The 1D and 2D spatial compact finite difference schemes (CFDSs) for time-fractional diffusion equations (TFDEs) were presented in this article with uniform temporal convergence order. Based on the idea of the modified block-by-block method, the CFDSs with uniform temporal convergence order for TFDEs were given by combining the fourth-order CFDSs in space and the high order scheme in time. The stability analysis and convergence order of CFDSs with uniform convergence order in time for TFDEs strictly proved that the provided uniform accuracy time scheme is $ (3-\alpha) $ temporal order and spatial fourth-order, respectively. Ultimately, the astringency of 1D and 2D spatial CFDSs was verified by some numerical examples.
Citation: Junying Cao, Zhongqing Wang, Ziqiang Wang. Stability and convergence analysis for a uniform temporal high accuracy of the time-fractional diffusion equation with 1D and 2D spatial compact finite difference method[J]. AIMS Mathematics, 2024, 9(6): 14697-14730. doi: 10.3934/math.2024715
The 1D and 2D spatial compact finite difference schemes (CFDSs) for time-fractional diffusion equations (TFDEs) were presented in this article with uniform temporal convergence order. Based on the idea of the modified block-by-block method, the CFDSs with uniform temporal convergence order for TFDEs were given by combining the fourth-order CFDSs in space and the high order scheme in time. The stability analysis and convergence order of CFDSs with uniform convergence order in time for TFDEs strictly proved that the provided uniform accuracy time scheme is $ (3-\alpha) $ temporal order and spatial fourth-order, respectively. Ultimately, the astringency of 1D and 2D spatial CFDSs was verified by some numerical examples.
[1] | V. V. Uchaikin, Fractional derivatives for physicists and engineers, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-642-33911-0 |
[2] | Z. P. Hao, Z. Q. Zhang, Fast spectral Petrov-Galerkin method for fractional elliptic equations, Appl. Numer. Math., 162 (2021), 318–330. https://doi.org/10.1016/j.apnum.2020.12.026 doi: 10.1016/j.apnum.2020.12.026 |
[3] | Z. Q. Zhang, Error estimates of spectral Galerkin methods for a linear fractional reaction-diffusion equation, J. Sci. Comput., 78 (2019), 1087–1110. https://doi.org/10.1007/s10915-018-0800-0 doi: 10.1007/s10915-018-0800-0 |
[4] | D. D. Hu, W. J. Cai, X. M. Gu, Y. S. Wang, Efficient energy preserving Galerkin-Legendre spectral methods for fractional nonlinear Schrödinger equation with wave operator, Appl. Numer. Math., 172 (2022), 608–628. https://doi.org/10.1016/j.apnum.2021.10.013 doi: 10.1016/j.apnum.2021.10.013 |
[5] | M. Zayernouri, G. E. Karniadakis, Fractional spectral collocation method, SIAM J. Sci. Comput., 36 (2014), A40–A62. https://doi.org/10.1137/130933216 doi: 10.1137/130933216 |
[6] | H. L. Liao, D. F. Li, J. W. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829 |
[7] | R. J. Qi, W. Zhang, X. Zhao, Variable-step numerical schemes and energy dissipation laws for time fractional Cahn-Hilliard model, Appl. Math. Lett., 149 (2024), 108929. https://doi.org/10.1016/j.aml.2023.108929 doi: 10.1016/j.aml.2023.108929 |
[8] | S. Santra, J. Mohapatra, Analysis of the L1 scheme for a time fractional parabolic-elliptic problem involving weak singularity, Math. Method. Appl. Sci., 44 (2021), 1529–1541. https://doi.org/10.1002/mma.6850 doi: 10.1002/mma.6850 |
[9] | P. Lyu, S. Vong, A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin-Bona-Mahony-type equation with nonsmooth solutions, Numer. Meth. Part. D. E., 36 (2020), 579–600. https://doi.org/10.1002/num.22441 doi: 10.1002/num.22441 |
[10] | C. Y. Quan, X. Wu, $H^1$-norm stability and convergence of an L2-type method on nonuniform meshes for subdiffusion equation, SIAM J. Numer. Anal., 61 (2023), 2106–2132. https://doi.org/10.1137/22M1506468 doi: 10.1137/22M1506468 |
[11] | J. Y. Cao, Q. Tan, Z. Q. Wang, Z. Q. Wang, Numerical analysis of a high-order scheme for nonlinear fractional differential equations with uniform accuracy, AIMS Math., 8 (2023), 16031–16061. https://doi.org/10.3934/math.2023818 doi: 10.3934/math.2023818 |
[12] | J. Y. Cao, Z. N. Cai, Numerical analysis of a high-order scheme for nonlinear fractional differential equations with uniform accuracy, Numer. Math. Theor. Meth. Appl., 14 (2021), 71–112. https://doi.org/10.4208/nmtma.OA-2020-0039 doi: 10.4208/nmtma.OA-2020-0039 |
[13] | C. Y. Quan, X. Wu, J. Yang, Long time $H^1$-stability of fast L2-1$\sigma$ method on general nonuniform meshes for subdiffusion equations, J. Comput. Appl. Math., 440 (2024), 115647. https://doi.org/10.1016/j.cam.2023.115647 doi: 10.1016/j.cam.2023.115647 |
[14] | J. Y. Cao, C. J. Xu, A high order schema for the numercial solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013 |
[15] | A. Alikhanov, M. Beshtokov, M. Mehra, The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation, Fract. Calc. Appl. Anal., 24 (2021), 1231–1256. https://doi.org/10.1515/fca-2021-0053 doi: 10.1515/fca-2021-0053 |
[16] | H. Sun, Z. Z. Sun, A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation, Numer. Algor., 86 (2021), 761–797. https://doi.org/10.1007/s11075-020-00910-z doi: 10.1007/s11075-020-00910-z |
[17] | D. Zhang, N. An, C. B. Huang, Local error estimates of the fourth-order compact difference scheme for a time-fractional diffusion-wave equation, Comput. Math. Appl., 142 (2023), 283–292. https://doi.org/10.1016/j.camwa.2023.05.009 doi: 10.1016/j.camwa.2023.05.009 |
[18] | M. R. Cui, An alternating direction implicit compact finite difference scheme for the multi-term time-fractional mixed diffusion and diffusion-wave equation, Math. Comput. Simulat., 213 (2023), 194–210. https://doi.org/10.1016/j.matcom.2023.06.003 doi: 10.1016/j.matcom.2023.06.003 |
[19] | M. Haghi, M. Ilati, M. Dehghan, A fourth-order compact difference method for the nonlinear time-fractional fourth-order reaction-diffusion equation, Eng. Comput., 39 (2023), 1329–1340. https://doi.org/10.1007/s00366-021-01524-2 doi: 10.1007/s00366-021-01524-2 |
[20] | R. Ghaffari, F. Ghoreishi, A low-dimensional compact finite difference method on graded meshes for time-fractional diffusion equations, Comput. Meth. Appl. Mat., 21 (2021), 827–840. https://doi.org/10.1515/cmam-2020-0158 doi: 10.1515/cmam-2020-0158 |
[21] | Z. B. Wang, C. X. Ou, D. K. Cen, Fast compact finite difference schemes on graded meshes for fourth-order multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions, Int. J. Comput. Math., 100 (2023), 361–382. https://doi.org/10.1080/00207160.2022.2119080 doi: 10.1080/00207160.2022.2119080 |
[22] | X. Li, H. L. Liao, L. M. Zhang, A second-order fast compact scheme with unequal time-steps for subdiffusion problems, Numer. Algor., 86 (2021), 1011–1039. https://doi.org/10.1007/s11075-020-00920-x doi: 10.1007/s11075-020-00920-x |
[23] | Y. M. Wang, T. Wang, A compact ADI method and its extrapolation for time fractional sub-diffusion equations with nonhomogeneous Neumann boundary conditions, Comput. Math. Appl., 75 (2018), 721–739. https://doi.org/10.1016/j.camwa.2017.10.002 doi: 10.1016/j.camwa.2017.10.002 |
[24] | F. R. Wang, X. H. Yang, H. X. Zhang, L. J. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simulat., 199 (2022), 38–59. https://doi.org/10.1016/j.matcom.2022.03.004 doi: 10.1016/j.matcom.2022.03.004 |
[25] | H. X. Zhang, Y. Liu, X. H. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 doi: 10.1007/s12190-022-01760-9 |
[26] | Z. Y. Zhou, H. X. Zhang, X. H. Yang, The compact difference scheme for the fourth-order nonlocal evolution equation with a weakly singular kernel, Math. Method. Appl. Sci., 46 (2023), 5422–5447. https://doi.org/10.1002/mma.8842 doi: 10.1002/mma.8842 |
[27] | W. Wang, H. X. Zhang, Z. Y. Zhou, X. H. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101 (2024), 170–193. https://doi.org/10.1080/00207160.2024.2323985 doi: 10.1080/00207160.2024.2323985 |
[28] | W. H. Luo, C. P. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme for the Caputo derivative with applications to fractional diffusion problems, Numer. Func. Anal. Opt., 39 (2018), 600–622. https://doi.org/10.1080/01630563.2017.1402346 doi: 10.1080/01630563.2017.1402346 |
[29] | C. W. Lv, C. J. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), A2699–A2722. https://doi.org/10.1137/15M102664X doi: 10.1137/15M102664X |
[30] | G. H. Gao, Z. Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), 586–595. https://doi.org/10.1016/j.jcp.2010.10.007 doi: 10.1016/j.jcp.2010.10.007 |
[31] | A. Samarskii, V. Andreev, Difference methods for elliptic equations, Beijing: Science Press, 1984. |
[32] | H. L. Liao, Z. Z. Sun, Maximum norm error bounds for ADI and compact ADI methods for solving parabolic equations, Numer. Meth. Part. D. E., 26 (2010), 37–60. https://doi.org/10.1002/num.20414 doi: 10.1002/num.20414 |
[33] | H. Y. Zhu, C. J. Xu, A fast high order method for the time-fractional diffusion equation, SIAM J. Numer. Anal., 57 (2019), 2829–2849. https://doi.org/10.1137/18M1231225 doi: 10.1137/18M1231225 |
[34] | Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math. Comput. Simulat., 203 (2023), 387–407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001 |