000010 | {\alpha }^{1021} | 1000000100 | {\alpha }^{1022} |
Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) |
11011000 | {\varpi }^{251} | 10101101 | {\varpi }^{252} | 01000111 | {\varpi }^{253} | 10001110 | {\varpi }^{254} |
10000011 | {\varpi }^{247} | 00011011 | {\varpi }^{248} | 00110110 | {\varpi }^{249} | 01101100 | {\varpi }^{250} |
01111101 | {\varpi }^{243} | 11111010 | {\varpi }^{244} | 11101001 | {\varpi }^{245} | 11001111 | {\varpi }^{246} |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
10000000 | {\varpi }^{7} | 00011101 | {\varpi }^{8} | 00111010 | {\varpi }^{9} | 01110100 | {\varpi }^{10} |
00001000 | {\varpi }^{3} | 00010000 | {\varpi }^{4} | 00100000 | {\varpi }^{5} | 01000000 | {\varpi }^{6} |
00000000 | 0 | 00000001 | 1 | 00000010 | {\varpi }^{1} | 00000100 | {\varpi }^{2} |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
Algorithm 1: Permutations of the group {S}_{16} . |
a. In Table 4, we apply the following permutation \left(1 \; 7 \; 4\; 3\; 16\; 13\; 8\; 14\; 11\; 10\; 12\; 9\; 15\; 6\right)\left(2 5\right) of the group {S}_{16} to generate our proposed S-box 1. |
b. In Table 6, we apply the following permutation \left(1\right)\left(2 \; 4\right)\left(3\; 15\; 7\; 8\; 14\; 5\; 13\; 11\; 10\; 9\; 16\right) of the group {S}_{16} to generate our proposed S-box 2. |
c. In Table 8, we apply the following permutation \left(1\; 3\; 5\; 2\; 12\; 13\; 16\; 14\; 11\; 4\right)\left(6\; 10\; 8\right)\left(7 \; 15\right)\left(9\right) of the group {S}_{16} to generate our proposed S-box 3. |
d. In Table 10, we apply the following permutation \left(1 13\right)\left(2 15 11 8 9\right)\left(3\; 5\; 7\; 14\; 12\right)\left(4\right)\left(6 \; 10 \; 16\right) of the group {S}_{16} to generate our proposed S-box 4. |
Algorithm 2: Divide and conquer strategy based nonlinear booster algorithm. |
Step1: S1 \leftarrow the function F(n) generates bijective S-box S1(n×m) using coset graph. |
Step2: S2 \leftarrow S1 \therefore Here we are generating temporary copy of actual S-box, |
While 1: n \therefore Setting a loop that continue to execute loop body (Step 3 to 7) as long as condition holds true |
Step 3: Received 16 blocks of size 4\times 4 \leftarrow divide the S-box (S2) into blocks of size 128 bits. |
Step4: Received updated S-box (S2) \leftarrow Swap the one block size 4\times 4 with another one. |
Step5: NewNL \leftarrow calculate the nonlinearity of updated S-box. |
Step 6: Compare new NL with NL of actual S-box. |
Stept 7: If the new nonlinearity (NL) is greater than the actual NL, make this change permanent. Otherwise, reverse the change. |
end |
Step 8: We will receive an S-box with improved nonlinearity. |
7 | 167 | 60 | 72 | 84 | 183 | 100 | 3 | 157 | 238 | 228 | 20 | 69 | 226 | 123 | 40 |
152 | 204 | 44 | 208 | 255 | 166 | 141 | 24 | 162 | 89 | 215 | 148 | 224 | 142 | 30 | 249 |
116 | 160 | 77 | 79 | 195 | 59 | 177 | 156 | 117 | 207 | 219 | 15 | 35 | 17 | 91 | 66 |
185 | 143 | 222 | 225 | 173 | 254 | 104 | 139 | 94 | 65 | 102 | 196 | 197 | 36 | 31 | 145 |
5 | 172 | 233 | 239 | 76 | 78 | 227 | 25 | 6 | 92 | 223 | 158 | 232 | 55 | 179 | 41 |
26 | 62 | 114 | 43 | 137 | 129 | 51 | 186 | 206 | 176 | 90 | 237 | 112 | 198 | 1 | 135 |
211 | 111 | 190 | 230 | 241 | 163 | 9 | 180 | 110 | 250 | 146 | 113 | 16 | 47 | 133 | 96 |
33 | 19 | 242 | 125 | 18 | 121 | 68 | 107 | 52 | 147 | 122 | 23 | 56 | 81 | 210 | 61 |
217 | 216 | 201 | 103 | 109 | 67 | 63 | 144 | 236 | 251 | 205 | 161 | 153 | 99 | 29 | 27 |
182 | 71 | 0 | 150 | 32 | 235 | 170 | 73 | 138 | 247 | 155 | 85 | 203 | 88 | 130 | 22 |
192 | 64 | 120 | 80 | 252 | 253 | 119 | 234 | 189 | 115 | 220 | 214 | 70 | 169 | 159 | 229 |
97 | 98 | 118 | 187 | 231 | 14 | 175 | 191 | 154 | 171 | 13 | 106 | 57 | 93 | 53 | 202 |
11 | 174 | 54 | 38 | 132 | 199 | 101 | 82 | 188 | 164 | 21 | 128 | 74 | 10 | 2 | 45 |
105 | 50 | 39 | 149 | 75 | 140 | 87 | 194 | 221 | 213 | 178 | 124 | 34 | 134 | 127 | 108 |
212 | 248 | 245 | 136 | 58 | 184 | 8 | 48 | 240 | 168 | 200 | 151 | 244 | 209 | 95 | 83 |
37 | 4 | 246 | 218 | 46 | 28 | 12 | 193 | 126 | 49 | 42 | 243 | 165 | 181 | 131 | 86 |
20 | 116 | 237 | 8 | 167 | 218 | 0 | 185 | 93 | 9 | 94 | 166 | 176 | 182 | 102 | 106 |
129 | 115 | 118 | 208 | 78 | 160 | 143 | 165 | 22 | 157 | 112 | 179 | 145 | 124 | 16 | 225 |
212 | 219 | 226 | 72 | 25 | 215 | 98 | 50 | 42 | 152 | 26 | 198 | 28 | 149 | 70 | 59 |
201 | 85 | 103 | 247 | 180 | 38 | 134 | 69 | 49 | 95 | 249 | 213 | 105 | 121 | 138 | 181 |
45 | 14 | 41 | 144 | 29 | 195 | 161 | 67 | 47 | 220 | 254 | 132 | 27 | 60 | 206 | 51 |
76 | 87 | 120 | 48 | 139 | 12 | 199 | 37 | 240 | 174 | 189 | 34 | 63 | 211 | 99 | 131 |
104 | 128 | 141 | 56 | 194 | 100 | 233 | 183 | 170 | 108 | 5 | 153 | 113 | 10 | 130 | 142 |
173 | 58 | 217 | 1 | 110 | 65 | 151 | 43 | 190 | 97 | 33 | 96 | 89 | 178 | 238 | 83 |
252 | 6 | 196 | 216 | 82 | 150 | 31 | 11 | 19 | 135 | 68 | 123 | 228 | 21 | 122 | 158 |
175 | 55 | 214 | 3 | 162 | 86 | 17 | 184 | 30 | 36 | 133 | 171 | 188 | 127 | 197 | 146 |
18 | 80 | 227 | 40 | 13 | 200 | 92 | 159 | 154 | 77 | 79 | 234 | 54 | 156 | 2 | 177 |
44 | 101 | 224 | 137 | 91 | 209 | 64 | 15 | 109 | 46 | 210 | 53 | 248 | 231 | 192 | 230 |
187 | 117 | 126 | 202 | 81 | 232 | 7 | 88 | 207 | 168 | 71 | 169 | 193 | 253 | 23 | 111 |
164 | 186 | 222 | 239 | 74 | 172 | 24 | 39 | 236 | 203 | 61 | 163 | 119 | 148 | 245 | 62 |
235 | 229 | 140 | 250 | 205 | 251 | 242 | 241 | 155 | 223 | 125 | 244 | 246 | 204 | 75 | 243 |
221 | 57 | 84 | 191 | 107 | 35 | 136 | 255 | 114 | 52 | 32 | 4 | 90 | 147 | 66 | 73 |
082 | 123 | 151 | 201 | 210 | 152 | 006 | 176 | 228 | 158 | 029 | 118 | 117 | 213 | 126 | 081 |
171 | 248 | 032 | 121 | 080 | 120 | 025 | 012 | 155 | 194 | 203 | 156 | 150 | 084 | 250 | 061 |
148 | 038 | 063 | 089 | 231 | 141 | 197 | 095 | 056 | 107 | 030 | 221 | 208 | 161 | 115 | 053 |
255 | 185 | 237 | 193 | 218 | 241 | 192 | 196 | 005 | 235 | 190 | 128 | 022 | 187 | 039 | 251 |
083 | 175 | 183 | 130 | 142 | 062 | 002 | 238 | 104 | 099 | 067 | 143 | 229 | 047 | 106 | 108 |
059 | 239 | 249 | 073 | 233 | 180 | 090 | 091 | 163 | 174 | 004 | 114 | 222 | 068 | 064 | 100 |
207 | 140 | 055 | 027 | 125 | 102 | 164 | 216 | 093 | 076 | 243 | 060 | 111 | 145 | 077 | 230 |
058 | 186 | 041 | 028 | 014 | 070 | 031 | 189 | 166 | 212 | 159 | 088 | 247 | 000 | 078 | 253 |
045 | 160 | 103 | 219 | 036 | 157 | 169 | 065 | 105 | 177 | 016 | 245 | 240 | 001 | 003 | 127 |
232 | 136 | 138 | 252 | 037 | 225 | 162 | 168 | 096 | 137 | 023 | 110 | 149 | 008 | 098 | 195 |
170 | 009 | 033 | 215 | 226 | 011 | 085 | 050 | 153 | 021 | 206 | 191 | 013 | 094 | 246 | 242 |
182 | 042 | 181 | 113 | 79 | 179 | 122 | 224 | 133 | 204 | 109 | 217 | 147 | 040 | 154 | 057 |
167 | 205 | 173 | 178 | 044 | 043 | 198 | 112 | 086 | 046 | 017 | 024 | 026 | 072 | 200 | 132 |
188 | 139 | 172 | 071 | 124 | 209 | 054 | 010 | 034 | 075 | 244 | 116 | 097 | 101 | 066 | 007 |
254 | 214 | 087 | 052 | 236 | 165 | 144 | 131 | 019 | 146 | 184 | 051 | 015 | 223 | 119 | 220 |
211 | 049 | 069 | 020 | 129 | 234 | 135 | 092 | 199 | 227 | 134 | 202 | 048 | 018 | 074 | 035 |
150 | 219 | 211 | 254 | 098 | 194 | 033 | 023 | 198 | 148 | 225 | 195 | 012 | 199 | 224 | 025 |
131 | 107 | 015 | 084 | 160 | 109 | 203 | 240 | 034 | 141 | 166 | 218 | 209 | 068 | 003 | 132 |
065 | 061 | 044 | 100 | 137 | 040 | 181 | 094 | 035 | 041 | 011 | 173 | 079 | 083 | 247 | 237 |
016 | 031 | 054 | 202 | 167 | 136 | 077 | 006 | 182 | 248 | 170 | 037 | 221 | 104 | 253 | 067 |
081 | 060 | 215 | 189 | 080 | 128 | 097 | 164 | 039 | 106 | 184 | 046 | 186 | 200 | 208 | 112 |
056 | 102 | 146 | 214 | 229 | 062 | 233 | 238 | 116 | 122 | 156 | 169 | 021 | 127 | 070 | 174 |
178 | 239 | 180 | 045 | 117 | 147 | 246 | 192 | 222 | 206 | 129 | 172 | 118 | 099 | 171 | 119 |
213 | 090 | 130 | 149 | 216 | 242 | 126 | 087 | 022 | 210 | 110 | 075 | 052 | 093 | 236 | 232 |
140 | 008 | 051 | 004 | 145 | 227 | 074 | 176 | 228 | 066 | 095 | 013 | 059 | 231 | 076 | 155 |
036 | 255 | 201 | 055 | 157 | 153 | 159 | 175 | 103 | 017 | 113 | 071 | 001 | 252 | 187 | 154 |
005 | 020 | 250 | 096 | 125 | 057 | 092 | 196 | 197 | 124 | 072 | 142 | 163 | 101 | 204 | 115 |
028 | 042 | 029 | 114 | 089 | 053 | 193 | 223 | 027 | 191 | 135 | 220 | 226 | 014 | 120 | 165 |
134 | 111 | 241 | 230 | 139 | 082 | 235 | 207 | 058 | 143 | 019 | 002 | 177 | 162 | 190 | 158 |
188 | 030 | 151 | 078 | 185 | 064 | 088 | 026 | 108 | 183 | 018 | 243 | 212 | 000 | 050 | 152 |
105 | 032 | 179 | 121 | 091 | 038 | 069 | 217 | 048 | 234 | 024 | 063 | 144 | 009 | 123 | 138 |
161 | 007 | 073 | 245 | 010 | 249 | 043 | 049 | 168 | 086 | 133 | 251 | 085 | 047 | 244 | 205 |
S-box | {\boldsymbol{f}}_\bf{1} | {\boldsymbol{f}}_\bf{2} | {\boldsymbol{f}}_\bf{3} | {\boldsymbol{f}}_\bf{4} | {\boldsymbol{f}}_\bf{5} | {\boldsymbol{f}}_\bf{6} | {\boldsymbol{f}}_\bf{7} | {\boldsymbol{f}}_\bf{8} | Average |
Proposed 1 (Table 11) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 2 (Table 12) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 3 (Table 13) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 4 (Table 14) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Zhu [40] | 108 | 108 | 106 | 102 | 108 | 102 | 108 | 104 | 105.75 |
Zahid [41] | 110 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 111.75 |
Hussain [42] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Gautam et al. [43] | 108 | 106 | 104 | 98 | 102 | 102 | 98 | 74 | 99 |
Prime [44] | 94 | 100 | 104 | 104 | 102 | 100 | 98 | 94 | 99.5 |
S8 AES [45] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Xhi [46] | 106 | 104 | 106 | 106 | 104 | 106 | 104 | 106 | 105 |
AES [47] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Skipjac and Kea [48] | 104 | 108 | 108 | 108 | 108 | 104 | 104 | 106 | 106.75 |
Alkhaldi et al. [19] | 108 | 104 | 106 | 106 | 102 | 98 | 104 | 108 | 104 |
Chen et al. [49] | 100 | 102 | 103 | 104 | 106 | 106 | 106 | 108 | 104.3 |
Tang et al. [50] | 100 | 103 | 104 | 104 | 105 | 105 | 106 | 109 | 104.5 |
Khan et al. [37] | 102 | 108 | 106 | 102 | 106 | 106 | 106 | 98 | 104.25 |
Belazi et al. [51] | 106 | 106 | 106 | 104 | 108 | 102 | 106 | 104 | 105.25 |
Hua [52] | 106 | 106 | 108 | 106 | 102 | 102 | 108 | 104 | 105.25 |
Javeed [53] | 108 | 106 | 106 | 110 | 106 | 108 | 108 | 108 | 107.50 |
Detailed BIC Analysis for proposed S-box-4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---- | 102 | 104 | 100 | 106 | 106 | 106 | 106 | |
102 | ---- | 102 | 108 | 104 | 108 | 104 | 102 | |
104 | 102 | ---- | 104 | 108 | 108 | 102 | 104 | |
100 | 108 | 104 | ---- | 104 | 108 | 106 | 108 | |
106 | 104 | 108 | 104 | ---- | 96 | 104 | 98 | |
106 | 108 | 108 | 108 | 96 | ---- | 104 | 106 | |
106 | 104 | 102 | 106 | 104 | 104 | ---- | 104 | |
106 | 102 | 104 | 108 | 98 | 106 | 104 | ---- | |
Average BIC: 104.35 |
S-boxes | Minimum value | Average | Square deviation |
Proposed 1 | 96 | 103.42 | 2.56 |
Proposed 2 | 98 | 102.86 | 2.38 |
Proposed 3 | 96 | 104.57 | 2.41 |
Proposed 4 | 96 | 104.35 | 2.81 |
Hussain [42] | 112 | 112 | 0 |
Gautam [43] | 92 | 103 | 3.5225 |
Prime [44] | 94 | 101.71 | 3.53 |
S8 AES [54] | 112 | 112 | 0 |
Xyi [46] | 98 | 103.78 | 2.743 |
AES [47] | 112 | 112 | 0 |
Skipjac [48] | 102 | 104.14 | 1.767 |
SAC Results (S-box-1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0.484375 | 0.531250 | 0.484375 | 0.546875 | 0.484375 | 0.515625 | 0.484375 | 0.468750 | |
0.546875 | 0.500000 | 0.515625 | 0.546875 | 0.453125 | 0.515625 | 0.515625 | 0.468750 | |
0.484375 | 0.500000 | 0.500000 | 0.484375 | 0.515625 | 0.500000 | 0.500000 | 0.515625 | |
0.453125 | 0.546875 | 0.578125 | 0.515625 | 0.500000 | 0.578125 | 0.531250 | 0.484375 | |
0.531250 | 0.562500 | 0.484375 | 0.515625 | 0.515625 | 0.515625 | 0.515625 | 0.484375 | |
0.531250 | 0.468750 | 0.500000 | 0.500000 | 0.484375 | 0.484375 | 0.484375 | 0.515625 | |
0.515625 | 0.515625 | 0.531250 | 0.468750 | 0.500000 | 0.562500 | 0.500000 | 0.531250 | |
0.453125 | 0.484375 | 0.546875 | 0.562500 | 0.500000 | 0.484375 | 0.500000 | 0.531250 | |
Average SAC (S-box-1) | 0.508301 | |||||||
Average SAC (S-box-2) | 0.504150 | |||||||
Average SAC (S-box-3) | 0.499756 | |||||||
Average SAC (S-box-4) | 0.506348 |
S-boxes | Max value | Max LP |
Proposed 1 (Table 11) | 160 | 0.125 |
Proposed 2 (Table 12) | 162 | 0.133 |
Proposed 3 (Table 13) | 164 | 0.141 |
Proposed 4 (Table 14) | 158 | 0.117 |
AES [47] | 144 | 0.062 |
Hussain [42] | 144 | 0.062 |
Skipjack [48] | 156 | 0.109 |
Prime [44] | 162 | 0.132 |
Gautam [43] | 164 | 0.2109 |
S8 AES [54] | 144 | 0.062 |
Xyi [46] | 168 | 0.156 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 8 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 6 |
6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 |
6 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 6 | 6 | 6 |
8 | 8 | 6 | 8 | 8 | 6 | 8 | 4 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 4 | 6 | 6 | 8 | 6 | 8 | 6 | 4 | 8 |
6 | 10 | 12 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 8 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 4 | 8 | 6 | 6 |
6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 6 | 8 | 6 |
8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 |
8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 8 | 6 |
8 | 6 | 8 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 6 |
6 | 8 | 8 | 8 | 8 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 |
Max Val: 12 |
S-box | No. of fixed point | No. of reverse fixed point |
Lambić [32] | 2 | 3 |
Jamal [58] | 18 | None |
Tian [59] | 1 | 1 |
Çavuşoğlu [60] | 0 | 2 |
Özkaynak [61] | 4 | 1 |
Ullah [23] | 4 | None |
Proposed S-box-1 (Table-11) | 3 | 1 |
Proposed S-box-2 (Table-12) | 1 | 1 |
Proposed S-box-3 (Table-13) | 2 | None |
Proposed S-box-4 (Table-14) | 3 | 1 |
\boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{10}}}}\right) | |
0000000000 | 0 | 0000000001 | 1 | 0000000010 | {\alpha }^{1} | 0000000100 | {\alpha }^{2} |
0000001000 | {\alpha }^{3} | 0000010000 | {\alpha }^{4} | 0000100000 | {\alpha }^{5} | 0001000000 | {\alpha }^{6} |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
0100100110 | {\alpha }^{1015} | 1001001100 | {\alpha }^{1016} | 0010010001 | {\alpha }^{1017} | 0100100010 | {\alpha }^{1018} |
1001000100 | {\alpha }^{1019} | 0010000001 | {\alpha }^{1020} | 0100000010 | {\alpha }^{1021} | 1000000100 | {\alpha }^{1022} |
Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) | Binary values | \boldsymbol{G}\boldsymbol{F}\left({{\bf{2}}^{{\bf{8}}}}\right) |
11011000 | {\varpi }^{251} | 10101101 | {\varpi }^{252} | 01000111 | {\varpi }^{253} | 10001110 | {\varpi }^{254} |
10000011 | {\varpi }^{247} | 00011011 | {\varpi }^{248} | 00110110 | {\varpi }^{249} | 01101100 | {\varpi }^{250} |
01111101 | {\varpi }^{243} | 11111010 | {\varpi }^{244} | 11101001 | {\varpi }^{245} | 11001111 | {\varpi }^{246} |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
10000000 | {\varpi }^{7} | 00011101 | {\varpi }^{8} | 00111010 | {\varpi }^{9} | 01110100 | {\varpi }^{10} |
00001000 | {\varpi }^{3} | 00010000 | {\varpi }^{4} | 00100000 | {\varpi }^{5} | 01000000 | {\varpi }^{6} |
00000000 | 0 | 00000001 | 1 | 00000010 | {\varpi }^{1} | 00000100 | {\varpi }^{2} |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
Algorithm 1: Permutations of the group {S}_{16} . |
a. In Table 4, we apply the following permutation \left(1 \; 7 \; 4\; 3\; 16\; 13\; 8\; 14\; 11\; 10\; 12\; 9\; 15\; 6\right)\left(2 5\right) of the group {S}_{16} to generate our proposed S-box 1. |
b. In Table 6, we apply the following permutation \left(1\right)\left(2 \; 4\right)\left(3\; 15\; 7\; 8\; 14\; 5\; 13\; 11\; 10\; 9\; 16\right) of the group {S}_{16} to generate our proposed S-box 2. |
c. In Table 8, we apply the following permutation \left(1\; 3\; 5\; 2\; 12\; 13\; 16\; 14\; 11\; 4\right)\left(6\; 10\; 8\right)\left(7 \; 15\right)\left(9\right) of the group {S}_{16} to generate our proposed S-box 3. |
d. In Table 10, we apply the following permutation \left(1 13\right)\left(2 15 11 8 9\right)\left(3\; 5\; 7\; 14\; 12\right)\left(4\right)\left(6 \; 10 \; 16\right) of the group {S}_{16} to generate our proposed S-box 4. |
Algorithm 2: Divide and conquer strategy based nonlinear booster algorithm. |
Step1: S1 \leftarrow the function F(n) generates bijective S-box S1(n×m) using coset graph. |
Step2: S2 \leftarrow S1 \therefore Here we are generating temporary copy of actual S-box, |
While 1: n \therefore Setting a loop that continue to execute loop body (Step 3 to 7) as long as condition holds true |
Step 3: Received 16 blocks of size 4\times 4 \leftarrow divide the S-box (S2) into blocks of size 128 bits. |
Step4: Received updated S-box (S2) \leftarrow Swap the one block size 4\times 4 with another one. |
Step5: NewNL \leftarrow calculate the nonlinearity of updated S-box. |
Step 6: Compare new NL with NL of actual S-box. |
Stept 7: If the new nonlinearity (NL) is greater than the actual NL, make this change permanent. Otherwise, reverse the change. |
end |
Step 8: We will receive an S-box with improved nonlinearity. |
7 | 167 | 60 | 72 | 84 | 183 | 100 | 3 | 157 | 238 | 228 | 20 | 69 | 226 | 123 | 40 |
152 | 204 | 44 | 208 | 255 | 166 | 141 | 24 | 162 | 89 | 215 | 148 | 224 | 142 | 30 | 249 |
116 | 160 | 77 | 79 | 195 | 59 | 177 | 156 | 117 | 207 | 219 | 15 | 35 | 17 | 91 | 66 |
185 | 143 | 222 | 225 | 173 | 254 | 104 | 139 | 94 | 65 | 102 | 196 | 197 | 36 | 31 | 145 |
5 | 172 | 233 | 239 | 76 | 78 | 227 | 25 | 6 | 92 | 223 | 158 | 232 | 55 | 179 | 41 |
26 | 62 | 114 | 43 | 137 | 129 | 51 | 186 | 206 | 176 | 90 | 237 | 112 | 198 | 1 | 135 |
211 | 111 | 190 | 230 | 241 | 163 | 9 | 180 | 110 | 250 | 146 | 113 | 16 | 47 | 133 | 96 |
33 | 19 | 242 | 125 | 18 | 121 | 68 | 107 | 52 | 147 | 122 | 23 | 56 | 81 | 210 | 61 |
217 | 216 | 201 | 103 | 109 | 67 | 63 | 144 | 236 | 251 | 205 | 161 | 153 | 99 | 29 | 27 |
182 | 71 | 0 | 150 | 32 | 235 | 170 | 73 | 138 | 247 | 155 | 85 | 203 | 88 | 130 | 22 |
192 | 64 | 120 | 80 | 252 | 253 | 119 | 234 | 189 | 115 | 220 | 214 | 70 | 169 | 159 | 229 |
97 | 98 | 118 | 187 | 231 | 14 | 175 | 191 | 154 | 171 | 13 | 106 | 57 | 93 | 53 | 202 |
11 | 174 | 54 | 38 | 132 | 199 | 101 | 82 | 188 | 164 | 21 | 128 | 74 | 10 | 2 | 45 |
105 | 50 | 39 | 149 | 75 | 140 | 87 | 194 | 221 | 213 | 178 | 124 | 34 | 134 | 127 | 108 |
212 | 248 | 245 | 136 | 58 | 184 | 8 | 48 | 240 | 168 | 200 | 151 | 244 | 209 | 95 | 83 |
37 | 4 | 246 | 218 | 46 | 28 | 12 | 193 | 126 | 49 | 42 | 243 | 165 | 181 | 131 | 86 |
20 | 116 | 237 | 8 | 167 | 218 | 0 | 185 | 93 | 9 | 94 | 166 | 176 | 182 | 102 | 106 |
129 | 115 | 118 | 208 | 78 | 160 | 143 | 165 | 22 | 157 | 112 | 179 | 145 | 124 | 16 | 225 |
212 | 219 | 226 | 72 | 25 | 215 | 98 | 50 | 42 | 152 | 26 | 198 | 28 | 149 | 70 | 59 |
201 | 85 | 103 | 247 | 180 | 38 | 134 | 69 | 49 | 95 | 249 | 213 | 105 | 121 | 138 | 181 |
45 | 14 | 41 | 144 | 29 | 195 | 161 | 67 | 47 | 220 | 254 | 132 | 27 | 60 | 206 | 51 |
76 | 87 | 120 | 48 | 139 | 12 | 199 | 37 | 240 | 174 | 189 | 34 | 63 | 211 | 99 | 131 |
104 | 128 | 141 | 56 | 194 | 100 | 233 | 183 | 170 | 108 | 5 | 153 | 113 | 10 | 130 | 142 |
173 | 58 | 217 | 1 | 110 | 65 | 151 | 43 | 190 | 97 | 33 | 96 | 89 | 178 | 238 | 83 |
252 | 6 | 196 | 216 | 82 | 150 | 31 | 11 | 19 | 135 | 68 | 123 | 228 | 21 | 122 | 158 |
175 | 55 | 214 | 3 | 162 | 86 | 17 | 184 | 30 | 36 | 133 | 171 | 188 | 127 | 197 | 146 |
18 | 80 | 227 | 40 | 13 | 200 | 92 | 159 | 154 | 77 | 79 | 234 | 54 | 156 | 2 | 177 |
44 | 101 | 224 | 137 | 91 | 209 | 64 | 15 | 109 | 46 | 210 | 53 | 248 | 231 | 192 | 230 |
187 | 117 | 126 | 202 | 81 | 232 | 7 | 88 | 207 | 168 | 71 | 169 | 193 | 253 | 23 | 111 |
164 | 186 | 222 | 239 | 74 | 172 | 24 | 39 | 236 | 203 | 61 | 163 | 119 | 148 | 245 | 62 |
235 | 229 | 140 | 250 | 205 | 251 | 242 | 241 | 155 | 223 | 125 | 244 | 246 | 204 | 75 | 243 |
221 | 57 | 84 | 191 | 107 | 35 | 136 | 255 | 114 | 52 | 32 | 4 | 90 | 147 | 66 | 73 |
082 | 123 | 151 | 201 | 210 | 152 | 006 | 176 | 228 | 158 | 029 | 118 | 117 | 213 | 126 | 081 |
171 | 248 | 032 | 121 | 080 | 120 | 025 | 012 | 155 | 194 | 203 | 156 | 150 | 084 | 250 | 061 |
148 | 038 | 063 | 089 | 231 | 141 | 197 | 095 | 056 | 107 | 030 | 221 | 208 | 161 | 115 | 053 |
255 | 185 | 237 | 193 | 218 | 241 | 192 | 196 | 005 | 235 | 190 | 128 | 022 | 187 | 039 | 251 |
083 | 175 | 183 | 130 | 142 | 062 | 002 | 238 | 104 | 099 | 067 | 143 | 229 | 047 | 106 | 108 |
059 | 239 | 249 | 073 | 233 | 180 | 090 | 091 | 163 | 174 | 004 | 114 | 222 | 068 | 064 | 100 |
207 | 140 | 055 | 027 | 125 | 102 | 164 | 216 | 093 | 076 | 243 | 060 | 111 | 145 | 077 | 230 |
058 | 186 | 041 | 028 | 014 | 070 | 031 | 189 | 166 | 212 | 159 | 088 | 247 | 000 | 078 | 253 |
045 | 160 | 103 | 219 | 036 | 157 | 169 | 065 | 105 | 177 | 016 | 245 | 240 | 001 | 003 | 127 |
232 | 136 | 138 | 252 | 037 | 225 | 162 | 168 | 096 | 137 | 023 | 110 | 149 | 008 | 098 | 195 |
170 | 009 | 033 | 215 | 226 | 011 | 085 | 050 | 153 | 021 | 206 | 191 | 013 | 094 | 246 | 242 |
182 | 042 | 181 | 113 | 79 | 179 | 122 | 224 | 133 | 204 | 109 | 217 | 147 | 040 | 154 | 057 |
167 | 205 | 173 | 178 | 044 | 043 | 198 | 112 | 086 | 046 | 017 | 024 | 026 | 072 | 200 | 132 |
188 | 139 | 172 | 071 | 124 | 209 | 054 | 010 | 034 | 075 | 244 | 116 | 097 | 101 | 066 | 007 |
254 | 214 | 087 | 052 | 236 | 165 | 144 | 131 | 019 | 146 | 184 | 051 | 015 | 223 | 119 | 220 |
211 | 049 | 069 | 020 | 129 | 234 | 135 | 092 | 199 | 227 | 134 | 202 | 048 | 018 | 074 | 035 |
150 | 219 | 211 | 254 | 098 | 194 | 033 | 023 | 198 | 148 | 225 | 195 | 012 | 199 | 224 | 025 |
131 | 107 | 015 | 084 | 160 | 109 | 203 | 240 | 034 | 141 | 166 | 218 | 209 | 068 | 003 | 132 |
065 | 061 | 044 | 100 | 137 | 040 | 181 | 094 | 035 | 041 | 011 | 173 | 079 | 083 | 247 | 237 |
016 | 031 | 054 | 202 | 167 | 136 | 077 | 006 | 182 | 248 | 170 | 037 | 221 | 104 | 253 | 067 |
081 | 060 | 215 | 189 | 080 | 128 | 097 | 164 | 039 | 106 | 184 | 046 | 186 | 200 | 208 | 112 |
056 | 102 | 146 | 214 | 229 | 062 | 233 | 238 | 116 | 122 | 156 | 169 | 021 | 127 | 070 | 174 |
178 | 239 | 180 | 045 | 117 | 147 | 246 | 192 | 222 | 206 | 129 | 172 | 118 | 099 | 171 | 119 |
213 | 090 | 130 | 149 | 216 | 242 | 126 | 087 | 022 | 210 | 110 | 075 | 052 | 093 | 236 | 232 |
140 | 008 | 051 | 004 | 145 | 227 | 074 | 176 | 228 | 066 | 095 | 013 | 059 | 231 | 076 | 155 |
036 | 255 | 201 | 055 | 157 | 153 | 159 | 175 | 103 | 017 | 113 | 071 | 001 | 252 | 187 | 154 |
005 | 020 | 250 | 096 | 125 | 057 | 092 | 196 | 197 | 124 | 072 | 142 | 163 | 101 | 204 | 115 |
028 | 042 | 029 | 114 | 089 | 053 | 193 | 223 | 027 | 191 | 135 | 220 | 226 | 014 | 120 | 165 |
134 | 111 | 241 | 230 | 139 | 082 | 235 | 207 | 058 | 143 | 019 | 002 | 177 | 162 | 190 | 158 |
188 | 030 | 151 | 078 | 185 | 064 | 088 | 026 | 108 | 183 | 018 | 243 | 212 | 000 | 050 | 152 |
105 | 032 | 179 | 121 | 091 | 038 | 069 | 217 | 048 | 234 | 024 | 063 | 144 | 009 | 123 | 138 |
161 | 007 | 073 | 245 | 010 | 249 | 043 | 049 | 168 | 086 | 133 | 251 | 085 | 047 | 244 | 205 |
S-box | {\boldsymbol{f}}_\bf{1} | {\boldsymbol{f}}_\bf{2} | {\boldsymbol{f}}_\bf{3} | {\boldsymbol{f}}_\bf{4} | {\boldsymbol{f}}_\bf{5} | {\boldsymbol{f}}_\bf{6} | {\boldsymbol{f}}_\bf{7} | {\boldsymbol{f}}_\bf{8} | Average |
Proposed 1 (Table 11) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 2 (Table 12) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 3 (Table 13) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 4 (Table 14) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Zhu [40] | 108 | 108 | 106 | 102 | 108 | 102 | 108 | 104 | 105.75 |
Zahid [41] | 110 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 111.75 |
Hussain [42] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Gautam et al. [43] | 108 | 106 | 104 | 98 | 102 | 102 | 98 | 74 | 99 |
Prime [44] | 94 | 100 | 104 | 104 | 102 | 100 | 98 | 94 | 99.5 |
S8 AES [45] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Xhi [46] | 106 | 104 | 106 | 106 | 104 | 106 | 104 | 106 | 105 |
AES [47] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Skipjac and Kea [48] | 104 | 108 | 108 | 108 | 108 | 104 | 104 | 106 | 106.75 |
Alkhaldi et al. [19] | 108 | 104 | 106 | 106 | 102 | 98 | 104 | 108 | 104 |
Chen et al. [49] | 100 | 102 | 103 | 104 | 106 | 106 | 106 | 108 | 104.3 |
Tang et al. [50] | 100 | 103 | 104 | 104 | 105 | 105 | 106 | 109 | 104.5 |
Khan et al. [37] | 102 | 108 | 106 | 102 | 106 | 106 | 106 | 98 | 104.25 |
Belazi et al. [51] | 106 | 106 | 106 | 104 | 108 | 102 | 106 | 104 | 105.25 |
Hua [52] | 106 | 106 | 108 | 106 | 102 | 102 | 108 | 104 | 105.25 |
Javeed [53] | 108 | 106 | 106 | 110 | 106 | 108 | 108 | 108 | 107.50 |
Detailed BIC Analysis for proposed S-box-4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---- | 102 | 104 | 100 | 106 | 106 | 106 | 106 | |
102 | ---- | 102 | 108 | 104 | 108 | 104 | 102 | |
104 | 102 | ---- | 104 | 108 | 108 | 102 | 104 | |
100 | 108 | 104 | ---- | 104 | 108 | 106 | 108 | |
106 | 104 | 108 | 104 | ---- | 96 | 104 | 98 | |
106 | 108 | 108 | 108 | 96 | ---- | 104 | 106 | |
106 | 104 | 102 | 106 | 104 | 104 | ---- | 104 | |
106 | 102 | 104 | 108 | 98 | 106 | 104 | ---- | |
Average BIC: 104.35 |
S-boxes | Minimum value | Average | Square deviation |
Proposed 1 | 96 | 103.42 | 2.56 |
Proposed 2 | 98 | 102.86 | 2.38 |
Proposed 3 | 96 | 104.57 | 2.41 |
Proposed 4 | 96 | 104.35 | 2.81 |
Hussain [42] | 112 | 112 | 0 |
Gautam [43] | 92 | 103 | 3.5225 |
Prime [44] | 94 | 101.71 | 3.53 |
S8 AES [54] | 112 | 112 | 0 |
Xyi [46] | 98 | 103.78 | 2.743 |
AES [47] | 112 | 112 | 0 |
Skipjac [48] | 102 | 104.14 | 1.767 |
SAC Results (S-box-1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0.484375 | 0.531250 | 0.484375 | 0.546875 | 0.484375 | 0.515625 | 0.484375 | 0.468750 | |
0.546875 | 0.500000 | 0.515625 | 0.546875 | 0.453125 | 0.515625 | 0.515625 | 0.468750 | |
0.484375 | 0.500000 | 0.500000 | 0.484375 | 0.515625 | 0.500000 | 0.500000 | 0.515625 | |
0.453125 | 0.546875 | 0.578125 | 0.515625 | 0.500000 | 0.578125 | 0.531250 | 0.484375 | |
0.531250 | 0.562500 | 0.484375 | 0.515625 | 0.515625 | 0.515625 | 0.515625 | 0.484375 | |
0.531250 | 0.468750 | 0.500000 | 0.500000 | 0.484375 | 0.484375 | 0.484375 | 0.515625 | |
0.515625 | 0.515625 | 0.531250 | 0.468750 | 0.500000 | 0.562500 | 0.500000 | 0.531250 | |
0.453125 | 0.484375 | 0.546875 | 0.562500 | 0.500000 | 0.484375 | 0.500000 | 0.531250 | |
Average SAC (S-box-1) | 0.508301 | |||||||
Average SAC (S-box-2) | 0.504150 | |||||||
Average SAC (S-box-3) | 0.499756 | |||||||
Average SAC (S-box-4) | 0.506348 |
S-boxes | Max value | Max LP |
Proposed 1 (Table 11) | 160 | 0.125 |
Proposed 2 (Table 12) | 162 | 0.133 |
Proposed 3 (Table 13) | 164 | 0.141 |
Proposed 4 (Table 14) | 158 | 0.117 |
AES [47] | 144 | 0.062 |
Hussain [42] | 144 | 0.062 |
Skipjack [48] | 156 | 0.109 |
Prime [44] | 162 | 0.132 |
Gautam [43] | 164 | 0.2109 |
S8 AES [54] | 144 | 0.062 |
Xyi [46] | 168 | 0.156 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 8 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 6 |
6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 |
6 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 6 | 6 | 6 |
8 | 8 | 6 | 8 | 8 | 6 | 8 | 4 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 4 | 6 | 6 | 8 | 6 | 8 | 6 | 4 | 8 |
6 | 10 | 12 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 8 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 4 | 8 | 6 | 6 |
6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 6 | 8 | 6 |
8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 |
8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 8 | 6 |
8 | 6 | 8 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 6 |
6 | 8 | 8 | 8 | 8 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 |
Max Val: 12 |
S-box | No. of fixed point | No. of reverse fixed point |
Lambić [32] | 2 | 3 |
Jamal [58] | 18 | None |
Tian [59] | 1 | 1 |
Çavuşoğlu [60] | 0 | 2 |
Özkaynak [61] | 4 | 1 |
Ullah [23] | 4 | None |
Proposed S-box-1 (Table-11) | 3 | 1 |
Proposed S-box-2 (Table-12) | 1 | 1 |
Proposed S-box-3 (Table-13) | 2 | None |
Proposed S-box-4 (Table-14) | 3 | 1 |