In the field of cryptography, block ciphers are widely used to provide confidentiality and integrity of data. One of the key components of a block cipher is its nonlinear substitution function. In this paper, we propose a new design methodology for the nonlinear substitution function of a block cipher, based on the use of Quaternion integers (QI). Quaternions are an extension of complex numbers that allow for more complex arithmetic operations, which can enhance the security of the cipher. We demonstrate the effectiveness of our proposed design by implementing it in a block cipher and conducting extensive security analysis. Quaternion integers give pair of substitution boxes (S-boxes) after fixing parameters but other structures give only one S-box after fixing parameters. Our results show that the proposed design provides superior security compared to existing designs, two making on a promising approach for future cryptographic applications.
Citation: Muhammad Sajjad, Tariq Shah, Huda Alsaud, Maha Alammari. Designing pair of nonlinear components of a block cipher over quaternion integers[J]. AIMS Mathematics, 2023, 8(9): 21089-21105. doi: 10.3934/math.20231074
In the field of cryptography, block ciphers are widely used to provide confidentiality and integrity of data. One of the key components of a block cipher is its nonlinear substitution function. In this paper, we propose a new design methodology for the nonlinear substitution function of a block cipher, based on the use of Quaternion integers (QI). Quaternions are an extension of complex numbers that allow for more complex arithmetic operations, which can enhance the security of the cipher. We demonstrate the effectiveness of our proposed design by implementing it in a block cipher and conducting extensive security analysis. Quaternion integers give pair of substitution boxes (S-boxes) after fixing parameters but other structures give only one S-box after fixing parameters. Our results show that the proposed design provides superior security compared to existing designs, two making on a promising approach for future cryptographic applications.
[1] | K. Jacobs, A survey of modern mathematical cryptology.Ruohonen, Mathematical Cryp., 1 (2011), 1–13. https://trace.tennessee.edu/utk_chanhonoproj/1406 |
[2] | C. E Shannon, Communication theory of secrecy systems, Bell Syst. Tech. J., 28 (1949), 656–715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x doi: 10.1002/j.1538-7305.1949.tb00928.x |
[3] | E. Biham, A. Shamir, Differential cryptanalysis of the data encryption standard, Springer Sci. B. Med., 1 (1993), 1–13. https://doi.org/10.1007/978-1-4613-9314-6 doi: 10.1007/978-1-4613-9314-6 |
[4] | J. Daemen, V. Rijmen, The advanced encryption standard process, The Advanced Encryption Standard Process, In: The Design of Rijndael: AES., 1 (2002), 1–8. https://doi.org/10.1007/978-3-662-04722-4 |
[5] | N. Ferguson, B. Schneier, T. Kohno, Cryptography engineering: Design principles and practical applications, J. Wiley Sons, 1 (2011), 1–27. http://www.wiley.com/go/permissions |
[6] | A. Anees, Y. P. P. Chen, Designing secure substitution boxes based on permutation of the symmetric group, NCA, 2 (2020), 7045–7056. https://doi.org/10.1007/s00521-019-04207-8 doi: 10.1007/s00521-019-04207-8 |
[7] | A. Javeed, T. Shah, A. Ullah, Construction of non-linear component of block cipher by means of chaotic dynamical system and symmetric group, Wireless Pers Commun., 112 (2020), 467–480. https://doi.org/10.1007/s11277-020-07052-4 doi: 10.1007/s11277-020-07052-4 |
[8] | T. Shah, A. Qureshi, S-Box on subgroup of galois field, Cryptography, 13 (2019), 1–9. https://doi.org/10.3390/cryptography3020013 doi: 10.3390/cryptography3020013 |
[9] | A. H. Zahid, M. J. Arshad, M. Ahmad, N. F. Soliman, W. El-Shafai, Dynamic S-Box generation using novel chaotic map with nonlinearity tweaking, CMC-Comput. Mater. Con., 75 (2023), 3011–3026. https://doi.org/10.32604/cmc.2023.037516 doi: 10.32604/cmc.2023.037516 |
[10] | L. C. N. Chew, E. S. Ismail, S-box construction based on linear fractional transformation and permutation function, Symmetry, 12 (2020), 826–842. https://doi.org/10.3390/sym12050826 doi: 10.3390/sym12050826 |
[11] | B. Arshad, N. Siddiqui, Z. Hussain, M. E. U. Haq, A novel scheme for designing secure substitution boxes (S-boxes) based on Mobius group and finite field, Wireless Pers Commun., 135 (2022), 3527–3548. https://doi.org/10.1007/s11277-022-09524-1 doi: 10.1007/s11277-022-09524-1 |
[12] | I. Hussain, T. Shah, M. A. Gondal, H. Mahmood, A novel image encryption algorithm based on chaotic maps and GF (2.8) exponent transformation, Nonlinear Dyn., 72 (2013), 399–406. https://doi.org/10.1007/s11071-012-0723-5 doi: 10.1007/s11071-012-0723-5 |
[13] | M. Sajjad, T. Shah, R. J. Serna, Designing pair of nonlinear components of a block cipher over Gaussian integers, CMC-Comput. Mater. Con., 75 (2023), 5287–5305. https://doi.org/10.32604/cmc.2023.035347 doi: 10.32604/cmc.2023.035347 |
[14] | M. Sajjad, T. Shah, R. J. Serna, A. Z. E. Suarez, O. S. Delgado, Fundamental results of cyclic codes over octonion integers and their decoding algorithm, Computation, 10 (2022), 1–12. https://doi.org/10.3390/computation10120219 doi: 10.3390/computation10120219 |
[15] | E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptol., 4 (1991), 3–72. https://doi.org/10.1007/BF00630563 doi: 10.1007/BF00630563 |
[16] | B. B. C. Quiroga, E. C. Cantón, Generation of dynamical S-boxes for block ciphers via extended logistic map, Math. Probl. Eng., 3 (2020), 1–12. https://doi.org/10.1155/2020/2702653 doi: 10.1155/2020/2702653 |
[17] | G. Tang, X. Liao, A method for designing dynamical S-boxes based on discretized chaotic map, Chaos Soliton. Fract., 23 (2005), 1901–1909. https://doi.org/10.1016/j.chaos.2004.07.033 doi: 10.1016/j.chaos.2004.07.033 |
[18] | G. Chen, Y. Chen, X. Liao, An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps, Chaos Soliton. Fract., 31 (2007), 571–579. https://doi.org/10.1016/j.chaos.2005.10.022 doi: 10.1016/j.chaos.2005.10.022 |
[19] | U. Çavuşoğlu, A. Zengin, I. Pehlivan, S. Kaçar, A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system, Nonlinear Dynam., 87 (2021), 1081–1094. https://doi.org/10.1007/s11071-016-3099-0 doi: 10.1007/s11071-016-3099-0 |
[20] | N. Siddiqui, A. Naseer, M. E. U. Haq, A novel scheme of substitution-box design based on modified Pascal's triangle and elliptic curve, Wireless Pers. Commun., 116 (2021), 3015–3030. https://doi.org/10.1007/s11277-020-07832-y doi: 10.1007/s11277-020-07832-y |
[21] | A. K. Farhan, R. S. Ali, H. Natiq, N. M. Al-Saidi, A new S-box generation algorithm based on multistability behavior of a plasma perturbation model, IEEE Access, 7 (2021), 124914–124924. https://doi.org/10.1109/ACCESS.2019.2938513 doi: 10.1109/ACCESS.2019.2938513 |
[22] | A. Belazi, M. Khan, A. A. A. E. Latif, S. Belghith, Efficient cryptosystem approach: S-boxes and permutation, substitution, based encryption, Nonlinear Dynam., 87 (2017), 337–361. https://doi.org/10.1007/s11071-016-3046-0 doi: 10.1007/s11071-016-3046-0 |
[23] | G. Jakimoski, L. Kocarev, Chaos and cryptography: block encryption ciphers based on chaotic maps, IEEE T. Circuits-I, 48 (2001), 163–169. https://doi.org/10.1109/81.904880 doi: 10.1109/81.904880 |
[24] | M. Khan, T. Shah, H. Mahmood, M. A. Gondal, I. Hussain, A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems, Nonlinear Dynam., 70 (2012), 2303–2311. https://doi.org/10.1007/s11071-012-0621-x doi: 10.1007/s11071-012-0621-x |
[25] | W. R. Hamilton, On a new species of imaginary quantities, connected with the theory of quaternions, P. Roy. Irish Aca. C., 2 (1840), 424–434. https://www.jstor.org/stable/20520177 |
[26] | C. A Deavours, The quaternion calculus, Am. Math. Mon., 80 (1973), 995–1008. https://www.jstor.org/stable/2318774 |
[27] | J. B. Kuipers, Quaternions and rotation sequences: A primer with applications to orbits, aerospace, and virtual reality, In: Princeton University Press, 1 (1999), 127–143. https://doi.org/10.1017/S0001924000065039 |
[28] | M. Özen, M. Güzeltepe, Cyclic codes over some finite quaternion integer rings, J. Franklin I, 348 (2011), 1312–1317. https://doi.org/10.1016/j.jfranklin.2010.02.008 doi: 10.1016/j.jfranklin.2010.02.008 |
[29] | T. Shah, S. S. Rasool, On codes over quaternion integers, Appl. Algebr. Eng. Comm., 24 (2013), 477–496. https://doi.org/10.1007/s00200-013-0203-2 doi: 10.1007/s00200-013-0203-2 |
[30] | M. Sajjad, T. Shah, M. M. Hazzazi, A. R. Alharbi, I. Hussain, Quaternion integers based higher length cyclic codes and their decoding algorithm, CMC, 73 (2022), 1177–1194. https://doi.org/10.32604/cmc.2022.025245 doi: 10.32604/cmc.2022.025245 |
[31] | S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., Asynchronous updating Boolean network encryption algorithm, IEEE T. Circuits, 62 (2022), 1–12. https://doi.org/10.1109/TCSVT.2023.3237136 doi: 10.1109/TCSVT.2023.3237136 |
[32] | S. Gao, R. Wu, X. Wang, J. Wang, Q. Li, C. Wang, et al., A 3D model encryption scheme based on a cascaded chaotic system, Signal Process., 202 (2023), 1–13. https://doi.org/10.1016/j.sigpro.2022.108745 doi: 10.1016/j.sigpro.2022.108745 |
[33] | S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, X. Tang, EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inf. Sci., 621 (2023), 766–781. https://doi.org/10.1016/j.ins.2022.11.121 doi: 10.1016/j.ins.2022.11.121 |
[34] | R. Wu, S. Gao, X. Wang, S. Liu, Q. Li, U. Erkan, et al., AEA-NCS: An audio encryption algorithm based on a nested chaotic system, Chaos Soliton. Fract., 165 (2023), 1–10. https://doi.org/10.1016/j.chaos.2022.112770 doi: 10.1016/j.chaos.2022.112770 |
[35] | Y. Chen, C. Tang, R. Ye, Cryptanalysis and improvement of medical image encryption using high-speed scrambling and pixel adaptive diffusion, Signal Process, 167 (2020), 1–12. https://doi.org/10.1016/j.sigpro.2019.107286 doi: 10.1016/j.sigpro.2019.107286 |
[36] | X. Wang, H. Sun, A chaotic image encryption algorithm based on improved Joseph traversal and cyclic shift function, Opt. Laser Technol., 122 (2020), 1–12. https://doi.org/10.1016/j.optlastec.2019.105854 doi: 10.1016/j.optlastec.2019.105854 |
[37] | J. Chen, L. Chen, Y. Zhou, Cryptanalysis of a DNA-based image encryption scheme, Inf. Sci., 520 (2020), 130–141. https://doi.org/10.1016/j.ins.2020.02.024 doi: 10.1016/j.ins.2020.02.024 |
[38] | H. Zhu, J. Ge, W. Qi, X. Zhang, X. Lu, Dynamic analysis and image encryption application of a sinusoidal-polynomial composite chaotic system, Math. Comput. Simulat., 198 (2022), 188–210. https://doi.org/10.1016/j.matcom.2022.02.029 doi: 10.1016/j.matcom.2022.02.029 |
[39] | Y. Xian, X. Wang, X. Yan, Q. Li, X. Wang, Image encryption based on chaotic sub-block scrambling and chaotic digit selection diffusion, Opt. Laser Eng., 134 (2020), 1–13. https://doi.org/10.1016/j.optlaseng.2020.106202 doi: 10.1016/j.optlaseng.2020.106202 |
[40] | C. Li, Y. Zhang, E. Y. Xie, When an attacker meets a cipher-image: A year in review, J. Inf. Secur. Appl., 48 (2019), 1–9. https://doi.org/10.1016/j.jisa.2019.102361 doi: 10.1016/j.jisa.2019.102361 |