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Abstract: The 1D and 2D spatial compact finite difference schemes (CFDSs) for time-fractional
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convergence order for TFDEs were given by combining the fourth-order CFDSs in space and the
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1. Introduction

The fractional differential equations can more accurately describe real materials with memory and
genetic properties than classical equations, simulating many physical processes, and have received
increasing attention in recent decades. Due to their potential science value and engineering
applications, the fractional partial differential equations have become hot research topics for scholars
and are already widely applied in classical mechanics, astrophysics, quantum mechanics, and other
science and engineering fields [1].

In certain special cases, analytical solutions to fractional diffusion equations can be constructed
using Laplace and Fourier transforms, and these analytical solutions contain infinite series. Therefore,
constructing an efficient numerical solution for fractional differential equations is a very important
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research topic. In recent years, many effective numerical methods have been constructed to solve weak
singularity TFDEs, such as the spectral method [2-5], the L1-type scheme [6—8], and the L2-type
scheme [9-14], etc.

d
In this article, we consider the following TFDE:s in the interval Q = H[ai, bi],
i=1

d
oD v(x, 1) — Z K,ﬁiv(x, 1) =f(x,1), xeQ,te(0,T], (1.1a)
i=1
v(x,1) =0, xe€dQ,re(0,T], (1.1b)
v(x,0) = vo(x), x e Q, (1.1¢c)
where T > 0 is a bounded constant, X = (x;, X2, - - , x;) € R?, 9Q is the boundary of Q,0 < @ < 1 and

oD{ 1s an @ order temporal Caputo fractional derivative defined by

1 ! ov(x,7)
DX, t) = —— t—17)" ~—dr,
oD v(x. ) r(1—a)f0( =
with I'(-) being Eulers gamma function. «;,i = 1,2, - - - , d are the generalized diffusion constants, vy(x)

and f(x,t) are known smooth functions.

The application of the CFDSs offer numerical high accuracy, making it suitable for fractional
differential equations. In [15], Alikhanov, Beshtokov, and Mehra gave a Crank-Nicolson type CFDS
for a time-fractional Hallaire equation. The 2D multi-term fractional wave equation was solved by a
fast CFDS with the temporal second-order in [16]. A numerical scheme was constructed for the
TFDEs by using the temporal L1 scheme on graded meshes and the spatial CFDS in [17]. An
alternating direction implicit CFDS for the 2D multi-term TFDEs were given in [18]. In [19], a
high-order CFDS was proposed for solving 2D nonlinear TFDEs with apatial fourth order. Based on a
proper orthogonal decomposition technique, the TFDEs were solved by a low-dimensional graded
mesh CFDS in [20]. The multi-term fractional sub-diffusion equations with the Dirichlet boundary
conditions were solved by a fast CFDS with graded meshes based on the sum-of-exponentials
approximation method in [21]. An unequal time-steps second-order fast CFDS for sub-diffusion
problems was established by the sum-of-exponentials technique in [22]. A CFDS for TFDEs with
nonhomogeneous Neumann boundary conditions was given in [23]. The 2D nonlinear fractional
partial integro-differential equation with a weakly singular kernel was solved by using the time
two-grid finite difference algorithm in [24]. The 3D nonlocal evolution equation with a weakly
singular kernel was solved by the first order fractional convolution quadrature scheme and backward
Euler alternating direction implicit method in [25]. In [26], they gave an efficient numerical algorithm
for the fourth-order nonlocal evolution equation with a weakly singular kernel by using second-order
fractional convolution quadrature rule and the .1 method. In [27], they gave the fast CFDS for the
fourth-order TFDEs by using the sum-of-exponentials.

Constructing high-order numerical schemes for TFDEs is a hot research topic. In [28], they
proposed a novel numerical approximate method for the Caputo fractional derivative by using the
piecewise linear and quadratic Lagrange interpolation functions with (3 — «) order for the linear
function f. In [29], they constructed the (3 — @) order in time for the time fractional diffusion equation
from the second time layer. Therefore, the main work is to propose an efficient high order time

AIMS Mathematics Volume 9, Issue 6, 14697-14730.



14699

uniform numerical scheme for TFDEs (1.1a)—(1.1c) by using space fourth-order CFDS and (3 — @)
order time scheme. In this paper, we construct a novel fully discrete numerical scheme for TFDEs
with uniform convergence order, which can be used for the general nonlinear function f. The
modified block-by-block method is introduced to the discrete time fractional derivative, and the
fourth-order CFDS is used to approximate the second derivative of space. By combining the spatial
fourth-order CFDS and temporal (3 — a) order scheme, we obtain the fully discrete numerical scheme
for TFDEs with uniform convergence order in time. The numerical scheme will be established in this
article to provide a paradigm for establishing high-order TFDEs and analyzing its convergence and
stability of the high-order numerical scheme in time. It can also provide readers with a feasible
method for constructing high order time numerical schemes and their theoretical analysis for
similar TFDE:s.

The following is the composition of this article. In Section 2, we introduce 1D spatial CFDS for
the TFDEs. In Section 3, we provide stability and convergence analysis of 1D spatial CFDS for the
TFDEs. In Section 4, we introduce 2D spatial CFDS for the TFDEs and its stability and convergence
results. Some numerical results of 1D and 2D spatial CFDSs are given in Section 5. In Section 6, the
work in this paper is summarized.

2. A 1D spatial CFDS for TFDEs

Now, we will give detailed instructions to construct a fourth order 1D CFDS for the spatial derivative
and high order uniform accuracy scheme for the temporal derivative of (1.1a) with initial (1.1b) and
boundary conditions (1.1c) for d=1. Let M, N be two positive integers and Ax = bl;;‘ , At = %, denote
Xi=a1+iAx (0 <i < M)ty = kAt (0 <k <N),Qx ={x]0<i <M}, Qp =1{t,] 0 <k <N}
Let Vo, = (Vv = (v, - -+ ,vi), vo = vir = 0} be grid function space defined on Q,,, then for any grid
function v € V,,, the following differential operators and compact differential operators are introduced,

v, O Vi1 —O0 V. 1
_ VitV o T T
6XV‘/~_% = T, 6XVJ' = Ax . (21)
[+ 42 , j=12,--- M-1,
Hyw; =1 oDy, / _ (2.2)
Vjs j=0,0r j=M,
where [ is the identical operator. For j = 1,2,--- , M — 1, it is easy to know that
vior +10v; +v;
Hpwj = i ALY

12
For Yv,w € V,,, the discrete inner product and the discrete norms are defined as follows:

v, w) = Ax 2(5 Ve @Ew; 1) — A—Ax Z((Szv])(62wj) (2.3)

Ml = max vjl, I = AXZ(éxv]_,)z ll63vIl =

j=1

M-1
Ax Y (822 (2.4)
=1

To start, in order to analyze the CFDS of TFDE convergence and stability with spatial fourth order,
some useful lemmas for CFDS convergence and stability analysis will be introduced in following parts.
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Lemma 2.1. [30] For Vv € Vy,, the (v, v) defined by (2.3) satisfies the following inequality
2
§|V|% <,y < |v|%.
Lemma 2.2. [31] For Vv € Vy,, the |V||. defined by (2.3) satisfies the following inequality
1
Mo < 5 Vaz = ailvl.

Lemma 2.3. [32] Suppose g(x) € C%[ay, a,] and denote () = 5(1 —1)* = 3(1 — 1)°, and then we have

A 4 1
Hyg'(x)) = 62g(x)) + % f [g®(x; — 7Ax) + gO(x; + TAX)](T)dT, 1 < j< M - 1.
0
According to [11], let
@ = '3 — a)Ar, (2.5)

we will introduce an efficient temporal high order numerical scheme to discrete (D{v(x, ;) with
simplification by omitting the dependence of (D v(x, ;) on x as follows:

()D?V(lk) :ODZ[V(tk) + rk(tk), Vk > 1, (26)
where A A A
[Dov(t9) + Div(t1) + Dyv(12)]/ o, k=1,
[Dov(t) + Div(ty) + Dyv(t2)]/ o, k=2,
oD v(t) = 1 [Apv(t0) + Brv(ty) + Cov(ny) 2.7)
k=1
+ ) (Av(tiion) + Bv(ti) + Covitic i)l e, k>3,
p
and
A 30,’ - 4 A A 1
D0: 2 ,D]:2(1_Q),D2:§a,
- 1 ~ 4a - a+2
Dy = 5(30’—2),191 = —?,Dz = %
_ -k =D 3@ -2k
Ak — _(a )( ) + (Gf ) _ (k _ 1)2—(}’ + k2—(l’

2 2

By = —2(a = k"™ = 2k*7% + 2(~1 + k)*7,
% ( ) ( ) 2.8)

Cy = %(a — )K"+ (1 + )T+ K = (=1 + k)7,
(@ = 2)[(=1 + i)~ + 1]

Ai = > _ (_1 + l-)2—a + iz_a,
B =2[2-a)i—- D"+ (- 1) =P,
32— 2
Ci = — ( 5 a,)(l _ 1)1—(1 + Ta/il—(x _ (l _ 1)2—(1/ + l-2—a-

According to Theorem 2.1 in [11], it is easy to obtain the temporal error estimate of the above
proposed high order efficient numerical method (2.7) of the temporal fractional derivative.
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Lemma 2.4. [11] Suppose v(t) € C*[0, T and the numerical approximation error of the time fractional
derivative satisfies

(8l = oD v(t) —oD3 V()| < ¢, AP0 < @ < 1,Vk > 1,
where ¢, > 0 is an independent of At constant.
Considering the Eq (1.1a) at the point (x;, ), we have
oDIV(xj, 1) — K10°v(x ), 1) = F(X), 1), (2.9)

Bringing operator Hjy, to the Eq (2.9), the CFDS is immediately established for TFDEs in space
as follows:

Hp(oDIv(xj, 1)) — ki Hp(00v(xj, 1)) = Hau(f(x, 1))

To provide a concise description of the high-order numerical scheme, we introduce the following
grid functions:

Vo=v(x, ), ff = fxn), k=0,1,2,--- N, j=0,1,2,--- M.

Suppose v(x,t) € Cg:;([al, a,] X [0, T]) and use Lemmas 2.3 and 2.4. One can immediately obtain

Ha (oD v(xj, 1)) — K (ﬁvlj = HAx(f]k) + R, (2.10)
with
Axt [ 9%y v
Rl; = Kazes f(; [(%(xj - TAX, ;) + %(xj + TAx, 1)) (T)dT — Hpn(rilx;, 1)),

and R’]‘. satisfies the following:
IRY| < C(AP™ + AxY), 2.11)

where C > 0 is a constant and independent on A¢ and Ax.
Eliminating infinitesimal quantities R’j‘., one can immediately obtain the high order efficient CFDS
for the Eqgs (1.1a)—(1.1c) as follows:

HAx(IA)Ov? + Dlv} + IA)zv?) - a'oK15)ZCV} = aoHAx(fj]), k=1,

HAx(f)ov(]). + l~)1v; + Dzvi) — aoklé)%\% = oonAx(sz), k=2,

Hp [Ap) + By} + Cov? (2.12)
k—1

# ) AT+ BT+ CoA ] = aoki 82V = aoH(f), k> 3.
i=1

For the sake of CFDS (2.12)’s stability and convergence analysis, we first rewrite it for £ > 4 into
the following equivalent form:

k
HaO = > di A7) = aoCr o, = aoC Had(ff), 4 <k <N, (2.13)
i=1
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where
k Ak + Ay k Ao+ B g + Bk k Ck + Az + Bieo +Cr g
do—_—, 1= - ,dz—_ 5
C C C
Bl+C2 A1+BZ+C3 B,‘+Ci1+A,‘,1 .
dlli—lz_ Cl ’1;—2:_ Cl ’d][i_,':_ él ,3§l§k—3.
For k = 3, we similarly rewrite (2.12) into the following form:
Hp (v — d3v; — div — dgv)) — aoCi ' k163 = aoCy Hpo(f), k=3, (2.14)
where
3 C_'3+Bl+C2 3 B3+A1+Bz 3 A3+A2
B=-2T202 o BT gl BT
C C C

According to (2.13) and (2.14), the full discrete high order efficient CFDS of (2.12) is equivalently
rewritten as follows:

Ha(DoV) + Div} + Dovy) — aoki63v} = aoHau(f), k=1, (2.152)

Ha(Dov§ + Div; + Dav}) — aoi87v; = aoHan(f), k=2, (2.15b)

HAX(Vi - d; 5 - df j - dgv(}) - OloCI_IK15;2cV§ = a’()CI_IHAx(ij), k=3, (2.15¢)
k

HAx(VI;' - Z d],i_iv];-_i) - CZ()CI_IK](S)ZCV];- = aOCI_lHAx(f;‘)’ 4<k<N. (2.15d)
i=1

In order to analyze the stability and convergence analysis of (2.15), we will first analyze the
properties for the coefficients d’g_i of (2.15) in the following Lemma 2.5.

Lemma 2.5. [I1] For Ya € (0,1),k > 4, the scheme (2.15d)’s coefficients satisfy the
following inequalities:
4 -«

k
<2; (Z)Zd,’j_i =1; 3)d,>0,3<i<k
i=1
40 < df | < % (5)d,_, has positive and negative values; (6)ds_, + 1(dk_)* > 0.

3
H=<C, =
()2<1

From Lemma 2.5, we know that the symbol of coefficient d’;_z is uncertain when « € (0, 1). Due to
the uncertainly symbol of coefficient d’,j_z, it will be very difficult to analyze the unconditional stability
and convergence of the high order efficient CFDS by using the classical analysis method. Therefore,
we will use a novel technique for the provided scheme’s stability and convergence analysis for all
a € (0, 1) as follows.

In the following, we will use a new method for the unconditional stability and convergence analysis
of the numerical scheme (2.15) and denote

1
0=—d_,. (2.16)
2
By introducing parameters into the Eq (2.15d) and rewriting Eq (2.15d), one can get
k
vlj‘- — Z d,f_iv';_i = v]; - d,f_lv';_l - d,f_zv';_z — = d’f } - d’gv(}
i=1
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= (v’;. - Gv’j‘._l) - 9(\/’1‘._l - Hv’;_z) - (6 + d,f_z)v’;_z — d’,ﬁ_Sv’]‘-_3 — = d’l‘ j - dgv(;

= (-0 =004 -0V ) — (07 + di_ (VT — V) = (8 + 0d_, + di_) (VT — Vi
— = (O 0T, -+ 0ds + A — V) — (O 0T d L, + -+ 0ds + dD(V - V)

—(0° + 0 2d_, + -+ 0d} + dp)V).

For the sake of conciseness, we also introduce the following notations

di =0+ 07d ,i=23k (2.17)
=2
V=vi— v i= 12,0k, 2.18)
k k-1 k
=Y di T = = N d T - d = - ) a i (2.19)
i=1 i=2 i=1

Using the above Eqs (2.17)—(2.19), Eq (2.15d) can be equivalent as follows:

k
Hao = > di 757 = aoCr o, = aoCr Had(£). (2.20)
i=1
For k = 3, using the same method for (2.20), the equivalent of (2.15c) is as follows:
Hp (7} — d3v5 — div; — dgv)) — aoCy ' ka67v = aoCr Hal(f7). (2.21)

Combining (2.20) and (2.21), the equivalent form for the high-order uniform convergence accuracy
numerical scheme (2.15) is as follows:

Ha DoV + D1} + Dovl) — apki 63} = aoHal(f}), k=1, (2.22a)

Ha DoV + D1v} + Dav)) — aoki163v; = aoHal(f7), k =2, (2.22b)

Ha (7 — d3v; — d)v) — dgv)) — aoCr ' ki3 = aoCr Hau(f), k =3, (2.22¢)
k

Hao = > di 757 = aoCr' k62 = aoCr Hadlf), 4 <k < N. (2.22d)
i=1

According to the Lemma 3.2 in [11], one can immediately obtain that the coefficients in (2.22d)
satisfy the following Lemma 2.6.
Lemma 2.6. When k > 4 for all a € (0, 1), the coefficients in the numerical scheme (2.22d) satisfy
k-1

2 _ o
(DO ©.3): @df;>0,i=23.k (0<0+ D +dy<.
i=2

Because of 68 # d; — 0, the numerical scheme (2.22c¢) and (2.22d) cannot write the unifying
form, where

B=E-0, $=T0+&, & =T0+d.

According to the Lemma 3.3 in [11], we can immediately get the coefficients in (2.22c) for k = 3,
satisfying the following Lemma 2.7.
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Lemma 2.7. Fork =3, Y0 < a < 1, the (2.22c)’s coefficients have properties as follows:
(O)d3>0,d; >0,dy >0, Qd3-6<0; 3)0<ds+d,+d;<1.

To prove convergence, we will provide a lower bound estimate for dj in the following Lemma 2.8.

Lemma 2.8. YO < a < 1 and k > 3, the coefficient cfg satisfies

o2

b > 32— - )k *Cy', (2.23)
where C is defined by (1) in Lemma 2.5.
Proof. First, according to (2.17), it is obvious that df > d& = —_"+C—f?"*‘. Next, we will estimate —(A; +

Apc) = B2k —2)""" + 3k'*] + (k= 2)>* —k*™®. Let k — 1 = X, then x > 2. We obtain

—(Ap + Apy) = %(2 —)(=1+D+3E+ DTN+ G- D =1+ D)7

_ 2 3 @ gimag(1 = Lyima 4 31 4 Lyop g goop - Lo 4 Lo
X X X

_ 2-a Lo o e

= R -0+ (- a)a)-2)

1 1 1 1
+3[1 + F(l —)(2)+ =1 —a)(-a) =)+ ]}
! X 2! X

+E2] + 2—&(_% + W(_if e
1! X 2! X
qalmaell C-o)d-o) 1,
[1+ T (j)‘i‘ X (56) +---1)
_ 2-a_, s Hi;:o(l —a—n) _1 it <« Hil:o(l -a@—n) l i+1
- T [; TSNS +3; RS

N o —a=m) 1y N [heo(l=a=m) 1,
HEmon [; i+l % _; ivor

1 R
= 5(2—a)x ;bi,

~ : 1)+l 2 . . 0§ .
where b; = [],_o(1 —a — n)%(%)’. By careful calculation, we know Y.' b; is a convergent

alternating series. Furthermore, 132 > 0. Therefore, we have 0 < Y15 131- < @2, and

2 -«
2

2 -«

5 by + by)

—(Ay+ A =

+0o0
)?_a(l;() + Bl + Z B,) >
=2

_ Z‘Tax-a[m — o)+ (1 - a)(—a)-

. 20 2 o
3!-)?] =2-a)(l -a)x (1—§)2 5(2—a)(1—01)k .

Combining the expression of d¥, we have already proved (2.23). O
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3. Stability and convergence analysis

In order to analyze the stability, we take the right function f(x,¢) = 0. Therefore, scheme (2.22)
becomes

Ha(DoV) + Dy + Dovy) — a1 630 = 0, k=1, (3.1a)

Ha(Dov} + Dyv} + Davi) — apki63v; = 0, k=2, (3.1b)

H (7} - Jgﬁ —div; - dp)) — aoCi k62 = 0, k=3, (3.1¢)
Sk k  Sk—i -1 2 0k _

HAx(vj—de ) = @oCrlk 62 =0, 4<k<N. (3.1d)

First, we will give the estimation of < v', %' > +aoc; ki [l63v'||* and < v, 7? > +aoc; 'k [162°]1* in

the following Lemma 3.1.

Lemma 3.1. Ler

@, = min{-D,Dy, D,D,,-D,,D,}, a, = max{D,Dy,| - D,Dyl}, (3.2)

and we have
{ @ + aCr o I1P < BO° W0, (3.3)
%97 + aCr IV < 0000, (3.4)

where 8 satisfies

B = max {8 ( ) + 26, 8( )(1+92)} (3.5)

Proof. Let’s multiply DleéSiv} on both sides of (3.1a) for k = 1, and summing up for j from 1 to
M-1,

D AxZ(&zvl)[(l - —62)(D0v + Dy} + Dyv?)] - Dyagk Ax Z(aiv}.)z = 0. (3.6)

We rewrite Eq (3.6) and obtain

D AxZ(ézvl)(Dov + Dl + Dov?) (3.7)
sz M-1 M-1
+D1 EAX Z((Siv})(f)oéivs + ﬁldi\/} + Ezéi\%) - E]Cl()KlA)C Z(éiv})z =0
j=1 =1

We use the summation formula by parts and notice v§ = v, = 0 for (3.7), then we obtain

M
N 1
- DleZ;(dxvj_é ; . )
g (3.8)
+ Dl—Ax Z((szvl)(DOﬁO + D16%! + Dy6?v?) — Doaroxi Ax Z((Szvl) =

)([)(,(s,cv(}_l + Dlaxv} + Dzéxv§
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By rearranging the left side of Eq (3.8), we can immediately obtain

2

—D, Do[Ax Z(éxv CRUNE —Ax Z(ézv})(‘fcvg)]

Jj=1
M
=D\ Dy[Ax ) (6. )6 J—~——Ax§]w%ﬂx¥v5]
j:l
-D Dz[AxZ(éxv; BICRN Ax Z((szvl)((s%z)] — Dyaok; Ax Z((ﬁV})Z =0. 3.9)

j=1

Using (2.3) and (2.4) for (3.9), we obtain
—D1Do(v' V) = DDy (v vy = Dy Dy(v! v = Dok 6P = 0. (3.10)

Using the same method, multiplying —ﬁgAxé‘va? on both sides of (3.1b) for k = 2, and by summing
variable j from 1 to M — 1, one can obtain

D2Do(v?,V°) + DyD (v, v'y + Dy Dy (v, v + Dok [|6%V2]* = 0. (3.11)
Taking (3.10) plus (3.11), one can obtain the following term:
D Dy(v' V) + Dy Do(v*, V) — D D (v, vy + DaDy (v vy — Dok, [|62V! |2 + Daaroky ||62VA1F = 0
That is,
DD (v V'Y + DyDy (v vy — Dok [162V! |12 + Daaory||62VA||* = (D1 Dov' — Dy Dgv*,1°).

Because —D; Dy, D,D,, —Dy, D,, and D, D, are all positive numbers depending on «, according to
the definition of @; and @, in (3.2), we know a; > 0, @, > 0, and we get

Oy + (P2 + okt 690 + aok IR < 210000 + (20, (3.12)
a,

According to {u,v) < V{(u,u) - V{v,v), (3.12) becomes

1 1 2 .2 2 1112 22112
WLV + V) +aoklloy 1T + aokillopvll

s%Wﬂﬂ%WﬁM+W%M)
S%¢wmm4¢wm»+wmm&w+¢@ix+vammﬂm
:ngﬁyWﬂM+%WEW&@MMM
+%¢wmm-wwm%+%va3@-W@ﬂﬁﬂl

< %[(Z—T)ZWO W)+ Ly >+( ) 20700 + aok |5 P
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( ) 20000 + (7, v2>+( ) OO0 + ok ll63v?117]

[ ( ) 20000 + Loy + 020 + aokllE I + aoki (16271,

Therefore, we have
WLy + 007 + aok |02VF + aoky [|I62VA1F < 4( ) (O, 0. (3.13)

Because of C; = 5%, we have C]' = ;= € (§,3). Therefore, C;' < 1, ayC'k1 < oK.

From (3.13), we can get
')+ aoCrallg [P < 4200, ), (3.14)
a)

022 + aoCT i8I < 4(22)2 00,09, (3.15)
aq

According to (2.18): #' = v! —6v? and V{a + b,a + b) < V{a,a) + (b, b), and one can get

LY = 0 =000 — 00y < (WO v + (=0, —av0))? < 200" vy + 2620000, (3.16)
Using (3.14) and (3.16), one can immediately obtain that
LY + aoCr i [0 1P < 200, vy + 260200°,0%) + aoCr k|82 1P
< 2[<v1 vhy + aoC k182 IP] + 292<v° Vo) 3.17)
< 8( ) WOy + 26700 V0 = [8( ) +260710,°,00).

Similarly, we will estimate (v, ) + &9C; 'k [|62v?||*. Using (3.14) and (3.15), we have

@) + aoCr k162217 < 2¢7%,v%) + 267 (0! w1y + a0 Cr i [|63V7 P

< 2072, V) + aoCr K ll65y 2||2] +26°[(v! vy + aoCI1K1II5§v1||2] (3.18)

<2 4(Z2P200, 00 + 267 - 4( ) 200,19y = 8( ) (1 + )10,

a,
In summary, by using (3.5) and combining (3.17) and (3.18),
@9y + aoCrlkllo! IP < B0, (P97 + aoCr kISP < BOO0).

Thus, we already proved Lemma 3.1. O

Next, we will give the estimate of (¥, ) + a,(C 1_1K1 ||6)2€vk || for k > 3 in Lemma 3.2, which is a very
important result to analyze the scheme (3.1)’s stability.

Lemma 3.2. (", ) + o C; 'k l[624]] < B2, 0°), 3 < k < N, where 3 is defined in (3.6).
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Proof. First, using (2.18), we deduce the general formula,
M-1 M-1
2Ax Y (GTNE) = Ax Y (NS + 5k
J;Il_l " M-1
= Ax D (ST + 620 + 0604 ) = Ax D [(004)? + (27)(@2% + 0634 )]
=1 =

M-1 M-1
= Ax D (@) + Ax D (60 — 0624 (O + 050
J=1 J=1

X0

M-1 M-1 M=1
= Ax D (8275 + Ax D (000 - Axt? (0.
j=1 =1 j=1

By using (2.4), we get

M-1

2Ax Z(aiv’;)((sﬁv@ = |65 + [|62VF)1* = @*(162V P (3.19)

=1

Next, we prove for k = 3. Multiply on both sides of (3.1c) by 2Ax(—6)2617?), and by summing variable
jfrom 1 to M — 1, one can obtain

M-1

A 2 _ _ M-1
2Ax Z(—csiv?)[(l + %5,%)@; - d3v; - div; — dgv)] - 2Ax Z(—aﬁvi)(%cl—m(sﬁvﬁ) = 0.
j=1 j=1

That is, using the formula (3.19),

M-l 2 M-1
3,3 T 3 2Ax _ e many =
20x ) (-0 - B} - A} - dy)) - > Ax Y (S0 - B - 6 - dyo)
j=1 j=1

+aoCy i [10%9°]1* + 162V |1* — 621162v*|1*] = 0. (3.20)

By using ¥ = %, = 0, 1 <k < N, and the summation scheme by parts for (3.20), it is easy to obtain

~di6,v

j 3

M-1
2Ax ) (6.7 6.7, — 6.
j=1

2Ax*
12

M-1
Ax ) (GG} ~ B8~ A6~ dysv))
=1
+aoCr IR + 12V - Pl = 0. (3.21)
For the purpose of theoretical analysis, (3.21) can be rewritten into the following equivalent form:

M 2 M-1
_ Ax _ _ _
2AAx Y (6.7 7 = —-Ax 3 @)1+ aoCy allS P I + 15201 ~ 61637 )
j=1 j=1
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M

= 203[Ax ) (6.7 )6, 1>——Ax2(62v3)(62v2)]
M

¥2d}[Ax ) (5.7 6.7 ) - —AxZ(62 D@

M
F20[Ax ) (6.5 )6 ) —Ax 2(52v3)(62v0)

1
2
Using (2.3), we have

200, 7) + aoCy ki 87 I + 16311 = 62116511

=245, V%) + 243 (0, 0"y + 2d3(0°V0)
S QLT 7)) + (D] + P, 5 + GL D]+ B[, 7)) + 00,00)].

By using (2) and (3) in Lemma 2.7, we have

27,7y + aoCy i L1037 17 + 11623 |12 = 621102v2 1]

<(ds + d} + d)(V, V) + (V0 + (0L ) + dp (v, 0°)

<P, P+ V) + & (L0 + 0000, (3.22)
Rearrange (3.22) and aoC;'k[|627°|]> > 0, we have

P, 9) + aoCy k0|

<GV + LY + (0,00 + aoCr i 62|02V
< O(, 77 + aoCr i 8102V 1P) + & (0, vt + do (00 00)
< O, %) + aoCr i |2V D) + &5 (B, 1Y + aoCr i 102V 1P + da(0°,00). (3.23)

By using Lemma 3.1 and (4) in Lemma 2.7, (3.23) becomes:
7)Y + @oCy il 1P < BO + d; + A0, v7y < B + )00, (3.24)

For k > 4, multiply both sides of (3.1d) by 2Ax(—5§\7’;), and we sum up for j from 1 to M — 1. Using
the similar method for £ = 3, we get

-k =k -1 2=k12 2 k2 20 <2 k=112
2005,V + aoCy k[0 V117 + Nlopvillm = 670y 1]

k-1
=207, 77y +2 ) di K 7 + 245, 0°)
i=2
k-1
<O, ) + LN+ Y AR P+ LT+ LR ) + 00,00
i=2
k-1 k-1
# O+ AT+ 0T+ Y A L)+ B 0000, (3.25)
i= i=2
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According to (1) and (3) in Lemma 2.6, the above inequality (3.25) becomes

k-1
=k =k -1 2 k(12 —k—1 —k-1 Jk k=i —k—i ks 0 0 -1 211.524,k—1112
(7 + aoCr kISP < 6 L 71y + ) Al L) + d50° ) + ol P
i=2
k-1
—k—1 —k-1 -1 2 k=112 Tk k=i —k—i Tk, 0 0
< O, ) + aoCr VP + ) A (5, ) + (0000
i=2
k-1
—k—1 —k-1 -1 2 k=112 Tk k=i =k—i -1 2 k—ip2y , Gk, 0 0
< O, ) + a0l IR+ ) dE LGP + aoCr kallaA IR + i, v0). (3.26)
i=2

One can immediately prove the following inequality by using the mathematics induction
Y + aoCy kl02VEI1P < B+ 6)(0°00), 4 <k <N. (3.27)
As k =4, by (3.3), (3.4), (3.24), and (3) in Lemma 2.6, from (3.26), we can obtain

-4 -4 -1 2 412 =3 =3 -1 23112
7,5 + aoC I8V < 615, 7°) + aoCi i I8P

3
T4 —dei A -1 2 4-iy27 , G40 .0
+ E d, [V VT 4+ @oCy kllov I + dg(vT, v
=)

3
<BU+0)O+ ) di;+ 00y < BL+ 600,00, (3.28)
i=2

According to (3.28), we have proven that the special case of (3.27) as k = 4 is correct. We assume
that (3.27) is correct for k = 5,6,--- , N — 1, and one can immediately obtain that

N-1
W, ) + a0 Cr ks IP < B+ 0)O + D dy_ + A0 < B(L+O)00,0).
i=2

The proof of Lemma 3.2 is completed. O

Theorem 3.1. The full discrete numerical scheme (3.1) is unconditionally stable for 0 < a < 1, and
its numerical solution satisfies the following the following bounded estimates for all Ax > 0, At > 0,

3(by -
IV leo + /@0 CT ki llo0VH ] < [ (ITCZI)(S VBA+0)+ D+ 1|, 1<k<N.
Proof. By using the Lemmas 3.1 and 3.2, one can immediately get the following result

T, 7Y + aoCr i l02VH1F < BT + 6)(V°,00). (3.29)

From (3.29), we have

VK, 7y < B(L + 6) /(10,19). (3.30)
According to (2.18) and (1) in Lemma 2.6, we have

VK VY = AT+ GUk1 5E 4 Grk=1) < (5K, 5%) + (@1, gvk-1)
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— A /<1-,k’ vk) + g\/<vk—1, Vk—1> < \/<‘7k’ \-,k> +0 \/<\7k—1’ vk—l) + 6% A /<vk—2’ vk—2> <...
< VI T + 01 Ty 4 @2 (552, 552) 4 - -+ 81, By + 85 (00, 00)
< ABA+O) (1+6+6 +---+67) 00,0 + 6 (10,10)

1
< VB +6)- -0 \/(vo,vo) + \/(VO, V)Y < BB+ 0) + 1) (W0, 10). (3.31)
Combining (3.31) with Lemmas 2.1 and 2.2, we have
b1 —da; é

3(b1 ar)

VIR, < l%wkﬁ < =08 v"> S Ak
3(b‘ (3 VB +0) + 120,00 < (3 VB +6) + D*h°). (3.32)
Again, using (3.29), we have
aoC7 kI < (1 + 0B (0, 0y < V(1 +6)BM). (3.33)

Combining (3.32) and (3.33), we obtain

b, —
IVl + J@oCT Kallo?v ]l < \/M@ VA +0)B+ DY+ V(1 + 0BV,

_[,/3([’1 (3\/(1+93+1)+1

Hence, the unconditional stability of the full discrete numerical scheme (3.1) for 0 < @ < 1 with
regard to the initial values has been proved. Theorem 3.1 has been proved completely. O

|V l1.

Let
e =v(xjn) -5 j=0,1,2,--- M, k=0,1,2,--- ,N.
In the following Theorem 3.2, we will establish the numerical scheme (3.1)’s convergence analysis.

Theorem 3.2. Let v(x,t) be the exact solution of Eq (1.1a) and v’;. be the numerical scheme defined
by (3.1). Ifn(l(?;g] 163V < M, then
te(0,

[27
Iv(x, ) = Voo < §(b1 —a)C(AP™ + AxY,k=1,2,--- N (3.34)

where a € (0, 1) and C is a positive independence of At, Ax constant. The definition is as follows:

[4(1 + P2 - a)1 - )

C=(1+6r1-a)T%" ' C* b, —a)
as

+ %] (3.35)

Proof. By (2.10) and (2.12), e’j‘. satisfies the following equations:

HAX(D()e(J). + Dle}. + Dz@?) — a/o/qéie} = CL’QR}, k=1,
HAx(f)er + Dlel. + Ezez.) - a0K15)2C€2. = a’oRz-, k=2,
k-1 (3.36)

Hu A + Byel + Cre? +Z(Ae’”‘+Be’“+Ce’< "] - apki62et = aoRS, k> 3.
i=1
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Similar to the derived equivalent form (2.15) from the full discrete method of (2.12), we
rewrite (3.36) as the following equivalent form:

HAx(ﬁoe? + lA)le} + lA)zef) - aokléie} =R, k=1,

HAx(Doe(])- + Dle} + Dz@?) - CloKléieﬁ = CY()R?, k=2,
HAx(e; - d§e§ - dfe} - dge?) - aOCl‘lkléiej = a/oCl‘lRi, k=3, (3.37)

k
HAx(elj‘. — Z d,f_iel;_i) - CL’OCl_lKl(S)ZCel;- = a/OC[lR’;, 4<k<N.
i=1

Similar to the derived equivalent form (2.22) from the Eq (2.15), the error Eq (3.37) can be rewritten
as the following equivalent form:

Hy(Doe) + Dy} + Dae}) — apki63e) = aoR), k=1, (3.38a)

Ha(Doe) + Dye} + Dae}) — a1 8re; = aoR5, k =2, (3.38b)

Hn (@ — dye; — die — dyed) — aoCr'ki6ve; = aoCr 'R, k = 3, (3.38¢)
k

Ha(@ = > di @57 = aoC' 6% = aoCT'RY, 4 <k < N. (3.38d)
i=1

Next, we will divide into three parts to prove (3.34).

e (1) First, we will prove

[eZY o4y

@, 2"y + aoCi 'k l16% I < 201 + ) ==(IR"II? + IIRI1P), (3.39)
KL%
[0 7701

(@) + ayC; 'k 162217 < 2(1 + ez)ﬁqmwf + IR, (3.40)
3IKa

where «a is defined by (2.5), and a3, @4 are defined as follows:
a3 = min{-2D,D,,2D,D,,-D,, D,}, a4 = max{-D,, D). (3.41)

Let’s multiply Dleéie}. on both sides of (3.38a) for k = 1, and summing up for j from 1 to M — 1,

M-1 2

~ Ax N N .

D Ax E (Gre D1 + Eéi)(Doe(j). + Dye} + Dyed)]
j=1

—Dyaok,Ax le((sie})z = DlaoAxMZl(aie})(R}). (3.42)
j=1 j=1
We rewrite Eq (3.42) and obtain
_ M-1 R ) R _ sz M-1 ) ) R
D, Ax Z(die})(Doe? +Diel + Dy + D 5 Z(csie})(Dodieg? + D82} + Dys2e?)
= M-1 M-1 !
—DyagkiAx )" (6%}) = DiaoAx ) (6% })(R)). (3.43)
=1 =1

AIMS Mathematics Volume 9, Issue 6, 14697-14730.



14713

We use the summation formula by parts, notice e’(‘) = ek, = 0 for (3.43), and obtain

M
- DleZI(éxe}_é)(ﬁoéxe?_; +Dis.el, + Drsie’ )
=
S N N N
+Di—>-Ax Z(éﬁe})(Doaieg? + D182} + Dys2e?) (3.44)
j=1
M-1
— DoaokiAx ) (82})? = DyagAx 2(6261)(R ).
j=1
Rewriting the left-end item of (3.44), one gets
M Ax 2 M-1
N A 2 1 2 0
- DIDO[Ax;(éxe )6 ) - EAX jz;wxej)(éxej)]
M
- D Dy[Ax Z(éxe}_%)(dxe - —Ax Z(azel)((szel)
" (3.45)
~ D, DylAx Z(&Ce;_é)(éxe - —Ax Z((szel)((szez)

-1
— Dok Ax Z(die})z = DyapAx Z(c‘)’ie})(R}).
= i=1

Using (2.3) and (2.4) for (3.45), we obtain

M-1

~DiDy(e', e’y — D1 D\(e', 'y — D\ Dy(e", e*) — Dyaoky||6%e' |1 —DlaoAxZ(ézel)(R) (3.46)

j=1

By multiplying —DzAxéiei on both sides of (3.38b) for k = 2 and summing j from 1 to M — 1, in
the same way we get

M-1
DyDy(e*, €y + DyDi(e*, €'y + DyDy(e’, &) + Draoki 16567 = —DrapAx Z(a DR, (3.47)
With (3.46) plus (3.47), one can obtain:
—D\Dy(e', €°) + DyDy(e?, "y = D D1<€] 'y + DyDy(e?, ) — Dyaoki |52 I + Daaoki 16261

M-1
= DyapAx Z((sﬁe})(R}) — DyapAx Z(ézez)(Rz

j=1
That is,

AL N AR 2 2R 2 12 LA 2 22
—=DD{e",e ) + DyDy{e”,e”) — Dyapklloce ||” + Daaoklloze”||
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M-1 M-1
= ~(=D1ag)Ax ) (82e))(R}) — (Dra)Ax Y (62€1)(RY)
= J=1

Dol I + 5 MRIF) + Do SU02P + 5 IR,
Therefore, we have
2D, Dy(e', e'y + 2D, Dy(e?, €*) — Dyaoky||6%e'|I* + Dyaok, ||6%€2|
< ~LDaglR'P + LDsaolIRIP. (3.48)
K1 K1

Because —2D,D,, 2D,D,, —D,, and D, are all positive numbers depending on @, according to the
definition for a3 and a4 in (3.41), we know a3 > 0, a4 > 0. From (3.48), we obtain

(e',e') + (e, €% + apkllore! IP + aoillore’ |l < o ( aollR'* + aollell) (3.49)
Ki

According to the definition of C; in (2.8), we know 0 < Cl_1 <1,so0 a/OCl‘lkl < apk,. From (3.49),
we can get

_ .
(e',e") + ayCi 'k 162" | < a“ BTGRP + IR, (3.50)

(@, &)+ aCr 2P < & (IIR 12+ 1R*I). (3.51)

According to (2.18): & = e — 0",k = 1,2. We have

~1 Sl -1 2 112 1 0 1 0 -1 2 112
(e,e' )+ apCi killoze’ |l” =(e —be",e —0e”) + ayCy killoe ||

_ s
=(e' e) + aoCr ' killo%e I < =—(IR'IP + IR*IP).  (3.52)
3K
Similarly, we will estimate (&%, &) + a9C; '« |62€?||*. Using (3.50) and (3.51), we have:

(@, 8% + apCy 'k ||0%e*|)* = (e — Be', e* — Be'y + apC ' ky||6%e||?
< (V(e2,e2) + (=0e', —0e")” + aoCy ' ki ll02°
< 2(e%, e*y + 207", €'y + g C Ky ||6%€%]
< 2[e%, &) + aoCr ki lI6re? (] + 26°[(e' €'y + o Cr kil 1]
(04
<2(1+6%)— = 0<||R1||2 + IR?P). (3.53)

In summary, combining (3.52) and (3.53),
-1 - _ [0 7101
@, 2"y + aoC; k162 P < 2(1 + 92>ﬁ<nR1n2 + IR,
RL%%
-7 _ _ [07/Y01
(@) + ayC; 'k |1622|P < 2(1 + ez>ﬁ<uklnz + IR2|?).
KL%

Thus, we already proved (3.39) and (3.40).
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e (2) Second, we will prove

as '3 — a)At*
@l G - OA e L R2R)

(@, "y + agCy 'k [|I6%M1F < 2(1 + 0)(1 + 6%)
a3K1

(3.54)

3(1 + OI(1 — )T .
LUFOTA =T R k> 1.
2K, 3<i<k

First, according to the expression of ay in (2.5), it is easy to find that (3.54) is correct for k = 1, 2.
Next, we prove for k = 3. Using (2.18), (2.4), and a similar procedure as (3.19), we deduce the

general formula,

M-1
20x )" (6%4)(0%h) = 1671112 + 1624117 — Plloe* I, (3.55)
j=1

Multiplying both sides of (3.38c) by 2Ax(—6§é3) and by summing j from 1 to M — 1, we obtain:

M-1 2

A -

28 Y (<8I + -0 — BZ) - iz - dyel)]
j=1

M-1

M-1
“20x ) (—822)(@oCi ' k10%e]) = aoCr'2Ax ) (—62)(RY).
Jj=1 j=1

That is, using the formula (3.55),

M-1
20x ) (-822)(@ - B - die) - dyel)
j=1

A S

2-3 2-3 33 c2=2 73 c2-=1 732 0

> AxE (6283)(6°8 - B30°&% — d}5%e! — dyoel)
J=1

M-1
+aoCy i [16%8°]1% + (16263 )17 — 621|60%€%|*] = apC'2Ax Z(—dﬁé?)(Ri). (3.56)

=1
By using é’é =&k, =0,1 <k < N, and the summation scheme by parts for (3.56), it is easy to obtain

M-1

=3 =3 73S 52 735 51 73 0
2Ax Z;(&Cej_;)(éxe. ~d8&, ~d)s.2), ~dpo.e) )
j:

1
J=3 2

I . .
A ) (626 - e ~ di6e) ~ dydie)
j=1

M-1
+aoCy i [|0%8°)17 + (1626312 — 621|6%€%|*] = apC'2Ax Z(—éﬁéﬁ)(lﬁ).

J=1

(3.57)
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For the purpose of theoretical analysis, (3.57) can be rewritten into the following equivalent form:

M
2AAx ) (6.2, ) - —Ax szzﬁ)z] + aoCi i [I628°1P + 116261 - 61677 1]

D ~
= I
=

6.2, (6.2 ,) - —Ax2(62é3>(6§é§>]

=1

M
¥2d}[Ax ) (6.2, )6:2) ) - —AxZ(éz DCRD)
j=1

M
+2d;[Ax Z(éxéi,l)(éxe )= —Ax 2(52e3)(52e°)] + apCy'2Ax Z( ~628)(RY).

j=1
Using (2.3), we have
22, 2) + aoCy ki 163217 + 1165€°]IP — %1165
M-1

= 2dy(@,&%) +2d;(@,e") + 2d}(e’, ") + aC} 2AxZ( 522 (R3)
j=1

N

(2, &) + (e*, e + d [, &) + (e', e")]
M-1
+I(@.2) + (. )] + agCi12Ax Y (622 D(R)).

=1

By using (2), (3) in Lemma 2.7, (3.39), and (3.40), we have
2(2°,2°) + aoCy 1 1638 + 636 (IF — 21163€°(]

<(dh +d +d))@, &y + dy(e*, &) + die', ey + da(e’, €% + apCy 12AxZ( —6522)(R))

M-1
< (@, +dXe, &) + di@', &) + agCr ' 2Ax Y (=67E)(R))
j=1
1
< (@,8) +dN, ) + die',e'y + aCy 12( 1628%| > + ||R3||2). (3.58)
2Ky

Rearrange (3.58) and use (2) in Lemma 2.7, and we have

_3 _3 -1 2 32
(@,e”) + apCy «illoye’ll
B2 =2 B, =1 -1 1, p3)12 1 202 2112
dye“,e”) +di(e’,e )+ apCy ki [IR°||” + aoC; k16°|0%e]|

< 0((e*, &) + ayCy ki 6ll6%e*||P) + di @', ey + aoCy i IR

< 0@, ) + aCr k12 NP) + B@' 2 + aoCr illoe ) + B = ||R3||)

K1 0
-1

N0 ayC ;
< (0+d; +dp|21 ﬁuez)ﬁ(nkln2 + IR?IP) + — max IR|]*|. (3.59)
3K1 <t

K1 d(3) 3<i<k
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According to 6 + d; + d; < 1 + 6, by using (2.5) and (2.23), (3.54) is correct for k = 3.
For k > 4, multiply both sides of (3.38d) by 2Ax(—5§é’]‘.), and we sum up for j from 1 to M — 1.
Using the similar method for k = 3, we get

2(e", &"y + aoCy ki [lI63e |1P + 1162€HI1” — %1165 1]
k-1 M-1
= 202", 37" +2 ) dh (&8 + 2d4(@, ) + anCT'2Ax ) (—62)(RY)

i=2 j=1

k-1
<O &)+ @D+ 3 A2 + @]
i=2

M-1
+di[(2 &) + (e, €] + aoCr'2Ax ) (—62E)(RY)
=1
k-1 k=1

= O+ d+dp@. @)+ 0@ 7.2 + ) df (@27
= i

M-1
+a0Cr'2Ax ) (-2 (RY). (3.60)

=1
According to (1) and (3) in Lemma 2.6, the above inequality (3.60) becomes
(@, + aoCT k1 [11678"|1> + [163€"” — 671103 |I°]
k-1

k-1 Sk-1 Jk k=i Sk—i ~1p(KL 2k 2 1 k12
<@ e )+;dk_i(e L&y + @) 2(5||(5xe I+ S IR )- (3.61)

Reorganizing (3.61), we have

Sk Sk —1 (152 K12
(€, e") + aCy killove’l

k-1
k-1 Sk-1 gk ySk—i Sk—i -1 -1 k|2 -1 211 52 k=112
< 0@ E N+ D (@ E ) + aoCT K IRIE + o Cr ki 6Pll6%e |
i=2
k-1
k-1 Sk-1 -1 2 k=1)12 Tk —k—i Sk—i
< 0@ @) + ol I+ D d i@ E
i=2
-1 2 k—i|2 -1, —1y1pk|2
+aoCi killoce” |17 + aoCy kIR (3.62)

Next, we will prove (3.54) for k > 4 by using the mathematics induction.
As k = 4, from (3.62), we can obtain

-4 -4 -1 2 4112 =3 =3 -1 2 3112
€, e") + aoCy klloee’ll” < 0[(e”, e”) + aoCy killoye’|l"]
CY()C_ .
—— max |IR'|]*)
K1d8 3<i<k

as '3 — a)Ar”

3K

3
+ ) di @ ey + aoCr ki l82e IR + i
i=2

O+ d3 +dif +dp|2(1 + )1 + )

IA

(IR'IP + IR?I1)
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31+ —a)T” i
+ o max ||| | (3.63)
According to (3) in Lemma 2.6, we can obtain (3.54) for k = 4. We assume that (3.54) is correct
fork=15,6,---,N — 1, and one can immediately obtain that
@, e") + aoCi' k163" P
N-1
< 0@+ Y AN (@@ + aoCr K IRNIP + aoCr i P02
i=2
< 6@, ") + aoCrkllore P
Nl CU()C_1
N r/sN-i SN -1 2 N—ij21 . N 1 i2
+ Z; dy_ 1@V, 2y + o Cr k162N 1P + dy o max |IRF)
(S @, T3 — )AL
< O+ )y +d)|201 +6)(1 + ) =—————(IR'I" + IRIP)
i=2 3%
3(1+0)I(1 —a)T” ‘
+ ( ) ( CY) maxIIR’llz].
2K 3<i<k

According to (3) in Lemma 2.6, we can obtain (3.54) for k = N, so the proof of (3.54) is completed.

¢ (3) Finally, we will prove

[27
Iv(x, ) — V¥leo < g(bl —a)CAP™ + AxXY), k> 1, (3.64)

where C is defined in (3.35).
From (3.54), Yk > 1, and (2.11), we can get

a4 '3 — a)At” 3(1+)I(1 —a)T”

@,y <21 +6)(1 + 6% (IR'I* + IR?|1*) + max ||R'||?
3Ky 2K 3<i<k
'3 — a)At” A
<201 +0)(1 + PG Z VAT S AR 4 A
3K
31+ O —a)T® 4
+ ( na - -CHby — a)(AF™ + Ax? < C(AP™ + AxY, (3.65)

2K1
where C is defined in (3.35).
According to (2.18) and (1) in Lemma 2.6, we have

V(ek, eky = (@ + ek=1, 8k + Gek1y < (@, ek) + O (e 1, k1) + 02 ek 2, ek 2y < -

V(@20 + 0@, 8Ty + P @2,252) + -+ 071 V(@ 21) + 6 (e, )

<
< (1 YO0+ +---+ ek—l) VC(AF™ + Ax*) < 3VC(AP™ + AxY).

That is, we have

(€5, ey <9C(AP™ + Ax*). (3.66)
Combining (3.66) with Lemmas 2.1 and 2.2, we have
3(by —ay)
8
Theorem 3.2 has been proved completely. O

27
lle*II2, < (e, ey < < i - a))C(AF™ + Ax*)2.
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4. Application: A 2D spatial CFDS for TFDEs

Next, we construct a high order numerical scheme for (1.1) as d = 2. Take three positive integers
My, My, N, let Axy = B8 Axy = 222 Ar = £, and denote x1; = ay + jAx; (0 < j < My),xp =
ar +1Ax; (0 <1< M), 1 = kAt (0 < k < N), Qpqae, = {(x1j, 0010 < j < M,0 <1< Mo}, Vagax, =
v = (Voo s VoM V10s " 5 VI s VM0 "% Vymy)sVoq = Vg = 0,0 = 0,1, , M3, vjo
vim, =0,7=0,1,---,M,}. For any grid function v = {v|0 < j < M,,0 <[ < M}, denote

Vl_v—ll 6lej+l[ 5)(1\/]_1
v, 1, =2—L2 5y, =
Vil = =
& Ax1 TR Ax1
) 25,52y,
55 6X1VJ——I 5)61"']—%,1—1 5. 52 B 0y, Vi = 0y Vji-1
wOnVjti1 = 2000, Vil = .

Ax; Ax,

The compact difference operators Hay,v;;, Hay,v;j; for the spatial are defined as

Hyo vy = I+ 5582w, 1<j<Mi—1,0<1< M,
x1Vj Vil j=0,M,0 <1< M,,

and

H U+2282 ), 1<I<M,-1,0<j<M,
Vil =
e Vil ZZO’MZ,OSJSMl.

For Yv,w € Vi, ax,, the inner product and the norms are defined by

M, Mr— M-1
2
Mo = max_ v, 16,V = Zﬂﬂm}jZK%JJNIMWI Ax ) (6%,
1<l<M1 =1 =1 =1

Similar to the method for (2.15), we can obtain the high order CFDS for (1.1) as d = 2 as follows:

H(Dgv}, + Div}; + Dovi)) — ao(ki Hp 03 V5, + K2 Ha 65,v5) = aoH(f}), k=1, (4.1a)
H(DoV}, + Dv}, + Dyv}) — ao(ki Han 05, V3 + 10Hpy 63,v5) = aoH(f}), k =2, (4.1b)

HO?, - ng V) = @oCr (k Ha 82V, + KaHay 623) = aoCT H(F), k=3, (4.10)

H, - Zd,’; VT = @0 ki Hao 82V, + koHao 82V = aoCTH(FY), k>4, (4.1d)

where H = Hj, Hy,,. Similar to the proof of Theorems 3.1 and 3.2, we can obtain the stability and
convergence analysis for (4.1) as the following Theorems 4.1 and 4.2.

Theorem 4.1. The full discrete numerical scheme (4.1) is unconditionally stable for 0 < a < 1, and
its numerical solution satisfies the following bounded estimates for all Ax, > 0, Ax, > 0,At > 0,

IVl < CP°l;, 1<k <N,
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where C is a constant independent of Ax,, Ax,, At and | - |, is defined as

M, M,
vl = | Ax1Ax Y 160y, 1 P+ 18073,

j=1 I=1

Theorem 4.2. Let v(x,t) be the exact solution of Eq (1.1a) and vlj‘.’l be the numerical scheme defined
by (4.1). If max |0>v| < M, then
1e(0.T]
VX, 1) = V¥llo < CAP™ + Ax* + Ary*), k= 1,2,--- N,

where 0 < a < 1, and C is a positive independence of At, Axy, Ax,.
5. Numerical validation

5.1. Algorithm implementation of 1D CFDS for TFDEs

In order to make it easy for readers to understand the algorithm (2.22), we describe the
implementation process of the algorithm (2.22) as follows. In order to facilitate the implementation of
the algorithm, we have changed the description of the algorithm to the form of matrix vector product.

(1) Denote D = ﬁtridiag(l, —-2,1) as the second order space derivative’s difference matrix and
H = tridiag(1/12,10/12, 1/12) as the compact finite difference matrix. O, H are two tridiagonal
matrices of (M — 1) X (M — 1). Denote

VE= O D = (A, k=1, N

(2) Based on (2.22a) and (2.22b), one can immediately obtain the form of the matrix vector product
for (2.22a) and (2.22b) for k = 1,2 as follows:

D]?‘[ - CL’()K]Z) qu‘{ (VI)T _ (fl)T
( Dl'}{ qu"{ — Q/OKIZ)) ((VZ)T) - 12><2 ® 7{ ((fZ)T) ’ (51)

where Iy, as an identity matrix of 2 X 2, ® is the Kronecker product, and (v!)" denotes the
transpose of (v!). Solve the above Eq (5.1) and obtain v', v2.

(3) For k = 3, based on (2.22c), we can obtain the form of the matrix vector product for (2.22c)
as follows:

(H = aoC ki DYVY) = aoC ' HE) + dH (V) + d)H') + dyH(VO). (5.2)

One can immediately get v* by solving the Eq (5.2) directly.
(4) For k > 4, by (2.22d), one has the form of the matrix vector product for (2.22d) as follows:

k
(H — aoCy ki D)V = g CTH(FY) + W(Z di_ (). (5.3)
i=1

Solving the Eq (5.3), one can immediately get v5,k = 4,5,--- | N.
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5.2. Algorithm implementation of 2D CFDS for TFDEs

In order to make it easy for readers to understand the algorithm (4.1), we describe the
implementation process of the algorithm (4.1) as follows.

(1) Let My = M, = M. Denote

-1 5 1 -1 5 1
D, = tridiag(— — , — —
: el 6 (Ax12 sz ) 3(Ax Ax22) 6 (Ax12 szz))
and
-1 1 1 -1 5 1 -1 1 1
D, = tridiag(——(—— + —), —(—— - —), —(—— + —)),
? g( 12(AX]2 AXQZ) 6 (AX12 AXQZ) 12(AX12 AXZZ))

which are two (M —1)x(M—1) tridiagonal matrices. B = tridiag(D,, D, D,)asa (M —-1)xX(M—-1)
tridiagonal block matrix, which is the second order space derivative’s difference matrix. Denote

Cc = tridiag($g, 122, %) and Dd = tridiag(7;, 15 1a3) s two (M — 1) X (M — 1) triagonal

matrices, and Bb = tridiag(Dd, Cc, Dd) as a (M — 1) X (M — 1) tridiagonal block matrix, which is
the spatial compact finite difference matrix. Let x; = k, = k,, and denote
V[ = (vlib vé’la Y V][(W_I’I)T’ Vk = (V];9 Vé’ T, V][(W_l)T9
£ = (e o ) = S, 5 DT, k=1, N,

(2) Based on (4.1a) and (4.1b), one can immediately obtain the form of the matrix vector product
for (4.1a) and (4.1b) for k = 1, 2 as follows:

(ﬁle + ok, B D,Bb ) ((Vl) (5.4)

=L, ® Bb (")
D,Bb D,B + agk, B)\(VH)] ~ "2

FH)
Solve the above Eq (5.4), and obtain V!, V2,

(3) For k = 3, based on (4.1c), we can obtain the form of the matrix vector product for (2.22c)
as follows:

(Bb + a¢C; 'k, B)(V?) = ayC; ' Bb(F*) + d3 Bb(V?) + d; Bb(V"') + d3 Bb(VY). (5.5)
One can immediately get v* by solving the Eq (5.5) directly.

(4) For k > 4, by (4.1d), one has the form of the matrix vector product for (2.22d) as follows:

(Bb + ayC; 'k, B)(VX) = ayC;' Bb(FY) + Bb(z di (V). (5.6)

i=1

Solving the Eq (5.6), one can immediately get VK, k = 4,5,--- ,N
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5.3. Numerical results

Now, the numerical scheme (2.22) will be used to solve the TFDEs (1.1a)—(1.1c) based on the
Eqgs (5.4)—(5.6) in this section. We present two numerical examples to demonstrate its effectiveness
and define the numerical solution’s maximum norm errors e.(h, At), h = Ax for 1D spatial TFDEs and
h = Ax; = Ax, for 2D spatial TFDE:s as follows:

ew(h, At) = max [v(x, ) — V||
1<k<N

Denote the temporal convergence order Rate(At) as

es(h, 2A1)
R Ar) =1 _—
ate(Ar) = log,( YY) )s

if A is sufficiently small, and the spatial convergence order Rate(h) as the following

e(2h, At)
Rate(h) = logz(m),
when At is sufficiently small.

In this section, we choose a; = a» = 0,by = b, = 1,T = 1,k; = ko = 1. In order to test the
convergence order of the numerical scheme and their dependence on a, we take @ = 0.3,0.5,0.7 and
At = #, h = t as two groups of parameters. That is, choosing N = 2 M =2%k=3,4,5,6t0 verify
the spatial convergence order and N = 2k k =3,4,5,6 with M = 2! to verify the convergence order
1n time.

Example 5.1. Case 1. The exact solution is smooth.
We choose the exact solution of (1.1) as v(x,t) = t*sin(2nx). It is easy to obtain by directly
calculating that f(x,t), vo(x) in (1.1) have the form as follows:

A 47r2t4) sin(2rx), vo(x) =0,

foe0 = (

24
Iés-a
where a € (0, 1) is the order of the fractional derivative of Eq (1.1).

First, we choose N = 2"V and M = 2*,k = 3,4,5,6 to check the spatial accuracy. In Table 1, it
presents the errors e (h, At) for a = 0.3,0.5, and 0.7 three different values. From the Table 1, one can
immediately see that the Rate(h) of the proposed high order numerical scheme is very close to fourth-

order in space and not dependent on a. The numerical results of Table 1 indicate that the theoretical
result of the Theorem 3.2 is correct.

Table 1. The convergence orders of the space Rate(h) under @ = 0.3,0.5,0.7 in Example 5.1.
Ax a=03 Rate(h) a =05 Rate(h) a =07 Rate(h)
1.563359¢-3 - 1.544025¢e-3 - 1.519775e-3 -
0.591726e-5 4.026714 9.473317e-5 4.026683 9.324978e-5 4.026613
5.96735%-6 4.006625 5.894044e-6 4.006539 5.804087e-6 4.005959
3.725729%¢-7 4.001497 3.683399¢-7 4.000148 3.650455e-7 3.990921

Rl 8l 5l i
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Second, we will investigate the Rate(At) by choosing the spatial divisions number M as a big number
to satisfy that the error e (h, At) stemming from the spatial approximation is negligible. We choose
M =2"and N = 2%,k = 3,4,5,6. From Table 2, it shows that the temporal convergence order is close
t02.7,2.5,2.3 for three different constants a = 0.3,0.5,0.7, respectively, i.e., the temporal convergence
order is (3 — @). The numerical results of Table 2 indicate that the theoretical result of Theorem 3.2 is
also correct for the temporal convergence order.

Table 2. The convergence orders of the time Rate(At) under @ = 0.3,0.5,0.7 in Example 5.1.
At a=03 Rate(Ar) a=0.5 Rate(Ar) a=0.7 Rate(Ar)

L 2.191101e-5 - 6.921581e-5 - 1.875620e-4 -

% 3.626378e-6  2.595054 1.282670e-5 2.431951 3.938543e-5 2.251633

é 5.870045e-7 2.627086 2.332808e-6 2.459010 8.142194e-6 2.274172

1_58 9.368901e-8 2.647419 4.198113e-7 2.474254 1.669603e-6 2.285912

Lastly, we choose @ = 0.5,N = 2>, M = 2° in Figures 1-3. First, the Figure 1 shows that the
numerical solution’s curves are very close to the exact solution for x; = % and ty = 1, respectively.
This indicates that the numerical solution v’/‘. of the proposed algorithm is a good approximation to the
exact solution v(x;,t) of Eq (1.1a). Second, the Figure 2 provides the comparison three-dimensional
surface between the numerical solution v’J‘. of the proposed algorithm and the exact solution v(x;, t)
of Eq (1.1a). It is easy to see from the Figure 2 that the numerical solution v’]‘. is very close to the
exact solution v(xj, ty). Third, the Figure 3 shows the three-dimensional surface plot of e (h, At) of the
numerical solution to approximate the exact solution. It can be seen that e.,(h, At) is very small in the
Figure 3. Finally, it is clear from these graphs that the numerical solution of the proposed algorithm
is a good approximation to the exact solution of Eq (1.1a).

15

—©— Numerical solution
—%— Exact solution

01t
02
o5

03

04

051
0.5

-0.6 [ |—©— Numerical solution
—*—— Exact solution

0.7 1

-1.5 -0.8

0 05 1 0 05 1
Figure 1. Images of numerical and exact solutions of @ = 0.5 for ry = 1 (left) and x; = %
(right).
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Figure 2. Images of @ = 0.5 for the numerical solution (left) and the exact solution (right).
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Absolute error
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Figure 3. The absolute error distribution of @ = 0.5, M = 2>, N = 2°.

X

Case 2. The initial singularity of the solution and the source terms f(x,t) = 0.

We choose vo(x) = sin(x) in (1.1). It is easy to obtain that the exact solution is
v(x,1) = Eo(—t*) sin(x), where 0 < t < 1,0 < x < m, and E,(-) is the Mittag-Leffler function defined by
+o00 Zk
E,(z) := _
@ kzz:; (1 + ka)

Next, we test time accuracy. The choices of the fractional order are now taken as a = 0.3,0.5,
and 0.7. Results are given in Table 3, from which we can observe that when a < 1, the convergence
order is close to a. The reason lies in the singularity of the Mittag-Leffler function at t = 0.
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Table 3. The convergence orders of the time Rate(At) under @ = 0.3,0.5, 0.7 in Example 5.1.
a=03 Rate(At) a=0.5 Rate(Ar) a=0.7 Rate(Ar)
1.415497e-3 - 7.786699¢e-4 - 1.496562¢-3 -
1.255327e-3  0.173244 6.0949104e-4 0.353406 9.285725e-4 0.688566
1.097411e-3  0.193959 4.5933819e-4 0.408048 5.736219e-4 0.694914
9.476369e-4 0.211698 3.3821820e-4 0.441602 3.530184e-4 0.700356

- 2l-8-3- &

p—
(No]
o0

Example 5.2. We choose the exact solution of (1.1) as v(x1, x,t) = t* sin(2nx,) sin(27x,) for k; = k» =
ko = 1. It is easy to obtain by directly calculating that f(xy,x>,1), vo(x1,X2) in (1.1) have the form
as follows:

I'(5)

Sxi,x0,1) = (m

£ + 87%r*) sin(2x) sin(27xy), vo(x1, xp) = 0.

We choose N = 22, M = 2X k = 3,4,5,6,7 and N = 2%,k = 3,4,5,6,7,M = 2'° to check the
spatial accuracy and temporal convergence order, respectively. As seen from the Table 4, one can get
that Rate(At) is almost 2.3 with respect to a = 0.7. It indicates that Rate(At) is (3 — @), which satisfies
the conclusion of Theorem 4.2’s theoretical analysis in space convergence order. In the same way, one
can get that Rate(h) is almost 4 with respect to @ = 0.3. It indicates that Rate(h) is 4, which also
satisfies the conclusion of Theorem 4.2’s theoretical analysis in space convergence order.

Table 4. The maximum errors e.(h, At) of Rate(h) for @ = 0.7 and Rate(Ar) for @ = 0.3
in Example 5.2.

a =07 Rate(At)
4.394821e-4 -
9.517067e-5 2.207215
1.997848e-5 2.252069

4.129540e-6  2.274394
8.467270e-7 2.286012

a=03 Rate(h)
9.598866e-4 -
7.601212e-5 3.658562
5.365581e-6 3.824422

3.566689%¢-7 3.911077
2.297780e-8 3.956272

-21- 81— 51— - B
|-RI- 8- R— co1—{ =

p—
(o]
oo
p—
(N
(o]

We choose « = 0.5,N = 2°. M = [N¥] in Figures 4 and 5, where [-] represents rounding. The
Figure 4 shows that the numerical solution’s curves are very close to the exact solution fort = 1. The
Figure 5 provides the comparison three-dimensional surface between the numerical solution of the
proposed algorithm and the exact solution of Eq (1.1a) for t = 1. It is easy to see from the Figures 4
and 5 that the numerical solution is very close to the exact solution.
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whent = 1.
%107

Absolute error

2 1 1 X

Figure 5. Error distribution of @ = 0.5,7 = 1.

6. Conclusions

In this paper, we propose an efficient full discrete uniform convergence order scheme for TFDEs
by using the 1D and 2D spatial fourth-order CFDS in space and (3 — @) order scheme in time. The
proposed scheme is constructed by the modified block-by-block method and the 1D and 2D spatial
fourth-order CFDSs to approximate the temporal fractional derivative and the spatial second
derivative, respectively. We prove that the proposed efficient uniform convergence order schemes are
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stable. Numerical examples of 1D and 2D spatial fourth-order CFDS further verified the astringency
of the proposed method. The numerical scheme established in this article provides a paradigm for
establishing high-order TFDEs and a paradigm for analyzing its convergence and stability of
high-order time numerical scheme. It can provide readers with a method reference for constructing
high-order time numerical schemes and their theoretical analysis for similar TFDE:s.

In the next step of research work, we will consider the following topics. First, we will construct a
fast CFDS for this numerical scheme with the good idea of [27, 33, 34] by considering the high
computational cost of fractional derivatives, the special matrix structure of the discrete matrix of the
fourth-order CFDS, and sum-of-exponentials (SOE) technique. Second, we will investigate
high-dimensional CFDS for TFDEs and CFDS for the Neumann boundary of TFDEs. We will use the
above CFDS to establish the numerical solution of the optimal control problem by TFDEs and
establish a CFDS with high order spatial accuracy and consistent convergence in time, and provide
strict numerical analysis theory for the established numerical scheme. Third, we will investigate
CFDS for time-varying fractional differential equations or spatial fourth-order differential equations
and the finite volume scheme preserving maximum principle for two-dimensional time-fractional
Fokker-Planck equations on distorted meshes.
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