Processing math: 20%
Research article

A higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel

  • Received: 01 March 2024 Revised: 10 April 2024 Accepted: 16 April 2024 Published: 19 April 2024
  • MSC : 65R20, 65D30

  • In this paper, we proposed a higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel by using the modified block-by-block method. First, we constructed a high order uniform accuracy scheme method in this paper by dividing the entire domain into some small sub-domains and approximating the integration function with biquadratic interpolation in each sub-domain. Second, we rigorously proved that the convergence order of the higher order uniform accuracy scheme was O(h3+σ1s+h3+σ2t) with 0<σ1,σ2<1 by using the discrete Gronwall inequality. Finally, two numerical examples were used to illustrate experimental results with different values of ψ to support the theoretical results.

    Citation: Ziqiang Wang, Jiaojiao Ma, Junying Cao. A higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel[J]. AIMS Mathematics, 2024, 9(6): 14325-14357. doi: 10.3934/math.2024697

    Related Papers:

    [1] Ziqiang Wang, Qin Liu, Junying Cao . A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. AIMS Mathematics, 2023, 8(6): 13096-13122. doi: 10.3934/math.2023661
    [2] Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao . Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations. AIMS Mathematics, 2023, 8(12): 29759-29796. doi: 10.3934/math.20231523
    [3] Junying Cao, Zhongqing Wang, Ziqiang Wang . Stability and convergence analysis for a uniform temporal high accuracy of the time-fractional diffusion equation with 1D and 2D spatial compact finite difference method. AIMS Mathematics, 2024, 9(6): 14697-14730. doi: 10.3934/math.2024715
    [4] Chuanli Wang, Biyun Chen . An hp-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010
    [5] M. Chandru, T. Prabha, V. Shanthi, H. Ramos . An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term. AIMS Mathematics, 2024, 9(9): 24998-25027. doi: 10.3934/math.20241219
    [6] Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang . A third-order numerical method for solving fractional ordinary differential equations. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026
    [7] Junying Cao, Qing Tan, Zhongqing Wang, Ziqiang Wang . An efficient high order numerical scheme for the time-fractional diffusion equation with uniform accuracy. AIMS Mathematics, 2023, 8(7): 16031-16061. doi: 10.3934/math.2023818
    [8] Jian Zhang, Jinjiao Hou, Jing Niu, Ruifeng Xie, Xuefei Dai . A high order approach for nonlinear Volterra-Hammerstein integral equations. AIMS Mathematics, 2022, 7(1): 1460-1469. doi: 10.3934/math.2022086
    [9] Ashish Awasthi, Riyasudheen TK . An accurate solution for the generalized Black-Scholes equations governing option pricing. AIMS Mathematics, 2020, 5(3): 2226-2243. doi: 10.3934/math.2020147
    [10] Adil Owaid Jhaily, Saeed Sohrabi, Hamid Ranjbar . On the numerical solution of highly oscillatory Fredholm integral equations using a generalized quadrature method. AIMS Mathematics, 2025, 10(3): 5631-5650. doi: 10.3934/math.2025260
  • In this paper, we proposed a higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel by using the modified block-by-block method. First, we constructed a high order uniform accuracy scheme method in this paper by dividing the entire domain into some small sub-domains and approximating the integration function with biquadratic interpolation in each sub-domain. Second, we rigorously proved that the convergence order of the higher order uniform accuracy scheme was O(h3+σ1s+h3+σ2t) with 0<σ1,σ2<1 by using the discrete Gronwall inequality. Finally, two numerical examples were used to illustrate experimental results with different values of ψ to support the theoretical results.



    Volterra integral equations (VIEs) are important in many fields and they have been studied extensively. The purpose of this paper is to investigate the higher-order uniform accuracy numerical solution of nonlinear ψ-VIEs with weakly singular kernel in two dimension,

    ν(s,t)=g(s,t)+1Γ(σ1)Γ(σ2)satcω(s,t,τ,η,ν(τ,η))(ψ(s)ψ(τ))1σ1(ψ(t)ψ(η))1σ2dψ(η)dψ(τ), (1.1)

    where (s,t)H,0<σ1,σ2<1, ν(s,t) is an unknown function defined in H=[a,b]×[c,d]. g,ω are known functions and defined in H and Ω=H×H×R, respectively. ψ is a monotonically increasing function and ψ>0.

    Various numerical methods for solving the spectral form of the ψ-VIEs (1.1) have already been constructed by the direct quadrature methods [1,2], spectral methods [3,4], difference methods [5], operational matrix methods [6,7], block-by-block method[8], and Taylor polynomials[9]. More numerical methods are available for readers to read [10,11,12,13,14]. For the numerical solution for the general ψ-VIEs (1.1), many researchers have studied this topic and achieved some research results. For example, in [16], the Chebyshev wavelets were employed to establish a computational procedure for ψ-VIEs. In [17], they established a Maxwell model with the ψ-Caputo fractional derivative. In [18], they presented a novel pharmacokinetic/pharmacodynamic model with ψ-Caputo fractional derivatives for the induction phase of anesthesia. In [19], they presented a generalization of the ψ-Hilfer fractional derivative. In [20], they investigated the existence, uniqueness, and Ulam-Hyers stabilities of mild solutions of ψ-fractional differential equations. They investigated the multiple ψ-type stability of fractional-order quaternion-valued neural networks in [21]. In [22], they studied a new class of impulsive boundary value problems with the generalized ψ-Caputo fractional derivatives. In [23], the stability of the autonomous linear α(0,1) order ψ-Caputo fractional differential system was investigated. In [24], they presented a numerical method for solving the ψ-Caputo fractional differential equations. In [25], they solved a nonsingularity kernel VIEs by the fourth order Lagrange basis function.

    Therefore, the main aim of this work is to propose an efficient high order time uniform numerical scheme for nonlinear ψ-VIEs with weakly singular kernel in two dimension (1.1) by using biquadratic interpolation in each sub-domain with the convergence order O(h3+σ1s+h3+σ2t) with 0<σ1,σ2<1. The modified block-by-block method is introduced to discrete nonlinear ψ-VIEs with weakly singular kernel in two dimension. The proposed scheme can avoid convergence accuracy degeneracy near the two boundary layers by coupled calculating the numerical solutions, which achieves the sharp convergence order without the fine mesh near the boundary layer. The proposed scheme is efficient and does not require coupled solutions in the other sub-domains. The numerical scheme will be established in this article to provide a paradigm for establishing a high-order scheme of the nonlinear ψ-VIEs with weakly singular kernel in two dimension and analyzing its convergence and stability of a high-order numerical scheme. It can also provide readers with a feasible method for constructing high order time numerical schemes and their theoretical analysis for similar nonlinear ψ-VIEs with weakly singular kernel in two dimension.

    The article follows this structure: A higher-order uniform accuracy numerical scheme is introduced in Section 2. Section 3 estimates the truncation error of the higher-order uniform accuracy numerical scheme. Section 4 analyzes the convergence of the higher-order uniform accuracy numerical scheme. In Section 5, we demonstrate the efficiency of the higher-order uniform accuracy numerical scheme and supports our theoretical findings through two numerical experiments. Finally, some conclusions are drawn in Section 6.

    In this section, we will consider the following nonlinear ψ-fractional VIEs in two dimension (1.1) based on the idea of [26,27]. For ω(s,t,τ,η,ν(τ,η)), we assume that it satisfies the following Lipschitz continuity for the fifth variable

    |ω(s,t,τ,η,ν1(τ,η))ω(s,t,τ,η,ν2(τ,η))|L|ν1(τ,η)ν2(τ,η)|, L>0. (2.1)

    Next, we will approximate the nonlinear ψ-fractional VIEs in two dimension of (1.1) by using biquadratic Lagrange interpolation. Denote positive integers L,K, and hs=ba2L, ht=dc2K. Let si=a+ihs(0i2L),tj=c+jht(0j2K), νi,j be the numerical solution at (si,tj), and ωi,j(τ,η,ν(τ,η))=ω(si,tj,τ,η,ν(τ,η)), gi,j=g(si,tj). By using simple calculations, one can obtain that νi,0=g(si,0), ν0,j=g(0,tj).

    Let ˆfp,i(s),p=0,1,2,0i2L2 and fq,j(t),q=0,1,2,0j2K2 be the quadratic Lagrange basis functions at points si,si+1,si+2 and tj,tj+1,tj+2, respectively,

    ˆf0,i(τ)=(ψ(τ)ψ(si+1))(ψ(τ)ψ(si+2))(ψ(si)ψ(si+1))(ψ(si)ψ(si+2)),ˆf1,i(τ)=(ψ(τ)ψ(si))(ψ(τ)ψ(si+2))(ψ(si+1)ψ(si))(ψ(si+1)ψ(si+2)),ˆf2,i(τ)=(ψ(τ)ψ(si))(ψ(τ)ψ(si+1))(ψ(si+2)ψ(si))(ψ(si+2)ψ(si+1));f0,j(η)=(ψ(η)ψ(tj+1))(ψ(η)ψ(tj+2))(ψ(tj)ψ(tj+1))(ψ(tj)ψ(tj+2)),f1,j(η)=(ψ(η)ψ(tj))(ψ(η)ψ(tj+2))(ψ(tj+1)ψ(tj))(ψ(tj+1)ψ(tj+2)),f2,j(η)=(ψ(η)ψ(tj))((ψ(η)ψ(tj+1))(ψ(tj+2)ψ(tj))(ψ(tj+2)ψ(tj+1)).

    Let νi,j, νi,2k+1, νi,2k+2, ν2l+1,j, and ν2l+2,j be known, where 0i2l,1lL1,0j2k,1kK1,i,j,k,l are integers. We will construct an approximate scheme for ν2l+1,2k+1, ν2l+1,2k+2, ν2l+2,2k+1, and ν2l+2,2k+2.

    For ν(s2l+1,t2k+1), we have

    ν(s2l+1,t2k+1)=g2l+1,2k+1+1Γ(σ1)1Γ(σ2)s1at1c(ψ(s2l+1)ψ(τ))σ11(ψ(t2k+1)ψ(η))1σ2ω2l+1,2k+1(τ,η,ν(τ,η))dψ(η)dψ(τ)+1Γ(σ1)1Γ(σ2)kj=1s1at2j+1t2j1(ψ(s2l+1)ψ(τ))σ11(ψ(t2k+1)ψ(η))1σ2ω2l+1,2k+1(τ,η,ν(τ,η))dψ(η)dψ(τ)+1Γ(σ1)1Γ(σ2)li=1s2i+1s2i1t1c(ψ(s2l+1)ψ(τ))σ11(ψ(t2k+1)ψ(η))1σ2ω2l+1,2k+1(τ,η,ν(τ,η))dψ(η)dψ(τ)+1Γ(σ1)1Γ(σ2)li=1kj=1s2i+1s2i1t2j+1t2j1(ψ(s2l+1)ψ(τ))σ11(ψ(t2k+1)ψ(η))1σ2   ×ω2l+1,2k+1(τ,η,ν(τ,η))dψ(η)dψ(τ)g2l+1,2k+1+D1+D2+D3+D4. (2.2)

    For D1, one can obtain that

    D1=1Γ(σ1)1Γ(σ2)s1at1c(ψ(s2l+1)ψ(τ))σ11(ψ(t2k+1)ψ(η))1σ2ω2l+1,2k+1(τ,η,ν(τ,η))dψ(η)dψ(τ)1Γ(σ1)1Γ(σ2)s1at1c(ψ(s2l+1)ψ(τ))σ11(ψ(t2k+1)ψ(η))1σ22p=02q=0ˆfp,0(τ)fq,0(η)×ω2l+1,2k+1(sp,tq,νp,q)dψ(η)dψ(τ)=2p=02q=0Ap,02l+1Bq,02k+1ω2l+1,2k+1(sp,tq,νp,q), (2.3)

    where Ap,02l+1, Bq,02k+1 are defined by

    Ap,02l+1=1Γ(σ1)s1a(ψ(s2l+1)ψ(τ))σ11ˆfp,0(τ)dψ(τ),p=0,1,2, (2.4)
    Bq,02k+1=1Γ(σ2)t1c(ψ(t2k+1)ψ(η))σ21fq,0(η)dψ(η),q=0,1,2. (2.5)

    Similarly, for D2,D3, and D4, we have

    D2kj=12p=02q=0Ap,02l+1Bq,j2k+1ω2l+1,2k+1(sp,t2j1+q,νp,2j1+q), (2.6)
    D3li=12p=02q=0Ap,i2l+1Bq,02k+1ω2l+1,2k+1(s2i1+p,tq,ν2i1+p,q), (2.7)
    D4li=1kj=12p=02q=0Ap,i2l+1Bq,j2k+1ω2l+1,2k+1(s2i1+p,t2j1+q,ν2i1+p,2j1+q), (2.8)

    where Ap,i2l+1 and Bq,j2k+1 are defined as follows:

    Ap,i2l+1=1Γ(σ1)s2i+1s2i1(ψ(s2l+1)ψ(τ))σ11ˆfp,2i1(τ)dψ(τ),p=0,1,2;i=1,2,,l, (2.9)
    Bq,j2k+1=1Γ(σ2)t2j+1t2j1(ψ(t2k+1)ψ(η))σ21fq,2j1(η)dψ(η),q=0,1,2;j=1,2,,k, (2.10)

    and Ap,02l+1, Bq,02k+1 are defined by (2.4) and (2.5), respectively.

    Bringing (2.3) and (2.6)–(2.8) into (2.2), we have

    ν2l+1,2k+1=g2l+1,2k+1+2p=02q=0Ap,02l+1Bq,02k+1ω2l+1,2k+1(sp,tq,νp,q)+kj=12p=02q=0Ap,02l+1Bq,j2k+1ω2l+1,2k+1(sp,t2j1+q,νp,2j1+q)+li=12p=02q=0Ap,i2l+1Bq,02k+1ω2l+1,2k+1(s2i1+p,tq,ν2i1+p,q)+li=1kj=12p=02q=0Ap,i2l+1Bq,j2k+1ω2l+1,2k+1(s2i1+p,t2j1+q,ν2i1+p,2j1+q). (2.11)

    For ν(s2l+2,t2k+1), ν(s2l+1,t2k+2), and ν(s2l+2,t2k+2), we have

    ν(s2l+2,t2k+1)g2l+2,2k+1+li=02p=02q=0Ap,i2l+2Bq,02k+1ω2l+2,2k+1(s2i+p,tq,ν2i+p,q)+li=0kj=12p=02q=0Ap,i2l+2Bq,j2k+1ω2l+2,2k+1(s2i+p,t2j1+q,ν2i+p,2j1+q), (2.12)
    ν(s2l+1,t2k+2)g2l+1,2k+2+kj=02p=02q=0Ap,02l+1Bq,j2k+2ω2l+1,2k+2(sp,t2j+q,νp,2j+q)+li=1kj=02p=02q=0Ap,i2l+1Bq,j2k+2ω2l+1,2k+2(s2i1+p,t2j+q,ν2i1+p,2j+q), (2.13)
    ν(s2l+2,t2k+2)g2l+2,2k+2+li=0kj=02p=02q=0Ap,i2l+2Bq,j2k+2ω2l+2,2k+2(s2i+p,t2j+q,ν2i+p,2j+q), (2.14)

    where Ap,i2l+2 and Bq,j2k+2 are defined as follows:

    Ap,i2l+2=1Γ(σ1)s2i+2s2i(ψ(s2l+2)ψ(τ))σ11ˆfp,2i(τ)dψ(τ),p=0,1,2;i=0,1,,l, (2.15)
    Bq,j2k+2=1Γ(σ2)t2j+2t2j(ψ(t2k+2)ψ(η))σ21fq,2j(η)dψ(η),q=0,1,2;j=0,1,,k, (2.16)

    and Ap,02l+1, Ap,i2l+1, Bq,02k+1, and Bq,j2k+1 are defined in (2.4), (2.9), (2.5), and (2.10).

    Similar to the same line of (2.11), we can obtain the other point's numerical scheme. A detailed derivation is given in Appendix A.

    Combining with (A.1), (A.4)–(A.6), (A.9), (A.10)–(A.12), (A.13)–(A.16), (2.11)–(2.14), we obtain a high-order numerical scheme for (1.1) as i1,j1=1,2,

    νi1,j1=gi1,j1+2p=02q=0Ap,0i1Bq,0j1ωi1,j1(sp,tq,νp,q),ν2l+1,j1=g2l+1,j1+2p=02q=0Ap,02l+1Bq,0j1ω2l+1,j1(sp,tq,νp,q)+li=12p=02q=0Ap,i2l+1Bq,0j1ω2l+1,j1(s2i1+p,tq,ν2i1+p,q),ν2l+2,j1=g2l+2,j1+li=02p=02q=0Ap,i2l+2Bq,0j1ω2l+2,j1(s2i+p,tq,ν2i+p,q),νi1,2k+1=gi1,2k+1+2p=02q=0Ap,0i1Bq,02k+1ωi1,2k+1(sp,tq,νp,q)+kj=12p=02q=0Ap,0i1Bq,j2k+1ωi1,2k+1(sp,t2j1+q,νp,2j1+q),νi1,2k+2=gi1,2k+2+kj=02p=02q=0Ap,0i1Bq,j2k+2ωi1,2k+2(sp,t2j+q,νp,2j+q),ν2l+1,2k+1=g2l+1,2k+1+2p=02q=0Ap,02l+1Bq,02k+1ω2l+1,2k+1(sp,tq,νp,q)+kj=12p=02q=0Ap,02l+1Bq,j2k+1ω2l+1,2k+1(sp,t2j1+q,νp,2j1+q)+li=12p=02q=0Ap,i2l+1Bq,02k+1ω2l+1,2k+1(s2i1+p,tq,ν2i1+p,q)+li=1kj=12p=02q=0Ap,i2l+1Bq,j2k+1ω2l+1,2k+1(s2i1+p,t2j1+q,ν2i1+p,2j1+q),ν2l+2,2k+1=g2l+2,2k+1+li=02p=02q=0Ap,i2l+2Bq,02k+1ω2l+2,2k+1(s2i+p,tq,ν2i+p,q)+li=0kj=12p=02q=0Ap,i2l+2Bq,j2k+1ω2l+2,2k+1(s2i+p,t2j1+q,ν2i+p,2j1+q),ν2l+1,2k+2=g2l+1,2k+2+lj=02p=02q=0Ap,02l+1Bq,j2k+2ω2l+1,2k+2(sp,t2j+q,νp,2j+q)+li=1kj=02p=02q=0Ap,i2l+1Bq,j2k+2ω2l+1,2k+2(s2i1+p,t2j+q,ν2i1+p,2j+q),ν2l+2,2k+2=g2l+2,2k+2+li=0kj=02p=02q=0Ap,i2l+2Bq,j2k+2ω2l+2,2k+2(s2i+p,t2j+q,ν2i+p,2j+q). (2.17)

    Let Ei,j be the truncation error of scheme (2.17) at point (si,tj) as follows:

    Ei,j:=ν(si,tj)ˉνi,j, (3.1)

    where ˉνi,j is the numerical solution for ν(si,tj). For instance, at the point (s2l+1,t2k+1), ˉνi,j is defined as follows:

    ˉν2l+1,2k+1=g2l+1,2k+1+2p=02q=0Ap,02l+1Bq,02k+1ω2l+1,2k+1(sp,tq,ν(sp,tq))+kj=12p=02q=0Ap,02l+1Bq,j2k+1ω2l+1,2k+1(sp,t2j1+q,ν(sp,t2j1+q))+li=12p=02q=0Ap,i2l+1Bq,02k+1ω2l+1,2k+1(s2i1+p,tq,ν(s2i1+p,tq))+li=1kj=12p=02q=0Ap,i2l+1Bq,j2k+1ω2l+1,2k+1(s2i1+p,t2j1+q,ν(s2i1+p,t2j1+q)). (3.2)

    In order to analyze error estimation for the scheme (2.17), we will introduce the following lemmas.

    Lemma 3.1. For all ψC1(I), an increasing function such that ψ(s)>0, we have

    s1a(ψ(s2l+1)ψ(τ))σ11dψ(τ)21σ1rσ1(2l+1)σ11hσ1s,t1c(ψ(t2k+1)ψ(η))σ21dψ(η)21σ2ˉrσ2(2k+1)σ21hσ2t,

    where

    r=maxs[a,b]ψ(s),ˉr=maxt[c,d]ψ(t). (3.3)

    Proof. Using the integral mean value theorem and Lagrange mean value theorem, one can get

    s1a(ψ(s2l+1)ψ(τ))σ11dψ(τ)=(ψ(s2l+1)ϱ1)σ11(ψ(s1)ψ(a))(ψ(s2l+1)ψ(s1))σ11(ψ(s1)ψ(a))=(ψ(θ2l+1))σ11(s2l+1s1)σ11ψ(θ1)(s1a)=(ψ(θ2l+1))σ11(2lhs)σ11ψ(θ1)(s1a)=(ψ(θ2l+1))σ11(2l+1)σ11hσ11sψ(θ1)hs(2l2l+1)σ1121σ1rσ1(2l+1)σ11hσ1s,

    where ϱ1(ψ(a),ψ(s1)), θ2l+1(s1,s2l+1), θ1(a,s1), and r is shown in (3.3).

    Similarly, t1c(ψ(t2k+1)ψ(η))σ21dψ(η)21σ2ˉrσ2(2k+1)σ21hσ2t, where ˉr is shown in (3.3). Therefore, Lemma 3.1 has been proven.

    Lemma 3.2. Let Ei,j be defined by (3.1), ω(,,,,ν(,))C4([a,b]×[c,d]), and ν(,)C4([a,b]×[c,d]), then

    |Ei,j|C(h3+σ1s+h3+σ2t),

    where C is a constant independent of hs,ht.

    Proof. For a detailed proof, see Appendix B.

    Lemma 4.1. The coefficients are estimated as follows:

    |Ap,01|Chσ1s, |Ap,02|Chσ1s, |Ap,i2l+1|Chσ1s(2l2i)σ11,|Ap,i2l+2|Chσ1s(2l+22i)σ11,|Ap,l2l+1|C2σ1hσ1s, |Ap,l2l+2|C2σ1hσ1s,|Bq,01|Chσ2t, |Bq,02|Chσ2t, |Bq,j2k+1|Chσ2t(2k2j)σ21,|Bq,j2k+2|Chσ2t(2k+22j)σ21, |Bq,k2k+1|C2σ2hσ2t,|Bq,k2k+2|C2σ2hσ2t,

    where C is independent of hs and ht. In equation (A.2), (A.7), (2.4), (2.9), (2.15) and (A.3), (A.8), (2.5), (2.10), (2.16), we have the definition of Ap,01, Ap,02, Ap,02l+1, Ap,i2l+1, Ap,i2l+2 and Bq,01, Bq,02, Bq,02k+1, Bq,j2k+1, Bq,j2k+2, where p,q=0,1,2, i=0,1,,l1, j=0,1,,k1, l=1,2,,L1, and k=1,2,,K1.

    Proof. By employing the Lagrange mean value theorem, we have

    |A0,01|=|1Γ(σ1)s1a(ψ(s1)ψ(τ))σ11ˆf0,0(τ)dψ(τ)|1Γ(σ1)s1a(ψ(s1)ψ(τ))σ11|(ψ(τ)ψ(s1))(ψ(τ)ψ(s2))(ψ(s0)ψ(s1))(ψ(s0)ψ(s2))|dψ(τ)1Γ(σ1)s1a(ψ(s1)ψ(τ))σ11dψ(τ)=1Γ(σ1+1)(ψ(s1)ψ(a))σ1=1Γ(σ1+1)(ψ(ξ1)(s1a))σ11Γ(σ1+1)rσ1hσ1sChσ1s,

    where r is defined by (3.3), ξ1(a,s1), and

    |A0,02|=|1Γ(σ1)s2a(ψ(s2)ψ(τ))σ11ˆf0,0(τ)dψ(τ)|1Γ(σ1)s2a(ψ(s2)ψ(τ))σ11dψ(τ)=1Γ(σ1+1)(ψ(s2)ψ(a))σ1=1Γ(σ1+1)(ψ(ξ0)(s2a))σ11Γ(σ1+1)(2r)σ1hσ1sChσ1s,

    where ξ0(a,s2).

    In the same way, we can get

    |A1,01|Chσ1s,  |A2,01|Chσ1s,  |A1,02|Chσ1s,  |A2,02|Chσ1s.

    For the estimation of |A0,02l+1|, we can use the integral mean value theorem and Lagrange mean value theorem,

    |A0,02l+1|=|1Γ(σ1)s1a(ψ(s2l+1)ψ(τ))σ11ˆf0,0(τ)dψ(τ)|1Γ(σ1)s1a(ψ(s2l+1)ψ(τ))σ11dψ(τ)hsΓ(σ1)(ψ(s2l+1)ψ(s1))σ11ψ(s1)rhsΓ(σ1)(ψ(ξ1)(s2l+1s1))σ11rσ1Γ(σ1)(2l)σ11hσ1sChσ1s(2l)σ11.

    Similarly, we have

    |A1,02l+1|Chσ1s(2l)σ11,  |A2,02l+1|Chσ1s(2l)σ11.

    We can use the integral mean value theorem and Lagrange mean value theorem to get

    |Ap,i2l+1|=|1Γ(σ1)s2i+1s2i1(ψ(s2l+1)ψ(τ))σ11ˆfp,2i1(τ)dψ(τ)|1Γ(σ1)s2i+1s2i1(ψ(s2l+1)ψ(τ))σ11ψ(τ)dτ2hsrΓ(σ1)(ψ(s2l+1)ψ(s2i+1))σ11=2hsrΓ(σ1)(ψ(ξ2i1))σ11hσ11s[2l+1(2i+1)]σ112hsΓ(σ1)rσ1hσ11s(2l2i)σ11Chσ1s(2l2i)σ11,

    where ξ2i1(s2i1,s2i+1).

    In the same way, we have

    |Ak,i2l+2|Chσ1s(2l+22i)σ11,i=1,2,,l1.

    When i=l,

    |Ap,l2l+1|=|1Γ(σ1)s2l+1s2l1(ψ(s2l+1)ψ(τ))σ11ˆfp,2l1(τ)dτ|1Γ(σ1)s2l+1s2l1(ψ(s2l+1)ψ(τ))σ11|ˆfp,2l1(τ)|dψ(τ)1Γ(σ1)s2l+1s2l1(ψ(s2l+1)ψ(τ))σ11dψ(τ)=1Γ(σ1+1)(ψ(s2l+1)ψ(s2l1))σ1=1Γ(σ1+1)(ψ(ξ2l+1)(s2l+1s2l1))σ1hσ1sΓ(σ1+1)(2r)σ1C2σ1hσ1s.

    Similarly, we have |Ap,l2l+2|C2σ1hσ1s. Using the same approach, we can estimate |Bq,01|,|Bq,02|,|Bq,02k+1|,|Bq,j2k+1|,|Bq,j2k+2|,|Bq,k2k+1|,|Bq,k2k+2| to be

    |Bq,01|Chσ2t,  |Bq,02|Chσ2t,|Bq,j2k+1|Chσ2t(2k2j)σ21,|Bq,j2k+2|Chσ2t(2k+22j)σ21,|Bq,k2k+1|C2σ2hσ2t,  |Bq,k2k+2|C2σ2hσ2t.

    The proof of Lemma 4.1 is then completed.

    Theorem 4.1. Let ν(si,tj) be the exact solution of formula (1.1) and νi,j be the numerical solution. If w satisfies condition (2.1), ω(,,,,ν(,))C4([a,b]×[c,d]), and ν(,)C4([a,b]×[c,d]), the step size satisfies the following formula:

    2σ1CL1hσ1shσ2t1,  2σ2CL1hσ1shσ2t1,2σ12σ2CL1hσ1shσ2t1,  CL1(dc)σ2σ2hσ1s(2l)σ111. (4.1)

    We have

    |ν(si,tj)νi,j|C(h3+σ1s+h3+σ2t),i=0,1,,2L;j=0,1,,2K, (4.2)

    where C is independent of hs and ht.

    Proof. i=0,1,,2L;j=0,1,,2K; let ei,j=ν(si,tj)νi,j=ν(si,tj)ˉνi,j+ˉνi,jνi,j=ˉνi,jνi,j+Ei,j. When i,j=1,2, we have ei,j as follows:

    ei,j=2p=02q=0Ap,0iBq,0j[ωi,j(sp,tq,ν(sp,tq))ωi,j(sp,tq,νp,q)]+Ei,j.

    According to (2.1) and Lemma 4.1, there is

    |ei,j|CL1hσ1shσ2t2p=02q=0|ep,q|+|Ei,j|,i,j=1,2.

    Combining the above four inequalities, we have

    |ei,j|CL1(|E1,1|+|E2,1|+|E1,2|+|E2,2|),i,j=1,2.

    That is,

    |ei,j|C(h3+σ1s+h3+σ2t),i,j=1,2. (4.3)

    When i3, j=1,2, we have

    e2l+1,1=2p=02q=0Ap,02l+1Bq,01[ω2l+1,1(sp,tq,ν(sp,tq))ω2l+1,1(sp,tq,νp,q)]+li=12p=02q=0Ap,i2l+1Bq,01[ω2l+1,1(s2i1+p,tq,ν(s2i1+p,tq))ω2l+1,1(s2i1+p,tq,ν2i1+p,q)]+E2l+1,1,
    e2l+1,2=2p=02q=0Ap,02l+1Bq,02[ω2l+1,2(sp,tq,ν(sp,tq))ω2l+1,2(sp,tq,νp,q)]+li=12p=02q=0Ap,i2l+1Bq,02[ω2l+1,2(s2i1+p,tq,ν(s2i1+p,tq))ω2l+1,2(s2i1+p,tq,ν2i1+p,q)]+E2l+1,2,
    e2l+2,1=li=02p=02q=0Ap,i2l+2Bq,01[ω2l+2,1(s2i+p,tq,ν(s2i+p,tq))ω2l+2,1(s2i+p,tq,ν2i+p,q)]+E2l+2,1,e2l+2,2=li=02p=02q=0Ap,i2l+2Bq,02[ω2l+2,2(s2i+p,tq,ν(s2i+p,tq))ω2l+2,2(s2i+p,tq,ν2i+p,q)]+E2l+2,2,

    where Ap,02l+1, Ap,i2l+1 and Bq,01, Bq,02 are defined in (2.4), (2.9) and (A.3), (A.8), and it satisfies with Lemma 4.1 that we have

    |e2l+1,k1|CL12p=02q=0hσ1shσ2t(2l)σ11|ep,q|+CL1l1i=12p=02q=0hσ1s(2l2i)σ11hσ2t|e2i1+p,q|+CL12p=02q=02σ1hσ1shσ2t|e2l1+p,q|+|E2l+1,k1|,|e2l+2,k1|CL12p=02q=0hσ1shσ2t(2l+2)σ11|ep,q|+CL1l1i=12p=02q=0hσ1s(2l+22i)σ11hσ2t|e2i+p,q|+CL12p=02q=02σ1hσ1shσ2t|e2l+p,q|+|E2l+2,k1|,

    where k1=1,2.

    For the sake of convenience, we take

    ˉei=max{|ei,1|,|ei,2|,i=0,1,,2L},ˉEi=max{|Ei,1|,|Ei,2|,i=0,1,,2L}.

    Therefore, we get

    ˉe2l+1CL1hσ1shσ2t2li=0(2l+1i)σ11ˉei+2σ1CL1hσ1shσ2tˉe2l+1+ˉE2l+1, (4.4)
    ˉe2l+2CL1hσ1shσ2t2l+1i=0(2l+2i)σ11ˉei+2σ1CL1hσ1shσ2tˉe2l+2+ˉE2l+2. (4.5)

    For (4.4), we have

    \begin{eqnarray} \left \| \bar{e}_{2l+1} \right \|\le CL_{1}h _{s}^{\sigma_{1}}h _{t}^{\sigma_{2}}\sum\limits_{i = 0}^{2l}(2l+1-i)^{\sigma_{1}-1}\left \| \bar{e}_{i} \right \| +C \| \bar{E}_{2l+1} \|. \end{eqnarray} (4.6)

    For inequality (4.6), use Gronwall inequality [28]. We have

    \begin{eqnarray*} \left \| \bar{e}_{2l+1} \right \| &\!\!\!\le&\!\!\!CL_{1}h _{s}^{\sigma_{1}}h _{t}^{\sigma_{2}}\sum\limits_{i = 0}^{2l}(2l+1-i)^{\sigma_{1}-1}\left \| \bar{e}_{i} \right \| +C \| \bar{E}_{2l+1} \| \\ &\!\!\!\le&\!\!\! C \| \bar{E}_{2l+1} \|E_{\sigma_{1}}(CL_{1}h _{t}^{\sigma_{2}}\Gamma(\sigma_{1})((2l+1)h _{s})^{\sigma_{1}}) \le C \| \bar{E}_{2l+1} \|E_{\sigma_{1}}(CL_{1}(b-a)^{\sigma_{1}}h _{t}^{\sigma_{2}}\Gamma(\sigma_{1})). \end{eqnarray*}

    Using the same method for (4.5), we can get

    \begin{eqnarray*} \left \| \bar{e}_{2l+2} \right \| \le C \| \bar{E}_{2l+2} \|E_{\sigma_{1}}(CL_{1}(b-a)^{\sigma_{1}}h _{t}^{\sigma_{2}}\Gamma(\sigma_{1})). \end{eqnarray*}

    When i = 1, 2, j \ge 3 computing e_{i, j} is analogous to computing e_{i, j} for i \ge 3, j = 1, 2 ; hence, we omitted it. According to the results above, combined with Lemma 3.2, we have

    \begin{eqnarray} &&\| e_{i,j} \| \le C(h _{s}^{3+\sigma_{1}}+h _{t}^{3+\sigma_{2}}),i\ge 3,j = 1,2,\\ &&\| e_{i,j} \| \le C(h _{s}^{3+\sigma_{1}}+h _{t}^{3+\sigma_{2}}),i = 1,2,j\ge 3. \end{eqnarray} (4.7)

    Next, for e_{i, j} , i, j\ge3 , we obtain

    \begin{eqnarray*} e_{2l+1,2k+1} &\!\!\!\! = &\!\!\!\!\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,0}B_{2k+1}^{q,0}[\omega^{2l+1,2k+1}(s_{p},t_{q},\nu(s_{p},t_{q})) -\omega^{2l+1,2k+1}(s_{p},t_{q},\nu_{p,q})]\\ &\!\!\!\!&\!\!\!\!+\sum\limits_{j = 1}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,0}B_{2k+1}^{q,j}[\omega^{2l+1,2k+1}(s_{p},t_{2j-1+q},\nu(s_{p},t_{2j-1+q}))\\ &\!\!\!\!&\!\!\!\!-\omega^{2l+1,2k+1}(s_{p},t_{2j-1+q},\nu_{p,2j-1+q})]\\ &\!\!\!\!&\!\!\!\!+\sum\limits_{i = 1}^{l}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,i}B_{2k+1}^{q,0}[\omega^{2l+1,2k+1}(s_{2i-1+p},t_{q},\nu(s_{2i-1+p},t_{q}))\\ &\!\!\!\!&\!\!\!\!-\omega^{2l+1,2k+1}(s_{2i-1+p},t_{q},\nu_{2i-1+p,q})]\\ &\!\!\!\!&\!\!\!\!+\sum\limits_{i = 1}^{l}\sum\limits_{j = 1}^{k}\sum\limits_{p = 0}^{2} \sum\limits_{q = 0}^{2}A_{2l+1}^{p,i}B_{2k+1}^{q,j}[\omega^{2l+1,2k+1}(s_{2i-1+p},t_{2j-1+q},\nu(s_{2i-1+p},t_{2j-1+q}))\\ &\!\!\!\!&\!\!\!\!-\omega^{2l+1,2k+1}(s_{2i-1+p},t_{2j-1+q},\nu_{2i-1+p,2j-1+q})]+E_{2l+1,2k+1},\\ e_{2l+2,2k+1} &\!\!\!\! = &\!\!\!\! \sum\limits_{i = 0}^{l}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+2}^{p,i}B_{2k+1}^{q,0}[\omega^{2l+2,2k+1}(s_{2i+p},t_{q},\nu(s_{2i+p},t_{q})) -\omega^{2l+2,2k+1}(s_{2i+p},t_{q},\nu_{2i+p,q})]\\ &\!\!\!\!&\!\!\!\!+\sum\limits_{i = 0}^{l}\sum\limits_{j = 1}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+2}^{p,i}B_{2k+1}^{q,j} [\omega^{2l+2,2k+1}(s_{2i+p},t_{2j-1+q},\nu(s_{2i+p},t_{2j-1+q}))\\ &\!\!\!\!&\!\!\!\!-\omega^{2l+2,2k+1}(s_{2i+p},t_{2j-1+q},\nu_{2i+p,2j-1+q})] +E_{2l+2,2k+1},\\ e_{2l+1,2k+2} &\!\!\!\! = &\!\!\!\!\sum\limits_{j = 0}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,0}B_{2k+2}^{q,j}[\omega^{2l+1,2k+2}(s_{p},t_{2j+q},\nu(s_{p},t_{2j+q})) -\omega^{2l+1,2k+2}(s_{p},t_{2j+q},\nu_{p,2j+q})]\\ &\!\!\!\!&\!\!\!\!+\sum\limits_{i = 1}^{l}\sum\limits_{j = 0}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,i}B_{2k+2}^{q,j} [\omega^{2l+1,2k+2}(s_{2i-1+p},t_{2j+q},\nu(s_{2i-1+p},t_{2j+q}))\\ &\!\!\!\!&\!\!\!\!-\omega^{2l+1,2k+2}(s_{2i-1+p},t_{2j+q},\nu_{2i-1+p,2j+q})]+E_{2l+1,2k+2},\\ e_{2l+2,2k+2} &\!\!\!\! = &\!\!\!\!\sum\limits_{i = 0}^{l}\sum\limits_{j = 0}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+2}^{p,i}B_{2k+2}^{q,j} [\omega^{2l+2,2k+2}(s_{2i+p},t_{2j+q},\nu(s_{2i+p},t_{2j+q}))\\ &\!\!\!\!&\!\!\!\!-\omega^{2l+2,2k+2}(s_{2i+p},t_{2j+q},\nu_{2i+p,2j+q})]+E_{2l+2,2k+2}, \end{eqnarray*}

    where A_{2l+1}^{p, 0}, A_{2l+1}^{p, i}, A_{2l+2}^{p, i} and B_{2k+1}^{q, 0}, B_{2k+1}^{q, j}, B_{2k+2}^{q, j} are defined in (2.4), (2.9), (2.15) and (2.5), (2.10), (2.16), and they are satisfied with Lemma 4.1. We have the following estimates for e_{2l+1, 2k+1} ,

    \begin{eqnarray*} |e_{2l+1,2k+1}|&\le&CL_{1}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}|e_{p,q}|\\ &&+CL_{1}\sum\limits_{j = 1}^{k-1}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}h _{t}^{\sigma_{2}}(2k-2j)^{\sigma_{2}-1}|e_{p,2j-1+q}|\\ &&+CL_{1}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}h _{t}^{\sigma_{2}}2^{\sigma_{2}}|e_{p,2k-1+q}|\\ &&+CL_{1}\sum\limits_{i = 1}^{l-1}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}h _{s}^{\sigma_{1}}(2l-2i)^{\sigma_{1}-1}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}|e_{2i-1+p,q}|\\ &&+CL_{1}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}h _{s}^{\sigma_{1}}2^{\sigma_{1}}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}|e_{2l-1+p,q}|\\ &&+CL_{1}\sum\limits_{i = 1}^{l-1}\sum\limits_{j = 1}^{k-1}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}h_{s}^{\sigma_{1}}(2l-2i)^{\sigma_{1}-1}h _{t}^{\sigma_{2}}(2k-2j)^{\sigma_{2}-1}|e_{2i-1+p,2j-1+q}|\\ &&+CL_{1}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}2^{\sigma_{1}}2^{\sigma_{2}}h _{s}^{\sigma_{1}}h _{t}^{\sigma_{2}}|e_{2l-1+p,2k-1+q}|+|E_{2l+1,2k+1}|. \end{eqnarray*}

    Therefore, we can rearrange into the preferred form:

    \begin{eqnarray*} |e_{2l+1,2k+1}|&\le&CL_{1}\sum\limits_{i = 0}^{2l}\sum\limits_{j = 0}^{2k}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}h _{t}^{\sigma_{2}}(2k+1-j)^{\sigma_{2}-1} | e_{i,j} |\\ &&+CL_{1}h_{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}\sum\limits_{j = 0}^{2k}h_{t}^{\sigma_{2}}(2k+1-j)^{\sigma_{2}-1}|e_{2l+1,j}| \\ &&+CL_{1}h_{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}\sum\limits_{i = 0}^{2l}h_{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}|e_{i,2k+1}|\\ &&+CL_{1}2^{\sigma_{1}+\sigma_{2}}h_{s}^{\sigma_{1}}h_{t}^{\sigma_{2}}|e_{2l+1,2k+1}|+|E_{2l+1,2k+1}|. \end{eqnarray*}

    If letting \left \| e_{i} \right \| = \underset{\begin{smallmatrix} 0\le j \le 2K \\ \end{smallmatrix}}{\mathop{\max\limits}}\ |e_{i, j}|, \left \| E_{i} \right \| = \underset{\begin{smallmatrix} 0\le j \le 2K \\ \end{smallmatrix}}{\mathop{\max\limits}}\ |E_{i, j}| , then we have

    \begin{eqnarray*} |e_{2l+1,2k+1}|&\!\!\!\!\le&\!\!\!\!CL_{1}\sum\limits_{i = 0}^{2l}\sum\limits_{j = 0}^{2k}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}h _{t}^{\sigma_{2}}(2k+1-j)^{\sigma_{2}-1}\left \| e_{i} \right \|\\ &\!\!\!\!&\!\!\!\!+CL_{1}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}\sum\limits_{j = 0}^{2k}h _{t}^{\sigma_{2}}(2k+1-j)^{\sigma_{2}-1}\left \| e_{2l+1} \right \| \\ &\!\!\!\!&\!\!\!\!+CL_{1}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}\sum\limits_{i = 0}^{2l}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \|+C\left \| E_{2l+1} \right \| \\ &\!\!\!\!\le &\!\!\!\!CL_{1}\sum\limits_{i = 0}^{2l}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| \int_{t_{0}}^{t_{2k+1}}(t_{2k+1}-\eta)^{\sigma_{2}-1}d\eta \\ &\!\!\!\!&\!\!\!\!+CL_{1}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}\left \| e_{2l+1} \right \|\int_{t_{0}}^{t_{2k+1}}(t_{2k+1}-\eta)^{\sigma_{2}-1}d\eta\\ &\!\!\!\!&\!\!\!\!+CL_{1}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}\sum\limits_{i = 0}^{2l}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| +C\left \| E_{2l+1} \right \| \\ &\!\!\!\! = &\!\!\!\!CL_{1}\sum\limits_{i = 0}^{2l}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| \frac{t_{2k+1}^{\sigma_{2}}}{\sigma_{2}}+CL_{1}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}\left \| e_{2l+1} \right \|\frac{t_{2k+1}^{\sigma_{2}}}{\sigma_{2}}\\ &\!\!\!\!&\!\!\!\!+CL_{1}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}\sum\limits_{i = 0}^{2l}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| +C\left \| E_{2l+1} \right \| \\ &\!\!\!\!\le &\!\!\!\!CL_{1}\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}} \sum\limits_{i = 0}^{2l}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| +CL_{1}\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}\left \| e_{2l+1} \right \|\\ &\!\!\!\!&\!\!\!\!+CL_{1}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}\sum\limits_{i = 0}^{2l}h _{s}^{\sigma_{1}}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| + C\left \| E_{2l+1} \right \|. \end{eqnarray*}

    Since the above formula for all k = 1, 2, \dots, K-1 , we can infer that it is universally applicable that

    \begin{eqnarray*} \left \| e_{2l+1} \right \| &\le &CL_{1}\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}} h _{s}^{\sigma_{1}}\sum\limits_{i = 0}^{2l}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| +CL_{1}\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}}h _{s}^{\sigma_{1}}(2l)^{\sigma_{1}-1}\left \| e_{2l+1} \right \|\\ &&+CL_{1}h _{s}^{\sigma_{1}}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}\sum\limits_{i = 0}^{2l}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| +C\left \| E_{2l+1} \right \|. \end{eqnarray*}

    Hence,

    \begin{eqnarray} \left \| e_{2l+1} \right \| \le [CL_{1}\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}} h_{s}^{\sigma_{1}}+CL_{1}h _{s}^{\sigma_{1}}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}]\sum\limits_{i = 0}^{2l}(2l+1-i)^{\sigma_{1}-1}\left \| e_{i} \right \| +C\left \| E_{2l+1} \right \|. \end{eqnarray} (4.8)

    Through the use of the discrete Gronwall inequality [28], the inequality (4.8) becomes

    \begin{eqnarray*} \| e_{2l+1} \| &\le&C\left \| E_{2l+1} \right \|E_{\sigma_{1}}\{[CL_{1}\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}} +CL_{1}h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}]\Gamma(\sigma_{1})((2l+1)h _{s})^{\sigma_{1}}\} \\ &\le&C\left \| E_{2l+1} \right \|E_{\sigma_{1}}\{CL_{1}\Gamma(\sigma_{1})(b-a)^{\sigma_{1}}[\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}} +h _{t}^{\sigma_{2}}(2k)^{\sigma_{2}-1}]\}. \end{eqnarray*}

    Combining with Lemma 3.2, the above estimate becomes

    \begin{eqnarray} | e_{2l+1,2k+1}| \le C(h _{s}^{3+\sigma_{1}}+h _{t}^{3+\sigma_{2}}). \end{eqnarray} (4.9)

    Using the same approach, we can derive the result

    \begin{eqnarray} &&| e_{2l+2,2k+1} | \le C(h _{s}^{3+\sigma_{1}}+h _{t}^{3+\sigma_{2}}),\ \ | e_{2l+1,2k+2} | \le C(h _{s}^{3+\sigma_{1}}+h _{t}^{3+\sigma_{2}}),\\ &&| e_{2l+2,2k+2} | \le C(h _{s}^{3+\sigma_{1}}+h _{t}^{3+\sigma_{2}}). \end{eqnarray} (4.10)

    Combining (4.3), (4.7), and (4.9)–(4.10), we complete the proof of Theorem 4.1.

    In this section, we will verify the correctness of the theory by using several numerical examples. We employ the proposed algorithm to solve the values of the VIEs with different values of \psi(s) and the error and convergence order. All numerical examples will be implemented using Matlab software.

    Example 5.1. The two-dimensional linear \psi -type VIEs under consideration are as follows.

    \begin{eqnarray*} \nu(s,t) = g(s,t)+\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\int_{a }^{s}\int_{c }^{t}\frac{(\psi(s)\psi(t)+\psi(\tau)+\psi(\eta))\nu(\tau,\eta)}{(\psi(s)-\psi(\tau))^{1-\sigma_{1}}(\psi(t)-\psi(\eta))^{1-\sigma_{2}}}d\psi(\eta)d\psi(\tau), \end{eqnarray*}

    where (s, t)\in[a, b]\times[c, d] , and

    \begin{eqnarray*} g(s,t)&\!\!\!\! = &\!\!\!\!(\psi(s))^{4}(\psi(t))^{4}-\frac{576}{\Gamma (\sigma_{1}+5)\Gamma(\sigma_{2}+5)}(\psi(s))^{\sigma_{1}+5}(\psi(t))^{\sigma_{2}+5}\\ &\!\!\!\!&\!\!\!\!-\frac{2880}{\Gamma (\sigma_{1}+5)\Gamma(\sigma_{2}+6)}(\psi(s))^{\sigma_{1}+4}(\psi(t))^{\sigma_{2}+5} -\frac{2880}{\Gamma (\sigma_{1}+6)\Gamma(\sigma_{2}+5)}(\psi(s))^{\sigma_{1}+5}(\psi(t))^{\sigma_{2}+4}, \end{eqnarray*}

    with the exact solution \nu(s, t) = (\psi(s))^{4}(\psi(t))^{4} .

    In this paper, we give two groups of data where \sigma_{1} and \sigma_{2} take different values, which are \sigma_{1} = 0.4 , \sigma_{2} = 0.6 and \sigma_{1} = 0.3 , \sigma_{2} = 0.5 , respectively. The steps in s -direction and t -direction are divided into h_{s} = \frac{b-a}{2L} , h_{t} = \frac{d-c}{2K} . Error is defined as follows:

    \begin{align*} e_{h} = \underset{\begin{smallmatrix} i = 1,\ldots ,2L \\ j = 1,\ldots ,2K \end{smallmatrix}}{\mathop{\max }}\,| \nu({s_{i}},{t_{j}})-{\nu_{i,j}}|. \end{align*}

    when \psi(s) = \log(s) , and take [a, b]\times[c, d] = [1, 2]\times[1, 2] . To evaluate the level of convergence achieved by the numerical schemes developed for different values of \sigma_{1} and \sigma_{2} , we conducted tests as presented in Tables 1 and 2. The convergence order was determined using the formula log_{2}(\frac{e_{h}}{e_{h/2}}) . According to the analysis conducted in this study, the theoretical convergence order of the numerical scheme developed is expressed as O(h_{s}^{3+\sigma_{1}}+h_{t}^{3+\sigma_{2}}) . It can be observed that when h_{s} significantly exceeds h_{t} , the convergence order simplifies to O(h_{s}^{3+\sigma_{1}}) . The tables presented in this paper (Table 1 and Table 2) consider different values for parameters L and K . In Table 1, we set K = 2L with a corresponding order of 3+\sigma_{1} , while in Table 2, we set L = 2K with a corresponding order of 3+\sigma_{2} . The values chosen for these tables are as follows: \sigma_{1} = 0.4, \sigma_{2} = 0.6 and \sigma_{1} = 0.3, \sigma_{2} = 0.5 . From our observations in Table 1, it can be inferred that when \sigma_{1} = 0.4, \sigma_{2} = 0.6 , the achieved order closely approximates 3.4; similarly, when \sigma_{1} = 0.3, \sigma_{2} = 0.5 , the achieved order is close to 3.3, which aligns well with the theoretical expectation of 3+\sigma_{1} . Similar conclusions can also be drawn from Table 2, with the convergence order close to the theoretical order 3+\sigma_{2} .

    Table 1.  Change of maximum error with step size and order of convergence with K = 2L .
    \boldsymbol{L} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 9.7735973460 \times 10^{-7} - 1.9542229570 \times 10^{-6} -
    \hphantom{0}16 9.9153270337 \times 10^{-8} 3.3011574072 2.0826505593 \times 10^{-7} 3.2301023735
    \hphantom{0}32 9.7507514562 \times 10^{-9} 3.3460750454 2.1637356351 \times 10^{-8} 3.2668246481
    \hphantom{0}64 9.4336555234 \times 10^{-10} 3.3696245807 2.2198713909 \times 10^{-9} 3.2849762407
    \hphantom{0}128 9.0416826803 \times 10^{-11} 3.3831537288 2.2624961626 \times 10^{-10} 3.2944888455

     | Show Table
    DownLoad: CSV
    Table 2.  Change of maximum error with step size and order of convergence with L = 2K .
    \boldsymbol{K} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 7.3163516254 \times 10^{-7} - 1.8606043702 \times 10^{-6} -
    \hphantom{0}16 7.1646985719 \times 10^{-8} 3.3521464981 1.8824121970 \times 10^{-7} 3.3051168417
    \hphantom{0}32 6.5863218074 \times 10^{-9} 3.4433611009 1.8075405187 \times 10^{-8} 3.3804826808
    \hphantom{0}64 5.8705672962 \times 10^{-10} 3.4879011751 1.6931334598 \times 10^{-9} 3.4162603856
    \hphantom{0}128 5.1399086376 \times 10^{-11} 3.5136853027 1.5651222679 \times 10^{-10} 3.4353484264

     | Show Table
    DownLoad: CSV

    The Figure 1 below shows the error distribution of \psi(s) = \log(s) when K = 2L and L = 128 . The left diagram shows the discrepancy distribution of \sigma_{1} = 0.4, \sigma_{2} = 0.6 , and the right diagram shows the discrepancy distribution of \sigma_{1} = 0.3, \sigma_{2} = 0.5 . From the following two error graphs of Figure 1, we can see that when \sigma_{1} = 0.4, \sigma_{2} = 0.6 and \sigma_{1} = 0.3, \sigma_{2} = 0.5 , although the errors are different, the error graphs are similar, and the errors can reach 10^{-10} , so it can be known from the error graphs that the numerical method used can better approximate \nu(s, t) .

    Figure 1.  The error distribution for L = 128 is shown on the left with \sigma_{1} = 0.4, \sigma_{2} = 0.6 , and on the right with \sigma_{1} = 0.3, \sigma_{2} = 0.5 .

    When \psi(s) = s^{\gamma} , where \gamma = 1, 2 , here we're going to take \gamma = 2 and take [a, b]\times[c, d] = [0, 1]\times[0, 1] . We list in the table the maximum errors and orders obtained for different values of \sigma_{1} , \sigma_{2} , h_{s} , and h_{t} . In this case, the values of \sigma_{1} and \sigma_{2} are the same as in the \psi(s) = \log(s) , and the values of K and L are going to be the same as \psi(s) = \log(s) . We can come to the same conclusion. When K = 2L , the orders of Table 3 are close to 3.4 and 3.3, respectively, which is close to the theoretical order 3+\sigma_{1} ; when L = 2K , the orders of Table 4 are close to 3.6 and 3.5, respectively. That is, close to the theoretical order 3+\sigma_{2} .

    Table 3.  Change of maximum error with step size and order of convergence with K = 2L .
    \boldsymbol{L} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 1.3928479154 \times 10^{-3} - 2.8139154113 \times 10^{-3} -
    \hphantom{0}16 1.5068097519 \times 10^{-4} 3.2084685586 3.2493625228 \times 10^{-4} 3.1143503452
    \hphantom{0}32 1.5407550712 \times 10^{-5} 3.2897878307 3.5457774736 \times 10^{-5} 3.1959828070
    \hphantom{0}64 1.5258024479 \times 10^{-6} 3.3359974520 3.7451046675 \times 10^{-6} 3.2430240537
    \hphantom{0}128 1.4831735151 \times 10^{-7} 3.3628088901 3.8830393190 \times 10^{-7} 3.2697478185

     | Show Table
    DownLoad: CSV
    Table 4.  Change of maximum error with step size and order of convergence with L = 2K .
    \boldsymbol{K} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 1.3674595288 \times 10^{-3} - 3.1438667735 \times 10^{-3} -
    \hphantom{0}16 1.3107931264 \times 10^{-4} 3.3829862179 3.2368563952 \times 10^{-4} 3.2798748162
    \hphantom{0}32 1.1966003524 \times 10^{-5} 3.4534267146 3.1643283054 \times 10^{-5} 3.3546221659
    \hphantom{0}64 1.0624704478 \times 10^{-6} 3.0003202069 5.1560512317 \times 10^{-6} 3.3987109055
    \hphantom{0}128 9.2828275511 \times 10^{-8} 3.5167145862 2.7953305426 \times 10^{-7} 3.4240256852

     | Show Table
    DownLoad: CSV

    The Figure 2 below shows the error distribution of \psi(s) = s^{\gamma} , where \gamma = 2 when K = 2L and L = 128 . The left diagram shows the discrepancy distribution of \sigma_{1} = 0.4, \sigma_{2} = 0.6 , and the right diagram shows the discrepancy distribution of \sigma_{1} = 0.3, \sigma_{2} = 0.5 . From the following two error graphs, we can see that when the values of \sigma_{1} and \sigma_{2} are different, although the errors are not the same, the error graphs are similar, the errors can reach 10^{-7} , and the effect is better, so it can be seen from the error graph that the numerical method used can better approximate \nu(s, t) .

    Figure 2.  The error distribution for L = 128 is shown on the left with \sigma_{1} = 0.4, \sigma_{2} = 0.6 , and on the right with \sigma_{1} = 0.3, \sigma_{2} = 0.5 .

    Example 5.2. Consider the following nonlinear equation:

    \begin{eqnarray*} \nu(s,t) = g(s,t)+\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\int_{a}^{s}\int_{c}^{t} \frac{(\psi(s)\psi(t)+\psi(\tau)+\psi(\eta))\nu^{2}(\tau,\eta)}{(\psi(s)-\psi(\tau))^{1-\sigma_{1}}(\psi(t) -\psi(\eta))^{1-\sigma_{2}}}d\psi(\eta)d\psi(\tau), \end{eqnarray*}

    where (s, t)\in[a, b]\times[c, d] , and

    \begin{eqnarray*} g(s,t)&\!\!\!\! = &\!\!\!\!(\psi(s))^{2}(\psi(t))^{3}-\frac{17280}{\Gamma (\sigma_{1}+5)\Gamma(\sigma_{2}+7)}(\psi(s))^{\sigma_{1}+5}(\psi(t))^{\sigma_{2}+7}\\ &\!\!\!\!&\!\!\!\!-\frac{86400}{\Gamma (\sigma_{1}+6)\Gamma(\sigma_{2}+7)}(\psi(s))^{\sigma_{1}+5}(\psi(t))^{\sigma_{2}+6} -\frac{120960}{\Gamma (\sigma_{1}+5)\Gamma(\sigma_{2}+8)}(\psi(s))^{\sigma_{1}+4}(\psi(t))^{\sigma_{2}+7}, \end{eqnarray*}

    with the exact solution is \nu(s, t) = (\psi(s))^{2}(\psi(t))^{3} . We're still divided into two cases: first of all, \psi(s) = \log(s) , and second, \psi(s) = s^{\gamma} .

    Now, let's consider the case \psi(s) = \log(s) , and take [a, b]\times[c, d] = [1, 2]\times[1, 2] . For this example, we repeat the calculation procedure of Example 5.1 using the appropriate scheme. The variation of its maximum error and order with K = 2L or L = 2K is shown in Table 5 or Table 6, and the values of L and K are the same as those in Example 5.1. These two tables again verify that the order is close to the theoretical order 3.4, 3.3, i.e., 3+\sigma_{1} , and 3.6, 3.5, i.e., 3+\sigma_{2} .

    Table 5.  Change of maximum error with step size and order of convergence with K = 2L .
    \boldsymbol{L} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 3.2646193718 \times 10^{-7} - 5.8807323880 \times 10^{-7} -
    \hphantom{0}16 3.1941197659 \times 10^{-8} 3.3534244812 6.0426050469 \times 10^{-8} 3.2827532862
    \hphantom{0}32 3.0647534788 \times 10^{-9} 3.3815754718 6.1160141951 \times 10^{-9} 3.3045069883
    \hphantom{0}64 2.9079247343 \times 10^{-10} 3.3977091981 6.1417454456 \times 10^{-10} 3.3158711313
    \hphantom{0}128 2.7419067017 \times 10^{-11} 3.4067385418 6.1444627164 \times 10^{-11} 3.3212899496

     | Show Table
    DownLoad: CSV
    Table 6.  Change of maximum error with step size and order of convergence with L = 2K .
    \boldsymbol{K} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 8.1677686153 \times 10^{-7} - 1.6145922298 \times 10^{-6} -
    \hphantom{0}16 7.5881499251 \times 10^{-8} 3.4281219081 1.5779327084 \times 10^{-7} 3.3550622664
    \hphantom{0}32 6.7981849594 \times 10^{-9} 3.4805266643 1.4912196727 \times 10^{-8} 3.4034709794
    \hphantom{0}64 5.9532231922 \times 10^{-10} 3.5134067255 1.3807975596 \times 10^{-9} 3.4329190728
    \hphantom{0}128 5.1339349438 \times 10^{-11} 3.5355340638 1.2619894019 \times 10^{-10} 3.4517301201

     | Show Table
    DownLoad: CSV

    Now, let's think about \psi(s) = s^{\gamma} , \gamma = 2 and take [a, b]\times[c, d] = [0, 1]\times[0, 1] . From the following two tables, we know that the errors gradually become smaller and the order also tends to stabilize, which is close to 3.4, 3.3 and 3.6, 3.5.

    Table 7.  Change of maximum error with step size and order of convergence with K = 2L .
    \boldsymbol{L} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 1.6250872088 \times 10^{-3} - 4.3711285405 \times 10^{-3} -
    \hphantom{0}16 1.6880955354 \times 10^{-4} 3.2670486824 4.6795802277 \times 10^{-4} 3.2235547770
    \hphantom{0}32 1.6830042009 \times 10^{-5} 3.3262858708 4.9400832297 \times 10^{-5} 3.2437718682
    \hphantom{0}64 1.6319260485 \times 10^{-6} 3.3663911902 5.0905853166 \times 10^{-6} 3.2786318959
    \hphantom{0}128 1.5567500733 \times 10^{-7} 3.3899664301 5.1643556231 \times 10^{-7} 3.3011712925

     | Show Table
    DownLoad: CSV
    Table 8.  Change of maximum error with step size and order of convergence with L = 2K .
    \boldsymbol{K} \bf{ σ_{1}=0.4, σ_{2}=0.6} Order \bf{ σ_{1}=0.3, σ_{2}=0.5} Order
    \hphantom{00}8 4.7092542214 \times 10^{-3} - 1.4079854053 \times 10^{-2} -
    \hphantom{0}16 4.6737446488 \times 10^{-4} 3.3328477869 1.3967936080 \times 10^{-3} 3.3334416124
    \hphantom{0}32 4.3871206886 \times 10^{-5} 3.4132326141 1.3909889695 \times 10^{-4} 3.3279359776
    \hphantom{0}64 3.9489534212 \times 10^{-6} 3.4737321390 1.3364857961 \times 10^{-5} 3.3795945693
    \hphantom{0}128 3.4618023848 \times 10^{-7} 3.5118750743 1.2497697712 \times 10^{-6} 3.4187102494

     | Show Table
    DownLoad: CSV

    In this paper, the modified block-by-block method is used to solve the numerical solution of fractional \psi -Volterra integral equations. The convergence of order of the high order numerical scheme is analyzed rigorously by using the discrete Gronwall inequality. Through experimental verification, we find that this method has high accuracy and stability and can effectively deal with high dimensionality fractional \psi -Volterra integral equations.

    We furthermore discussed the sophisticated numerical scheme of high order for high dimensionality fractional \psi -Volterra integral equations with singular solution by using graded mesh. We also noticed that when the grid division is very fine, the computational complexity of the format is very high. Therefore, we will plan to introduce the fast high-order algorithms for solving the high dimensionality fractional \psi -Volterra integral equations by using the fast Fourier transform.

    Thus, we can apply it to a wider range of practical problems. There are still some limitations and shortcomings in this study, that is, the calculation amount is too big. In the future, we can continue to study that the modified block-by-block method can be further improved to enhance its computational efficiency and stability [29]. Additionally, the modified block-by-block method can be applied to practical problems and its application value in engineering and science can be explored.

    Z. Q. Wang was supported by National Natural Science Foundation of China (NSFC) (Grant No. 11961009) and Foundation of Guizhou Science and Technology Department (Grant No. QHKJC-ZK[2024]YB497). J. Y. Cao was supported by National NSFC (Grant Nos. 12361083, 62341115) and Science research fund support project of the Guizhou Minzu University (Grant No. GZMUZK[2023]CXTD05). Z. Q. Wang and J. Y. Cao were supported by NSF of the Department of Education of Guizhou Province (Grant Nos. QJJ2023012, QJJ2023062, QJJ2023061).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that they have no competing interests.

    For \nu(s_{1}, t_{1}) , one has

    \begin{eqnarray} \nu(s_{1},t_{1}) & = &g_{1,1}+\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\int_{a}^{s_{1}}\int_{c}^{t_{1}} \frac{(\psi(s_{1})-\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{1})-\psi(\eta))^{1-\sigma_{2} }}\omega^{1,1}(\tau,\eta,\nu(\tau,\eta))d\psi(\eta)d\psi(\tau)\\ &\approx& g_{1,1}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\int_{a}^{s_{1}}\int_{c}^{t_{1}} \frac{(\psi(s_{1})-\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{1})-\psi(\eta))^{1-\sigma_{2} }}\\ &&\times \hat{f}_{p,0}(\tau)f_{q,0}(\eta)\omega^{1,1}(s_{p},t_{q},\nu_{p,q})d\psi(\eta)d\psi(\tau)\\ & = &g_{1,1}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{1}^{p,0}B_{1}^{q,0}\omega^{1,1}(s_{p},t_{q},\nu_{p,q}), \end{eqnarray} (A.1)

    where

    \begin{equation} \begin{split} A_{1}^{p,0} = \frac{1}{\Gamma(\sigma_{1} )}\int_{a}^{{{s}_{1}}}(\psi(s_{1})-\psi(\tau))^{\sigma_{1} -1}{\hat{f}}_{p,0}(\tau)d\psi(\tau),p = 0,1,2, \end{split} \end{equation} (A.2)
    \begin{equation} \begin{split} B_{1}^{q,0} = \frac{1}{\Gamma(\sigma_{2} )}\int_{c}^{{{t}_{1}}}(\psi(t_{1})-\psi(\eta))^{\sigma_{2}-1}{{f}_{q,0}}(\eta)d\psi(\eta),q = 0,1,2.\\ \end{split} \end{equation} (A.3)

    Similar to (A.1), one can obtain \nu(s_{2}, t_{1}), \nu(s_{1}, t_{2}) , and \nu(s_{2}, t_{2}) as follows:

    \begin{eqnarray} \nu(s_{2},t_{1}) &\approx& g_{2,1}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2}^{p,0}B_{1}^{q,0}{{\omega }^{2,1}}({{s}_{p}},{{t}_{q}},\nu_{p,q}), \end{eqnarray} (A.4)
    \begin{eqnarray} \nu(s_{1},t_{2}) &\approx& g_{1,2}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{1}^{p,0}B_{2}^{q,0}{{\omega }^{1,2}}({{s}_{p}},{{t}_{q}},\nu_{p,q}), \end{eqnarray} (A.5)
    \begin{eqnarray} \nu(s_{2},t_{2}) &\approx& g_{2,2}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2}^{p,0}B_{2}^{q,0}{{\omega }^{2,2}}({{s}_{p}},{{t}_{q}},\nu_{p,q}), \end{eqnarray} (A.6)

    where

    \begin{equation} \begin{aligned} A_{2}^{p,0} = &\frac{1}{\Gamma(\sigma_{1} )}\int_{a}^{s_{2}}(\psi(s_{2})-\psi(\tau))^{\sigma_{1} -1}\hat{f}_{p,0}(\tau)d\psi(\tau),p = 0,1,2, \end{aligned} \end{equation} (A.7)
    \begin{equation} \begin{aligned} B_{2}^{q,0} = &\frac{1}{\Gamma(\sigma_{2} )}\int_{c}^{t_{2}}(\psi(t_{2})-\psi(\eta))^{\sigma_{2} -1}f_{q,0}(\eta)d\psi(\eta),q = 0,1,2. \end{aligned} \end{equation} (A.8)

    Therefore, \nu_{1, 1} , \nu_{2, 1} , \nu_{1, 2} , and \nu_{2, 2} can be simultaneously solved from (A.1), (A.4), (A.5), and (A.6).

    For \nu(s_{2l+r_{1}}, t_{r_{2}}), l = 1, 2, \dots, L-1 and \nu(s_{r_{1}}, t_{2k+r_{2}}), r_{1}, r_{2} = 1, 2, k = 1, 2, \dots, K-1 , under assumption that \nu_{i, r_{2}}, i = 0, 1, \dots, 2l and \nu_{r_{1}, j}, j = 0, 1, \dots, 2k already known, we have

    \begin{eqnarray} \nu(s_{2l+1},t_{1}) &\!\!\!\!\!\! = &\!\!\!\!\!\!g_{2l+1,1}+\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{1})-\psi(\eta))^{1-\sigma_{2} }}\omega^{2l+1,1}(\tau,\eta,\nu(\tau,\eta))d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\sum\limits_{i = 1}^{l}\int_{s_{2i-1} }^{s_{2i+1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{1})-\psi(\eta))^{1-\sigma_{2} }} \omega^{2l+1,1}(\tau,\eta,\nu(\tau,\eta))d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!\approx&\!\!\!\!\!\! g_{2l+1,1}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{1}) -\psi(\eta))^{1-\sigma_{2} }}\\ &&\times \hat{f}_{p,0}(\tau)f_{q,0}(\eta)\omega^{2l+1,1}(s_{p},t_{q},\nu_{p,q})d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\sum\limits_{i = 1}^{l} \sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\int_{s_{2i-1} }^{s_{2i+1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{1})-\psi(\tau))^{1-\sigma_{2} }}\\ &\!\!\!\!\!\!&\!\!\!\!\!\!\times \hat{f}_{p,2i-1}(\tau)f_{q,0}(\eta)\omega^{2l+1,1}(s_{2i-1+p},t_{q},\nu_{2i-1+p,q})d\psi(\eta)d\psi(\tau)\\ &\!\!\! = &\!\!\!g_{2l+1,1}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,0}B_{1}^{q,0}\omega^{2l+1,1}(s_{p},t_{q},\nu_{p,q})\\ &&+\sum\limits_{i = 1}^{l} \sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,i}B_{1}^{q,0}\omega^{2l+1,1}(s_{2i-1+p},t_{q},\nu_{2i-1+p,q}), \end{eqnarray} (A.9)

    where B_{1}^{q, 0} is given by (A.3) and A_{2l+1}^{p, 0}, A_{2l+1}^{p, i} are defined by (2.4) and (2.9).

    For \nu(s_{2l+2}, t_{1}) , \nu(s_{2l+1}, t_{2}) , and \nu(s_{2l+2}, t_{2}) , we have

    \begin{eqnarray} \nu(s_{2l+2},t_{1}) &\!\!\!\!\! = &\!\!\!\!\!g_{2l+2,1}+\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\sum\limits_{i = 0}^{l}\int_{s_{2i} }^{s_{2i+2}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+2})-\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{1})-\psi(\eta))^{1-\sigma_{2} }} \omega^{2l+2,1}(\tau,\eta,\nu(\tau,\eta))d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\approx &\!\!\!\!\!g_{2l+2,1}+\sum\limits_{i = 0}^{l} \sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+2}^{p,i}B_{1}^{q,0} \omega^{2l+2,1}(s_{2i+p},t_{q},\nu_{2i+p,q}), \end{eqnarray} (A.10)
    \begin{eqnarray} \nu(s_{2l+1},t_{2}) &\!\!\!\!\! = &\!\!\!\!\!g_{2l+1,2}+\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\int_{a}^{s_{1}}\int_{c}^{t_{2}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{2})-\psi(\eta))^{1-\sigma_{2} }}\omega^{2l+1,2}(\tau,\eta,\nu(\tau,\eta))d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!&\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\sum\limits_{i = 1}^{l}\int_{s_{2i-1} }^{s_{2i+1}}\int_{c}^{t_{2}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1} -1}}{(\psi(t_{2}) -\psi(\eta))^{1-\sigma_{2} }}\omega^{2l+1,2}(\tau,\eta,\nu(\tau,\eta))d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\approx&\!\!\!\!\!g_{2l+1,2}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,0}B_{2}^{q,0}\omega^{2l+1,2}(s_{p},t_{q},\nu_{p,q})\\ &&+\sum\limits_{i = 1}^{l}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+1}^{p,i}B_{2}^{q,0}\omega^{2l+1,2}(s_{2i-1+p},t_{q},\nu_{2i-1+p,q}), \end{eqnarray} (A.11)
    \begin{eqnarray} \nu(s_{2l+2},t_{2}) &\!\!\!\!\! = &\!\!\!\!\!g_{2l+2,2}+\frac{1}{\Gamma(\sigma_{1} )}\frac{1}{\Gamma(\sigma_{2} )}\sum\limits_{i = 0}^{l}\int_{s_{2i} }^{s_{2i+2}}\int_{c}^{t_{2}}\frac{(\psi(s_{2l+2})-\psi( \tau))^{\sigma_{1} -1}}{(\psi(t_{2})-\psi(\eta))^{1-\sigma_{2} }} \omega^{2l+2,2}(\tau,\eta,\nu(\tau,\eta))d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\approx &\!\!\!\!\!g_{2l+2,2}+\sum\limits_{i = 0}^{l} \sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2l+2}^{p,i}B_{2}^{q,0}\omega^{2l+2,2}(s_{2i+p},t_{q},\nu_{2i+p,q}), \end{eqnarray} (A.12)

    where B_{1}^{q, 0} , B_{2}^{q, 0} , A_{2l+1}^{p, 0} , A_{2l+1}^{p, i} , and A_{2l+2}^{p, i} are given by (A.3), (A.8), (2.4), (2.9), and (2.15), respectively.

    For \nu(s_{1}, t_{2k+1}) , similar to (A.10), one can obtain

    \begin{eqnarray} \nu(s_{1},t_{2k+1}) &\!\!\!\!\!\!\approx&\!\!\!\!\!\!g_{1,2k+1}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{1}^{p,0}B_{2k+1}^{q,0}\omega^{1,2k+1}(s_{p},t_{q},\nu_{p,q})\\ &&+\sum\limits_{j = 1}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{1}^{p,0}B_{2k+1}^{q,j}\omega^{1,2k+1}(s_{p},t_{2j-1+q},\nu_{p,2j-1+q}), \end{eqnarray} (A.13)
    \begin{eqnarray} \nu(s_{2},t_{2k+1}) &\!\!\!\!\!\!\approx &\!\!\!\!\!\!g_{2,2k+1}+\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2}^{p,0}B_{2k+1}^{q,0}\omega^{2,2k+1}(s_{p},t_{q},\nu_{p,q})\\ &&+\sum\limits_{j = 1}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2}^{p,0}B_{2k+1}^{q,j}\omega^{2,2k+1}(s_{p},t_{2j-1+q},\nu_{p,2j-1+q}), \end{eqnarray} (A.14)
    \begin{eqnarray} \nu(s_{1},t_{2k+2}) &\!\!\!\!\!\!\approx &\!\!\!\!\!\!g_{1,2k+2}+\sum\limits_{j = 0}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{1}^{p,0}B_{2k+2}^{q,j} \omega^{1,2k+2}(s_{p},t_{2j+q},\nu_{p,2j+q}), \end{eqnarray} (A.15)
    \begin{eqnarray} \nu(s_{2},t_{2k+2}) &\!\!\!\!\!\!\approx&\!\!\!\!\!\!g_{2,2k+2}+\sum\limits_{j = 0}^{k}\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}A_{2}^{p,0}B_{2k+2}^{q,j}\omega^{2,2k+2}(s_{p},t_{2j+q},\nu_{p,2j+q}), \end{eqnarray} (A.16)

    where A_{1}^{p, 0} , A_{2}^{p, 0} are given by (A.2), (A.7). B_{2k+1}^{q, 0} , B_{2k+1}^{q, j} , and B_{2k+2}^{q, j} are defined by (2.5), (2.10), and (2.16).

    Proof. Let Q_{1}, Q_{2} be defined as follows:

    \begin{eqnarray} Q_{1} = \underset{\begin{smallmatrix} s,\tau\in [a,b] \\ t,\eta\in [c,d] \end{smallmatrix}}{\mathop{\max }}\,(|\partial _{\tau}^{3}\omega(s,t,\tau,\eta,\nu(\tau,\eta))|,|\partial _{\eta}^{3}\omega(s,t,\tau,\eta,\nu(\tau,\eta))|), \end{eqnarray} (B.1)
    \begin{eqnarray} Q_{2} = \underset{\begin{smallmatrix} s,\tau\in [a,b] \\ t,\eta\in [c,d] \end{smallmatrix}}{\mathop{\max }}\,(|\partial _{\tau}^{4}\omega(s,t,\tau,\eta,\nu(\tau,\eta))|,|\partial _{\eta}^{4}\omega(s,t,\tau,\eta,\nu(\tau,\eta))|). \end{eqnarray} (B.2)

    For E_{2l+1, 2k+1} , we have

    \begin{eqnarray} &\!\!\!\!\!\!&\!\!\!\!\!\!E_{2l+1,2k+1} = \nu(s_{2l+1},t_{2k+1})-\bar{\nu}_{2l+1,2k+1}\\ &\!\!\!\!\!\! = &\!\!\!\!\!\! \frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}[\omega^{2l+1,2k+1}(\tau,\eta,\nu(\tau,\eta))\\ &\!\!\!\!\!\!&\!\!\!\!\!\!-\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\hat{f}_{p,0}(\tau)f_{q,0}(\eta)\omega^{2l+1,2k+1}(s_{p},t_{q},\nu(s_{p},t_{q}))]d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}[\omega^{2l+1,2k+1}(\tau,\eta,\nu(\tau,\eta))\\ &\!\!\!\!\!\!&\!\!\!\!\!\!-\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\hat{f}_{p,0}(\tau)f_{q,2j-1}(\eta)\omega^{2l+1,2k+1}(s_{p},t_{2j-1+q},\nu(s_{p},t_{2j-1+q}))]d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}\int_{s_{2i-1}}^{s_{2i+1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}[\omega^{2l+1,2k+1}(\tau,\eta,\nu(\tau,\eta))\\ &\!\!\!\!\!\!&\!\!\!\!\!\!-\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\hat{f}_{p,2i-1}(\tau)f_{q,0}(\eta)\omega^{2l+1,2k+1}(s_{2i-1+p},t_{q},\nu(s_{2i-1+p},t_{q}))]d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}\sum\limits_{j = 1}^{k}\int_{s_{2i-1}}^{s_{2i+1}}\int_{t_{2j-1}}^{s_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}} [\omega^{2l+1,2k+1}(\tau,\eta,\nu(\tau,\eta))\\ &\!\!\!\!\!\!&\!\!\!\!\!\!-\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\hat{f}_{p,2i-1}(\tau)f_{q,2j-1}(\eta)\omega^{2l+1,2k+1}(s_{2i-1+p},t_{2j-1+q},\nu(s_{2i-1+p},t_{2j-1+q}))]d\psi(\eta)d\psi(\tau)\\ & = &\frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1}) -\psi(\eta))^{1-\sigma_{2}}}T_{2l+1,2k+1}^{(1)}d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}T_{2l+1,2k+1}^{(2)}d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}\int_{s_{2i-1}}^{s_{2i+1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}T_{2l+1,2k+1}^{(3)}d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+\frac{1}{\Gamma(\sigma_{1})}\frac{1}{\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}\sum\limits_{j = 1}^{k}\int_{s_{2i-1}}^{s_{2i+1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}} T_{2l+1,2k+1}^{(4)}d\psi(\eta)d\psi(\tau)\\ &\!\!\!\!\!\!\doteq&\!\!\!\!\!\!E_{2l+1,2k+1}^{1}+E_{2l+1,2k+1}^{2}+E_{2l+1,2k+1}^{3}+E_{2l+1,2k+1}^{4}. \end{eqnarray} (B.3)

    According to the Taylor theorem, there is

    \begin{eqnarray} T_{2l+1,2k+1}^{(1)}\!\!\!& = &\!\!\!\omega^{2l+1,2k+1}(\tau,\eta,\nu(\tau,\eta))-\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\hat{f}_{p,0}(\tau)f_{q,0}(\eta) \omega^{2l+1,2k+1}(s_{p},t_{q},\nu(s_{p},t_{q}))\\ \!\!\!& = &\!\!\!\omega^{2l+1,2k+1}(\tau,\eta,\nu(\tau,\eta))-\sum\limits_{p = 0}^{2}\hat{f}_{p,0}(\tau)\omega^{2l+1,2k+1}(s_{p},\eta,\nu(s_{p},\eta))\\ \!\!\!&&\!\!\!+\sum\limits_{p = 0}^{2}\hat{f}_{p,0}(\tau)\omega^{2l+1,2k+1}(s_{p},\eta,\nu(s_{p},\eta))-\sum\limits_{p = 0}^{2}\sum\limits_{q = 0}^{2}\hat{f}_{p,0} (\tau)f_{q,0}(\eta)\omega^{2l+1,2k+1}(s_{p},t_{q},\nu(s_{p},t_{q}))\\ \!\!\!& = &\!\!\!\frac{1}{3!}\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{1}(\tau) ,\eta,\nu(\varepsilon _{1}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{p}))\\ \!\!\!&&\!\!\!+\sum\limits_{p = 0}^{2} \frac{\hat{f}_{p,0}(\tau)}{3!}\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},\xi_{1}( \eta),\nu(s_{p},\xi_{1}(\eta)))\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{q})), \end{eqnarray} (B.4)

    where (\varepsilon _{1}(\tau), \xi_{1}(\eta)) \in [a, s_{1}]\times[c, t_{1}] .

    For (\tau, \eta) \in [a, s_{1}]\times[t_{2j-1}, t_{2j+1}] , there is (\varepsilon _{2}(\tau), \xi_{j1}(\eta)) \in [a, s_{1}]\times[t_{2j-1}, t_{2j+1}] ,

    \begin{eqnarray} T_{2l+1,2k+1}^{(2)} &\!\!\!\!\! = &\!\!\!\!\!\frac{1}{3!}\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{2}(\tau) ,\eta,\nu(\varepsilon _{2}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{p}))\\ &\!\!\!\!\!&\!\!\!\!\!+\sum\limits_{p = 0}^{2} \frac{\hat{f}_{p,0}(\tau)}{3!}\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},\xi_{j1}(\eta ),\nu(s_{p},\xi_{j1}(\eta)))\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q})). \end{eqnarray} (B.5)

    In the same way, we have (\tau, \eta) \in [s_{2i-1}, s_{2i+1}]\times[c, t_{1}] , and (\varepsilon _{i1}(\tau), \xi_{2}(\eta)) \in [s_{2i-1}, s_{2i+1}]\times[c, t_{1}] ,

    \begin{eqnarray} T_{2l+1,2k+1}^{(3)} & = &\frac{1}{3!}\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{i1}(\tau) ,\eta,\nu(\varepsilon _{i1}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{2i-1+p}))\\ &&+\sum\limits_{p = 0}^{2} \frac{\hat{f}_{p,2i-1}(\tau)}{3!}\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{2i-1+p},\xi_{2}(\eta ),\nu(s_{2i-1+p},\xi_{2}(\eta))) \prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{q})). \end{eqnarray} (B.6)

    For \forall (\tau, \eta) \in [s_{2i-1}, s_{2i+1}]\times[t_{2j-1}, t_{2j+1}] , there is (\varepsilon _{i2}(\tau), \xi_{j2}(\eta)) \in [s_{2i-1}, s_{2i+1}]\times[t_{2j-1}, t_{2j+1}] ,

    \begin{eqnarray} \!\!\!\!\!&&\!\!\!\!\!T_{2l+1,2k+1}^{(4)}\\ \!\!\!\!\!& = &\!\!\!\!\!\frac{1}{3!}\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{i2}(\tau),\eta,\nu(\varepsilon _{i2}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{2i-1+p}))\\ \!\!\!\!\!&&\!\!\!\!\!+\sum\limits_{p = 0}^{2} \frac{\hat{f}_{p,2i-1}(\tau)}{3!}\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{2i-1+p},\xi_{j2}(\eta),\nu(s_{2i-1+p},\xi_{j2}(\eta))) \prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q})). \end{eqnarray} (B.7)

    By putting (B.4) into the first term to the right of formula (B.3) gives the following result:

    \begin{eqnarray} &&\left | E_{2l+1,2k+1}^{1} \right |\\ &\le&\frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} \mid \int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\frac{1}{3!}\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{1}(\tau) ,\eta,\nu(\varepsilon _{1}(\tau) ,\eta))\\ &&\times\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{p}))d\psi(\eta)d\psi(\tau)\mid +\frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}}\mid \int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau ))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\\ &&\times\sum\limits_{p = 0}^{2} \frac{\hat{f}_{p,0}(\tau)}{3!}\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},\xi_{1}(\eta ),\nu(s_{p},\xi_{1}(\eta)))\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{q}))d\psi(\eta)d\psi(\tau)\mid\\ &&\doteq E_{1}^{1}+E_{1}^{2}. \end{eqnarray} (B.8)

    Using direct and simple calculations, we have

    \begin{eqnarray} |\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{p}))|\le r^{3}h _{s}^{3}. \end{eqnarray} (B.9)

    Similarily,

    \begin{eqnarray} |\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{q}))|\le\bar{r} ^{3}h _{t}^{3}. \end{eqnarray} (B.10)

    By Lemma 3.1 and (B.9), we have

    \begin{eqnarray} E_{1}^{1} & = &\frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}}\mid \int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1}-1}} {(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\frac{1}{3!}\\ &&\times\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{1}(\tau),\eta,\nu(\varepsilon _{1}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{p}))d\psi(\eta)d\psi(\tau)\mid\\ &\le & \frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} Q_{1}2^{1-\sigma_{1}}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}h^{\sigma_{1}} _{s}r^{3}h^{3} _{s}2^{1-\sigma_{2}}\bar{r}^{\sigma_{2}} (2k+1)^{\sigma_{2}-1}h _{t}^{\sigma_{2}}\\ & = &\frac{2^{2-\sigma_{1}-\sigma_{2}}}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} Q_{1}r^{3+\sigma_{1}}\bar{r}^{\sigma_{2}}(2l+1)^{\sigma_{1}-1} (2k+1)^{\sigma_{2}-1}h_{s}^{3+\sigma_{1}}h _{t}^{\sigma_{2}}, \end{eqnarray} (B.11)

    where Q_{1} is defined by (B.1).

    By Lemma 3.1 and (B.10), we have

    \begin{eqnarray} E_{1}^{2} & = &\frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}}\mid \int_{a}^{s_{1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1})-\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2} \frac{\hat{f}_{p,0}(\tau)}{3!}\\ &&\times\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},\xi_{1}(\eta ),\nu(s_{p},\xi_{1}(\eta))) \prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{q}))d\psi(\eta)d\psi(\tau)\mid \\ &\le & \frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} Q_{1}2^{1-\sigma_{1}}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}h^{\sigma_{1}} _{s}2^{1-\sigma_{2}}\bar{r}^{\sigma_{2}} (2k+1)^{\sigma_{2}-1}h_{t}^{\sigma_{2}}\bar{r}^{3}h^{3} _{t}\\ & = & \frac{2^{2-\sigma_{1}-\sigma_{2}}}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} Q_{1}r^{\sigma_{1}}\bar{r}^{3+\sigma_{2}}(2l+1)^{\sigma_{1}-1}(2k+1)^{\sigma_{2}-1}h^{\sigma_{1}} _{s}h_{t}^{3+\sigma_{2}}. \end{eqnarray} (B.12)

    According to (B.11) and (B.12), we get E_{2l+1, 2k+1}^{1} as follows:

    \begin{eqnarray} \left |E_{2l+1,2k+1}^{1} \right |\le \frac{2^{2-\sigma_{1}-\sigma_{2}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})} Q_{1}(2l+1)^{\sigma_{1}-1} (2k+1)^{\sigma_{2}-1}(r^{3+\sigma_{1}}\bar{r}^{\sigma_{2}}h_{s}^{3+\sigma_{1}}h _{t}^{\sigma_{2}}+r^{\sigma_{1}}\bar{r}^{3+\sigma_{2}}h^{\sigma_{1}} _{s}h _{t}^{3+\sigma_{2}}). \end{eqnarray} (B.13)

    Bring equation (B.5) to the second term to the right of equation (B.3), and we have the following:

    \begin{eqnarray} \left | E_{2l+1,2k+1}^{2} \right | &\!\!\! \le&\!\!\!\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}|\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\frac{1}{3!}\\ &\!\!\!&\!\!\!\times \partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{2}(\tau) ,\eta,\nu(\varepsilon _{2}(\tau) ,\eta))\prod\limits_{p = 0}^{2}(\psi(\tau) -\psi(s_{p}))d\psi(\eta)d\psi(\tau)|\\ &\!\!\!&\!\!\!+\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}|\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2}\frac{\hat{f}_{p,0}(\tau)}{3!}\\ &\!\!\!&\!\!\!\times\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},\xi_{j1}(\eta ),\nu(s_{p},\xi_{j1}(\eta)))\prod\limits_{q = 0}^{2} (\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)d\psi(\tau)|\\ &&\doteq E_{2}^{1}+E_{2}^{2}. \end{eqnarray} (B.14)

    Using Lemma 3.1 and equation (B.9), we have

    \begin{eqnarray} E_{2}^{1} &\le&\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}|\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\frac{1}{3!}\\ &&\times \partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{2}(\tau),\eta,\nu(\varepsilon _{2}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{p}))|d\psi(\eta)d\psi(\tau)\\ &\le & \frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} Q_{1}r^{3}h^{3}_{s}\sum\limits_{j = 1}^{k}\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}|\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}|d\psi(\eta)d\psi(\tau)\\ &\le & \frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} Q_{1}r^{3}h^{3}_{s}2^{1-\sigma_{1}}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}h^{\sigma_{1}} _{s}\sum\limits_{j = 1}^{k}\int_{t_{2j-1}}^{t_{2j+1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}d\psi(\eta)\\ &\le & \frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2})}} Q_{1}r^{3}h^{3}_{s}2^{1-\sigma_{1}}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}h^{\sigma_{1}} _{s}\int^{t_{2k+1}}_{t_{1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}d\psi(\eta)\\ & = & \frac{1}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2}+1)}} Q_{1}r^{3+\sigma_{1}}h^{3+\sigma_{1}}_{s}2^{1-\sigma_{1}}(2l+1)^{\sigma_{1}-1}(\psi(t_{2k+1})-\psi(t_{1}))^{\sigma_{2}}\\ &\le &\frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2}+1)}} Q_{1}(2l+1)^{\sigma_{1}-1}r^{3+\sigma_{1}}\bar{r}^{\sigma_{2}}(d-c)^{\sigma_{2}}h^{\sigma_{1}+3}_{s}. \end{eqnarray} (B.15)

    For E_{2}^{2} , we estimate this by adding one term and subtracting one term,

    \begin{eqnarray} E_{2}^{2} & = &\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}|\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2}\frac{\hat{f}_{p,0}(\tau)}{3!}\\ &&\times\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},\xi_{j1}(\eta ),\nu(s_{p},\xi_{j1}(\eta)))\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)d\psi(\tau)| \\ &\le & \frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}|\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2}\frac{\hat{f}_{p,0}(\tau)}{3!}\\ &&\times\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},t_{2j},\nu(s_{p},t_{2j}))\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)d\psi(\tau)| \\ &&+ \frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{j = 1}^{k}|\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2}\frac{\hat{f}_{p,0}(\tau)}{3!}\\ &&\times[\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},\xi_{j1}(\eta ),\nu(s_{p},\xi_{j1}(\eta)))-\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{p},t_{2j},\nu(s_{p},t_{2j}))]\\ &&\times\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)d\psi(\tau)| \doteq L1+L2. \end{eqnarray} (B.16)

    By definition of \hat{f}_{p, i}(\tau) and \tau \in (s_{i}, s_{i+2}) , p = 0, 1, 2;i = 0, 1, \dots, 2l , we know |\hat{f}_{p, i}(\tau)| \le 1 ; hence, |\sum\limits_{p = 0}^{2}\hat{f}_{p, i}(\tau)| \le 3 . We get

    \begin{eqnarray} L1 &\le & \frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}\sum\limits_{j = 1}^{k}|\int_{a}^{s_{1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2}\frac{\hat{f}_{p,0}(\tau)}{3!}\\ &&\times\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)d\psi(\tau)| \\ &\le&\frac{2^{1-\sigma_{1}}(2l+1)^{\sigma_{1}-1}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}h^{\sigma_{1}} _{s}\sum\limits_{j = 1}^{k}|\int_{t_{2j-1}}^{t_{2j}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)\\ &&+\int_{t_{2j}}^{t_{2j+1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)|\\ &\le&\frac{2^{1-\sigma_{1}}(2l+1)^{\sigma_{1}-1}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}h^{\sigma_{1}} _{s}\sum\limits_{j = 1}^{k-2}|\int_{t_{2j-1}}^{t_{2j}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)\\ &&+\int_{t_{2j}}^{t_{2j+1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)|\\ &&+\frac{2^{1-\sigma_{1}}(2l+1)^{\sigma_{1}-1}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}h^{\sigma_{1}} _{s}(|\int_{t_{2k-3}}^{t_{2k-1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2k-3+q}))d\psi(\eta)|\\ &&+|\int_{t_{2k-1}}^{t_{2k+1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2k-1+q}))d\psi(\eta)|)\\ &\doteq&\frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}h^{\sigma_{1}}_{s}[L_{11} +L_{12}]. \end{eqnarray} (B.17)

    Next, we will reckon L_{11} . To begin, we reckoned \int_{t_{2j-1}}^{t_{2j}}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta) . By the Lagrange mean value theorem, the integral mean value theorem, and continuity of the function on a closed interval, we have

    \begin{eqnarray} &&\int_{t_{2j-1}}^{t_{2j}}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta)\\ & = &\int_{t_{2j-1}}^{t_{2j}}\psi'(\zeta_{0}^{j})\psi'(\zeta_{1}^{j}) \psi'(\zeta_{2}^{j})\psi'(\eta)(\eta-t_{2j-1})(\eta-t_{2j})(\eta-t_{2j+1})d\eta\\ & = &\psi'(\zeta_{0}^{j}(\gamma_{j}))\psi'(\zeta_{1}^{j}(\gamma_{j})) \psi'(\zeta_{2}^{j}(\gamma_{j}))\psi'(\gamma_{j})\int_{t_{2j-1}}^{t_{2j}}(\eta-t_{2j-1})(\eta-t_{2j})(\eta-t_{2j+1})d\eta\\ & = &[\psi'(\widehat{\zeta_{j}})]^{4}\int_{t_{2j-1}}^{t_{2j}}(\eta-t_{2j-1})(\eta-t_{2j})(\eta-t_{2j+1})d\eta = \frac{1}{4}[\psi'(\widehat{\zeta_{j}})]^{4}h _{t}^{4}, \end{eqnarray} (B.18)

    where \zeta_{i}^{j}\in(t_{2j-1}, t_{2j}), i = 0, 1, 2 ; \gamma_{j}\in(t_{2j-1}, t_{2j}) , \widehat{\zeta_{j}}\in(t_{2j-1}, t_{2j}) .

    Using the same method of (B.18), we estimate \int_{t_{2j}}^{t_{2j+1}}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta) and obtain

    \begin{eqnarray} \int_{t_{2j}}^{t_{2j+1}}\prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{2j-1+q}))d\psi(\eta) = \frac{1}{4}[\psi'(\widehat{\eta_{j}})]^{4}h _{t}^{4},\ \ \widehat{\eta_{j}}\in(t_{2j},t_{2j+1}). \end{eqnarray} (B.19)

    Combining (B.18) and (B.19), we obtain

    \begin{eqnarray} L_{11} & = & \frac{1}{4}h _{t}^{4}\sum\limits_{j = 1}^{k-2}|(\psi(t_{2k+1})-\psi(\bar{\eta} _{j}))^{\sigma_{2}-1}[\psi'(\widehat{\zeta_{j}})]^{4}-(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}[\psi'(\widehat{\eta_{j}})]^{4}|\\ & = &\frac{1}{4}h _{t}^{4}\sum\limits_{j = 1}^{k-2}|(\psi(t_{2k+1})-\psi(\bar{\eta} _{j}))^{\sigma_{2}-1}[\psi'(\widehat{\zeta_{j}})]^{4}-(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}[\psi'(\widehat{\zeta_{j}})]^{4}\\ &&+(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}[\psi'(\widehat{\zeta_{j}})]^{4}-(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}[\psi'(\widehat{\eta_{j}})]^{4}|\\ & = &\frac{1}{4}h_{t}^{4}\sum\limits_{j = 1}^{k-2}|[\psi'(\widehat{\zeta_{j}})]^{4}[(\psi(t_{2k+1})-\psi(\bar{\eta}_{j}))^{\sigma_{2}-1}-(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}]\\ &&+(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}{[(\psi'(\widehat{\zeta_{j}}))^{2}+(\psi'(\widehat{\eta_{j}}))^{2}}] [\psi'(\widehat{\zeta_{j}})+\psi'(\widehat{\eta_{j}})][\psi'(\widehat{\zeta_{j}})-\psi'(\widehat{\eta_{j}})]|\\ &\leq&\frac{1}{4}h_{t}^{4}(\bar{r}^{4}\sum\limits_{j = 1}^{k-2}|(\psi(t_{2k+1})-\psi(\bar{\eta}_{j}))^{\sigma_{2}-1}-(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}|\\ &&+4\bar{r}^{3}\sum\limits_{j = 1}^{k-2}|(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}[\psi'(\widehat{\zeta_{j}})-\psi'(\widehat{\eta_{j}})]|) \doteq\frac{1}{4}h_{t}^{4}(\bar{r}^{4}y1+4\bar{r}^{3}y2). \end{eqnarray} (B.20)

    First, we will estimate y1 ,

    \begin{eqnarray} y1& = &\sum\limits_{j = 1}^{k-2}|(\psi(t_{2k+1})-\psi(\bar{\eta}_{j}))^{\sigma_{2}-1}-(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}|\\ & = &\sum\limits_{j = 1}^{k-2}|(\sigma_{2}-1)(\psi(t_{2k+1})-\psi(\eta_{j}))^{\sigma_{2}-2}(\psi(\bar{\bar{\eta}}_{j})-\psi(\bar{\eta}_{j}))|\\ &\le&(1-\sigma_{2})\bar{r}^{\sigma_{2}-1}\sum\limits_{j = 1}^{k-2} (t_{2k+1}-\eta_{j})^{\sigma_{2}-2}(\bar{\bar{\eta}}_{j}-\bar{\eta}_{j})\\ &\le& (1-\sigma_{2})\bar{r}^{\sigma_{2}-1}\sum\limits_{j = 1}^{k-2} (t_{2k+1}-t_{2j+1})^{\sigma_{2}-2}2h _{t}\\ &\le& (1-\sigma_{2})\bar{r}^{\sigma_{2}-1}\int^{t_{2k-1}}_{t_{0}} (t_{2k+1}-\eta)^{\sigma_{2}-2}d\eta\\ & = &(1-\sigma_{2})\bar{r}^{\sigma_{2}-1}\frac{-1}{\sigma_{2}-1}[(t_{2k+1}-t_{2k-1})^{\sigma_{2}-1}-(t_{2k+1}-t_{0})^{\sigma_{2}-1}]\\ &\le&\bar{r}^{\sigma_{2}-1}(t_{2k+1}-t_{2k-1})^{\sigma_{2}-1} = 2^{\sigma_{2}-1}\bar{r}^{\sigma_{2}-1}h ^{\sigma_{2}-1}_{t}, \end{eqnarray} (B.21)

    where \bar{\eta} _{j}\in (t_{2j-1}, t_{2j}) , \bar{\bar{\eta}}_{j}\in (t_{2j}, t_{2j+1}) , and \eta _{j}\in(\bar{\eta} _{j}, \bar{\bar{\eta}}_{j}) .

    Second, we will estimate y2 . If \psi'(\eta) satisfies the Lipschitz condition, i.e.,

    \begin{eqnarray*} |\psi'(\eta_{1})-\psi'(\eta_{2})|\le\widehat{L}|\eta_{1}-\eta_{2}|,\widehat{L} > 0, \end{eqnarray*}

    then, we have

    \begin{eqnarray} y2& = &\sum\limits_{j = 1}^{k-2}|(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}|\cdot |\psi'(\widehat{\zeta_{j}})-\psi'(\widehat{\eta_{j}})|\\ &\le& \widehat{L}\sum\limits_{j = 1}^{k-2}(\psi(t_{2k+1})-\psi(\bar{\bar{\eta}}_{j}))^{\sigma_{2}-1}\cdot2h _{t} \le \widehat{L}\sum\limits_{j = 1}^{k-2}(\psi(t_{2k+1})-\psi(t_{2j+1}))^{\sigma_{2}-1}\cdot2h _{t}\\ &\le& \widehat{L}\bar{r}^{\sigma_{2}-1}\sum\limits_{j = 1}^{k-2}(t_{2k+1}-t_{2j+1})^{\sigma_{2}-1}\cdot2h _{t} \le \widehat{L}\bar{r}^{\sigma_{2}-1}\int^{t_{2k+1}}_{t_{0}}(t_{2k+1}-\eta)^{\sigma_{2}-1}d\eta\\ & = & \widehat{L}\bar{r}^{\sigma_{2}-1}\frac{1}{\sigma_{2}}(t_{2k+1}-t_{0})^{\sigma_{2}} \le \frac{1}{\sigma_{2}}\widehat{L}\bar{r}^{\sigma_{2}-1}(d-c)^{\sigma_{2}}h^{\sigma_{2}} _{t}. \end{eqnarray} (B.22)

    Bring (B.21) and (B.22) into (B.20), and we have the estimation of L_{11} as follows:

    \begin{eqnarray} L_{11} &\le& \frac{1}{4}h_{t}^{4}[\bar{r}^{4}2^{\sigma_{2}-1}\bar{r}^{\sigma_{2}-1}h ^{\sigma_{2}-1}_{t}+\frac{4}{\sigma_{2}}\bar{r}^{3}\widehat{L}\bar{r}^{\sigma_{2}-1}(d-c)^{\sigma_{2}}h^{\sigma_{2}} _{t}]\\ & = &\frac{1}{4}\bar{r}^{3+\sigma_{2}}2^{\sigma_{2}-1}h^{3+\sigma_{2}} _{t}+\frac{1}{\sigma_{2}}\bar{r}^{2+\sigma_{2}}\widehat{L}(d-c)^{\sigma_{2}}h^{4+\sigma_{2}} _{t}. \end{eqnarray} (B.23)

    For L_{12} , using (3.3) and (B.10), we have

    \begin{eqnarray} L_{12} &\le &\bar{r}^{3}h _{t}^{3}[\int_{t_{2k-3}}^{t_{2k-1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}d\psi(\eta)+\int_{t_{2k-1}}^{t_{2k+1}}(\psi(t_{2k+1}) -\psi(\eta))^{\sigma_{2}-1}d\psi(\eta)]\\ & = &\bar{r}^{3}h _{t}^{3}\int_{t_{2k-3}}^{t_{2k+1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}d\psi(\eta) \le\frac{4^{\sigma_{2}}}{\sigma_{2}}\bar{r}^{3+\sigma_{2}}h _{t}^{3+\sigma_{2}}. \end{eqnarray} (B.24)

    Combine (B.23) and (B.24) to (B.17). Therefore, L1 is as follows:

    \begin{eqnarray} L1 &\le& \frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}h^{\sigma_{1}}_{s} (\frac{1}{4}\bar{r}^{3+\sigma_{2}}2^{\sigma_{2}-1}h^{3+\sigma_{2}} _{t}\\ &&+\frac{1}{\sigma_{2}}\bar{r}^{2+\sigma_{2}}\widehat{L}(d-c)^{\sigma_{2}}h^{4+\sigma_{2}} _{t}+\frac{4^{\sigma_{2}}}{\sigma_{2}}\bar{r}^{3+\sigma_{2}}h _{t}^{3+\sigma_{2}})\\ & = & \frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}\bar{r}^{3+\sigma_{2}} [\frac{2^{\sigma_{2}-1}}{4}+\frac{1}{\bar{r}\sigma_{2}}\widehat{L}(d-c)^{\sigma_{2}}h_{t} +\frac{4^{\sigma_{2}}}{\sigma_{2}}]h^{\sigma_{1}}_{s}h_{t}^{3+\sigma_{2}}. \end{eqnarray} (B.25)

    Using the mean value theorem and Lemma 3.1, we can estimate L2 as follows:

    \begin{eqnarray} L2 &\le &\frac{Q_{2}h_{t}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\int_{a}^{s_{1}} \frac{|\sum\limits_{p = 0}^{2}\hat{f}_{p,0}(\tau)|}{3{(\psi(s_{2l+1})-\psi(\tau))^{1-\sigma_{1}}}} d\psi(\tau)\\ &&\times\sum\limits_{j = 1}^{k}\int_{t_{2j-1}}^{t_{2j+1}}\frac{|\prod\limits_{q = 0}^{2} (\psi(\eta)-\psi(t_{2j-1+q}))|}{{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}} d\psi(\eta)\\ &\le&\frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{2}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}h_{s}^{\sigma_{1}}\bar{r}^{3}h_{t}^{4} \sum\limits_{j = 1}^{k}\int_{t_{2j-1}}^{t_{2j+1}}(\psi(t_{2k+1})-\psi(\eta))^{\sigma_{2}-1}d\psi(\eta)\\ &\le&\frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2}+1)}Q_{2}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}\bar{r}^{3+\sigma_{2}}(d-c)^{\sigma_{2}} h_{s}^{\sigma_{1}}h_{t}^{4}, \end{eqnarray} (B.26)

    where Q_{2} is defined in (B.2).

    Combine (B.25) and (B.26) to obtain E_{2}^{2} ,

    \begin{eqnarray} E_{2}^{2} &\le&\frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}\bar{r}^{3+\sigma_{2}} [\frac{2^{\sigma_{2}-1}}{4}+\frac{1}{\bar{r}\sigma_{2}}\widehat{L}(d-c)^{\sigma_{2}}h_{t}+\frac{4^{\sigma_{2}}}{\sigma_{2}}] h^{\sigma_{1}}_{s}h_{t}^{3+\sigma_{2}} \\ && +\frac{2^{1-\sigma_{1}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2}+1)}Q_{2}r^{\sigma_{1}}(2l+1)^{\sigma_{1}-1}\bar{r}^{3+\sigma_{2}}(d-c)^{\sigma_{2}} h_{s}^{\sigma_{1}}h_{t}^{4}. \end{eqnarray} (B.27)

    Take (B.15), (B.27) and put it into (B.14), and we have

    \begin{eqnarray} \left | E_{2l+1,2k+1}^{2} \right | &\le& \frac{2^{1-\sigma_{1}}(2l+1)^{\sigma_{1}-1}}{\Gamma(\sigma_{1}){\Gamma(\sigma_{2}+1)}} Q_{1}r^{3+\sigma_{1}}\bar{r}^{\sigma_{2}}(d-c)^{\sigma_{2}}h^{\sigma_{1}+3}_{s}\\ &&+\frac{2^{1-\sigma_{1}}(2l+1)^{\sigma_{1}-1}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}\bar{r}^{3+\sigma_{2}} [\frac{2^{\sigma_{2}-1}}{4}+\frac{1}{\bar{r}\sigma_{2}}\widehat{L}(d-c)^{\sigma_{2}}h_{t}+\frac{4^{\sigma_{2}}}{\sigma_{2}}] h^{\sigma_{1}}_{s}h_{t}^{3+\sigma_{2}} \\ && +\frac{2^{1-\sigma_{1}}(2l+1)^{\sigma_{1}-1}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2}+1)}Q_{2}r^{\sigma_{1}}\bar{r}^{3+\sigma_{2}}(d-c)^{\sigma_{2}} h_{s}^{\sigma_{1}}h_{t}^{4}. \end{eqnarray} (B.28)

    Next, we will estimate E_{2l+1, 2k+1}^{3} and E_{2l+1, 2k+1}^{4} . Similar to the estimate for E_{2l+1, 2k+1}^{1} , E_{2l+1, 2k+1}^{2} , by putting (B.6) into the third term on the right side of formula (B.3), we have

    \begin{eqnarray} \left | E_{2l+1,2k+1}^{3} \right | &\le&\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}|\int_{s_{2i-1}}^{s_{2i+1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\frac{1}{3!}\\ &&\times\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{i1}(\tau) ,\eta,\nu(\varepsilon _{i1}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{2i-1+p}))d\psi(\eta)d\psi(\tau)|\\ &&+\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}|\int_{s_{2i-1}}^{s_{2i+1}}\int_{c}^{t_{1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2}\frac{\hat{f}_{p,2i-1}(\tau)}{3!}\\ &&\times\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{2i-1+p},\xi_{2}(\eta ),\nu(s_{2i-1+p},\xi_{2}(\eta))) \prod\limits_{q = 0}^{2}(\psi(\eta)-\psi(t_{q}))d\psi(\eta)d\psi(\tau)|\\ &\le& \frac{2^{1-\sigma_{2}}}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}\bar{r}^{\sigma_{2}}(2k+1)^{\sigma_{2}-1}r^{3+\sigma_{1}} [\frac{2^{\sigma_{1}-1}}{4}+\frac{1}{r\sigma_{1}}\widehat{L}(b-a)^{\sigma_{1}}h _{s}\\ &&+\frac{4^{\sigma_{1}}}{\sigma_{1}}]h _{s}^{3+\sigma_{1}}h_{t}^{\sigma_{2}}+\frac{2^{1-\sigma_{2}}}{\Gamma(\sigma_{1}+1)\Gamma(\sigma_{2})} Q_{2}r^{3+\sigma_{1}}\bar{r}^{\sigma_{2}}(2k+1)^{\sigma_{2}-1}(b-a)^{\sigma_{1}} h^{4} _{s}h _{t}^{\sigma_{2}}\\ &&+\frac{1}{\Gamma(\sigma_{1}+1){\Gamma(\sigma_{2})}} Q_{1}2^{1-\sigma_{2}}(2k+1)^{\sigma_{2}-1}r^{\sigma_{1}}\bar{r}^{3+\sigma_{2}}(b-a)^{\sigma_{1}}h _{t}^{3+\sigma_{2}}. \end{eqnarray} (B.29)

    Bring (B.7) to the fourth item on the right side of (B.3), and we have

    \begin{eqnarray} \left | E_{2l+1,2k+1}^{4} \right | &\le& \frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}\sum\limits_{j = 1}^{k}|\int_{s_{2i-1}}^{s_{2i+1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}} \frac{1}{3!}\\ &&\times\partial _{\tau}^{3}\omega^{2l+1,2k+1}(\varepsilon _{i2}(\tau) ,\eta,\nu(\varepsilon _{i2}(\tau),\eta))\prod\limits_{p = 0}^{2}(\psi(\tau)-\psi(s_{2i-1+p}))d\psi(\eta)d\psi(\tau )|\\ &&+ \frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}\sum\limits_{i = 1}^{l}\sum\limits_{j = 1}^{k}|\int_{s_{2i-1}}^{s_{2i+1}}\int_{t_{2j-1}}^{t_{2j+1}}\frac{(\psi(s_{2l+1}) -\psi(\tau))^{\sigma_{1}-1}}{(\psi(t_{2k+1})-\psi(\eta))^{1-\sigma_{2}}}\sum\limits_{p = 0}^{2} \frac{\hat{f}_{p,2i-1}(\tau)}{3!}\\ &&\times\partial _{\eta}^{3}\omega^{2l+1,2k+1}(s_{2i-1+p},\xi_{j2}(\eta ),\nu(s_{2i-1+p},\xi_{j2}(\eta)))\\ &&\times\prod\limits_{q = 0}^{2}(\psi(\eta )-\psi(t_{2j-1+q}))d\psi(\eta)d\psi(\tau)|\\ &\le& \frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}\bar{r}^{\sigma_{2}}\frac{(d-c)^{\sigma_{2}}}{\sigma_{2}}r^{3+\sigma_{1}} [\frac{2^{\sigma_{1}-1}}{4}+\frac{1}{r\sigma_{1}}\widehat{L}(b-a)^{\sigma_{1}}h _{s}+\frac{4^{\sigma_{1}}}{\sigma_{1}}]h _{s}^{3+\sigma_{1}}\\ &&+\frac{1}{\Gamma(\sigma_{1}+1)\Gamma(\sigma_{2}+1)}Q_{2}r^{3+\sigma_{1}}\bar{r}^{\sigma_{2}}(b-a)^{\sigma_{1}}(d-c)^{\sigma_{2}}h_{s}^{4}\\ &&+\frac{1}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})}Q_{1}r^{\sigma_{1}}\frac{(b-a)^{\sigma_{1}}}{\sigma_{1}}\bar{r}^{3+\sigma_{2}} [\frac{2^{\sigma_{2}-1}}{4}+\frac{1}{\bar{r}\sigma_{2}}\widehat{L}(d-c)^{\sigma_{2}}h_{t}+\frac{4^{\sigma_{2}}}{\sigma_{2}}]h_{t}^{3+\sigma_{2}}\\ &&+\frac{1}{\Gamma(\sigma_{1}+1)\Gamma(\sigma_{2}+1)}Q_{2}r^{\sigma_{1}}\bar{r}^{3+\sigma_{2}}(b-a)^{\sigma_{1}}(d-c)^{\sigma_{2}}h_{t}^{4}. \end{eqnarray} (B.30)

    Plug (B.13), (B.28), (B.29), and (B.30) into (B.3). We get

    \begin{eqnarray*} | E_{2l+1,2k+1}| \le C(h _{s}^{3+\sigma_{1}}+h _{t}^{3+\sigma_{2}}), \end{eqnarray*}

    where C is independent of h _{s} and h _{t} .

    The estimation of the other cases for E_{i, j} are similar to E_{2l+1, 2k+1} . Here, we will omit them. Therefore, we have already proven Lemma 3.2.



    [1] A. Abdi, J. P. Berrut, H. Podhaisky, The barycentric rational predictor-corrector schemes for Volterra integral equations, J. Comput. Appl. Math., 440 (2024), 115611. https://doi.org/10.1016/j.cam.2023.115611 doi: 10.1016/j.cam.2023.115611
    [2] L. B. Zhao, C. M, Huang, The generalized quadrature method for a class of highly oscillatory Volterra integral equations, Numer. Algorithms, 92 (2023), 1503–1516. https://doi.org/10.1007/s11075-022-01350-7 doi: 10.1007/s11075-022-01350-7
    [3] H. T. Cai, Oscillation-preserving Legendre-Galerkin methods for second kind integral equations with highly oscillatory kernels, Numer. Algorithms, 90 (2022), 1091–1115. https://doi.org/10.1007/s11075-021-01223-5 doi: 10.1007/s11075-021-01223-5
    [4] Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations, J. Appl. Math. Comput., 60 (2019), 201–222. https://doi.org/10.1007/s12190-018-1209-5 doi: 10.1007/s12190-018-1209-5
    [5] M. Ghiat, B. Tair, H. Ghuebbai, S. Kamouche, Block-by-block method for solving non-linear Volterra integral equation of the first kind, Comput. Appl. Math., 42 (2023), 67. https://doi.org/10.1007/s40314-023-02212-1 doi: 10.1007/s40314-023-02212-1
    [6] S. Nemati, P. M. Lima, Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math., 242 (2013), 53–69. https://doi.org/10.1016/j.cam.2012.10.021 doi: 10.1016/j.cam.2012.10.021
    [7] I. Zamanpour, R. Ezzati, Operational matrix method for solving fractional weakly singular 2D partial Volterra integral equations, J. Comput. Appl. Math., 419 (2023), 114704. https://doi.org/10.1016/j.cam.2022.114704 doi: 10.1016/j.cam.2022.114704
    [8] F. Mirzaee, Z. Rafei, The block by block method for the numerical solution of the nonlinear two-dimensional Volterra integral equations, J. King Saud Univ. Sci., 23 (2011), 191–195. https://doi.org/10.1016/j.jksus.2010.07.008 doi: 10.1016/j.jksus.2010.07.008
    [9] H. Laib, A. Boulmerka, A. Bellour, F. Birem, Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method, J. Comput. Appl. Math., 417 (2023), 114537. https://doi.org/10.1016/j.cam.2022.114537 doi: 10.1016/j.cam.2022.114537
    [10] W. S. Zheng, Y. P. Chen, A spectral collocation method for a nonlinear multidimensional Volterra integral equation, Numer. Meth. Part. D. E., 39 (2023), 1767–1777. https://doi.org/10.1002/num.22953 doi: 10.1002/num.22953
    [11] H. Dehestani, Y. Ordokhani, An efficient approach based on Legendre-Gauss-Lobatto quadrature and discrete shifted Hahn polynomials for solving CaputoCFabrizio fractional Volterra partial integro-differential equations, J. Comput. Appl. Math., 403 (2022), 113851. https://doi.org/10.1016/j.cam.2021.113851 doi: 10.1016/j.cam.2021.113851
    [12] Z. W. Wang, X. Y. Hu, B. Hu, A collocation method based on roots of Chebyshev polynomial for solving Volterra integral equations of the second kind, Appl. Math. Lett., 146 (2023), 108804. https://doi.org/10.1016/j.aml.2023.108804 doi: 10.1016/j.aml.2023.108804
    [13] Y. X. Wei, Y. P. Chen, A Jacobi spectral method for solving multidimensional linear Volterra integral equation of the second kind, J. Sci. Comput., 79 (2019), 1801–1813. https://doi.org/10.1007/s10915-019-00912-7 doi: 10.1007/s10915-019-00912-7
    [14] Z. Q. Wang, K. H. Shi, X. Y. Ye, J. Y. Cao, Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations, AIMS Math., 8 (2023), 29759–29796. https://doi.org/10.3934/math.20231523 doi: 10.3934/math.20231523
    [15] H. Laib, A. Boulmerka, A. Bellour, F. Birem, Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method, J. Comput. Appl. Math., 417 (2023), 114537. https://doi.org/10.1016/j.cam.2022.114537 doi: 10.1016/j.cam.2022.114537
    [16] M. Heydari, M. Razzaghi, A new wavelet method for fractional integro-differential equations with \psi-Caputo fractional derivative, Math. Comput. Simulat., 217 (2024), 97–108. https://doi.org/10.1016/j.matcom.2023.10.023 doi: 10.1016/j.matcom.2023.10.023
    [17] J. Li, L. Ma, A unified Maxwell model with time-varying viscosity via \psi-Caputo fractional derivative coined, Chaos, Soliton. Fract., 177 (2023), 114230. https://doi.org/10.1016/j.chaos.2023.114230 doi: 10.1016/j.chaos.2023.114230
    [18] M. Zaitri, H. Zitane, D. Torres, Pharmacokinetic/Pharmacodynamic anesthesia model incorporating \psi-Caputo fractional derivatives, Comput. Biol. Med., 167 (2023), 107679. https://doi.org/10.1016/j.compbiomed.2023.107679 doi: 10.1016/j.compbiomed.2023.107679
    [19] A. Jajarmi, D. Baleanu, S. Sajjadi, J. Nieto, Analysis and some applications of a regularized \psi-Hilfer fractional derivative, J. Comput. Appl. Math., 415 (2022), 114476. https://doi.org/10.1016/j.cam.2022.114476 doi: 10.1016/j.cam.2022.114476
    [20] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Leibniz type rule: \psi-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 305–311. https://doi.org/10.1016/j.cnsns.2019.05.003 doi: 10.1016/j.cnsns.2019.05.003
    [21] K. Udhayakumar, R. Rakkiyappan, X. Li, J. Cao, Mutiple \psi-type stability of fractional-order quaternion-valued neural networks, Appl. Math. Comput., 401 (2021), 126092. https://doi.org/10.1016/j.amc.2021.126092 doi: 10.1016/j.amc.2021.126092
    [22] D. Li, Y. Li, F. Chen, X. Feng, Instantaneous and non-instantaneous impulsive boundary value problem involving the generalized \psi-caputo fractional derivative, Fractal Fract., l7 (2023), 206. https://doi.org/10.3390/fractalfract7030206 doi: 10.3390/fractalfract7030206
    [23] R. Almeida, A. Malinowska, T. Odzijewicz, On systems of fractional differential equations with the \psi-Caputo derivative and their applications, Math. Meth. Appl. Sci., 44 (2021), 8026–8041. https://doi.org/10.1002/mma.5678 doi: 10.1002/mma.5678
    [24] A. Sabir, M. ur Rehman, A numerical method based on quadrature rules for \psi-fractional differential equations, J. Comput. Appl. Math., 419 (2023), 114684. https://doi.org/10.1016/j.cam.2022.114684 doi: 10.1016/j.cam.2022.114684
    [25] M. Zhang, X. Yang, Y. Cao, Numerical analysis of block-by-block method for a class of fractional relaxation-oscillation equations, Appl. Numer. Math., 176 (2022), 38–55. https://doi.org/10.1016/j.apnum.2022.02.008 doi: 10.1016/j.apnum.2022.02.008
    [26] Z. Q. Wang, Q. Liu, J. Y. Cao, A higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy, Fractal Fract., 6 (2022), 314. https://doi.org/10.3390/fractalfract6090475 doi: 10.3390/fractalfract6090475
    [27] J. Y. Cao, Z. N. Cai, Numerical analysis of a high-order scheme for nonlinear fractional differential equations with uniform accuracy, Numer. Math. Theory Meth. Appl., 14 (2021), 71–112. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829
    [28] J. Dixon, S. McKee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 66 (1986), 535–544. https://doi.org/10.1002/zamm.19860661107 doi: 10.1002/zamm.19860661107
    [29] H. Y. Zhu, C. J. Xu, A fast high order method for the time-fractional diffusion equation, SIAM J. Numer. Anal., 57 (2019), 2829–2849. https://doi.org/10.1137/18M1231225 doi: 10.1137/18M1231225
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(911) PDF downloads(27) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog