For a simple connected graph $ \Gamma $ with node set $ V(\Gamma) = \{w_{1}, w_{2}, \dots, w_{n}\} $ and degree sequence $ d_{i} $, the atom-bond connectivity ($ ABC $) matrix of $ \Gamma $ has an $ (ij) $-th entry $ \sqrt{\frac{d_{i}+d_{j}-2}{d_{i}d_{j}}} $ if $ w_{i} $ is adjacent to $ w_{j} $ and $ 0 $, otherwise. The multiset of all eigenvalues of $ ABC $ matrix is known as the $ ABC $ spectrum and their absolute sum is known as the $ ABC $ energy of $ \Gamma. $ Two graphs of same order are known as $ ABC $ equienergetic if they have the same $ ABC $ energy but share different $ ABC $ spectrum. We describe the $ ABC $ spectrum of some special graph operations and as an application, we construct the $ ABC $ equienergetic graphs. Further, we give linear regression analysis of $ ABC $ index/energy with the physical properties of anticancer drugs. We observe that they are better correlated with $ ABC $-energy.
Citation: Alaa Altassan, Muhammad Imran, Bilal Ahmad Rather. On $ ABC $ energy and its application to anticancer drugs[J]. AIMS Mathematics, 2023, 8(9): 21668-21682. doi: 10.3934/math.20231105
For a simple connected graph $ \Gamma $ with node set $ V(\Gamma) = \{w_{1}, w_{2}, \dots, w_{n}\} $ and degree sequence $ d_{i} $, the atom-bond connectivity ($ ABC $) matrix of $ \Gamma $ has an $ (ij) $-th entry $ \sqrt{\frac{d_{i}+d_{j}-2}{d_{i}d_{j}}} $ if $ w_{i} $ is adjacent to $ w_{j} $ and $ 0 $, otherwise. The multiset of all eigenvalues of $ ABC $ matrix is known as the $ ABC $ spectrum and their absolute sum is known as the $ ABC $ energy of $ \Gamma. $ Two graphs of same order are known as $ ABC $ equienergetic if they have the same $ ABC $ energy but share different $ ABC $ spectrum. We describe the $ ABC $ spectrum of some special graph operations and as an application, we construct the $ ABC $ equienergetic graphs. Further, we give linear regression analysis of $ ABC $ index/energy with the physical properties of anticancer drugs. We observe that they are better correlated with $ ABC $-energy.
[1] | A. Altassan, B. A. Rather, M. Imran, Inverse sum indeg index (energy) with applications to anticancer drugs, Mathematics, 10 (2022), 4749. https://doi.org/10.3390/math10244749 doi: 10.3390/math10244749 |
[2] | A. E. Brouwer, W. H. Haemers, Spectra of graphs, New York: Springer 2011. |
[3] | G. Chartrand, P. Zhang, Introduction to graph theory, Tata McGraw-Hill edition, New Delhi, 2006. |
[4] | J. Chen, X. Gou, Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 713–722. |
[5] | X. Chen, On $ ABC $ eigenvalues and $ ABC $ energy, Linear Algebra Appl., 544 (2018), 141–157. https://doi.org/10.1016/j.laa.2018.01.011 doi: 10.1016/j.laa.2018.01.011 |
[6] | X. Chen, On extremality of $ ABC $ spectral radius of a tree, Linear Algebra Appl., 564 (2019), 159–169. https://doi.org/10.1016/j.laa.2018.12.003 doi: 10.1016/j.laa.2018.12.003 |
[7] | X. Chen, A note on $ ABC $ spectral radius of graphs, Linear Multilinear Algebra, 70 (2022), 775–786. http://doi.org/10.1080/03081087.2020.1748849 doi: 10.1080/03081087.2020.1748849 |
[8] | D. M. Cvetković, M. Doob, H. Sachs, Spectra of graphs: theory and applications, Pure and Applied Mathematics, New York: Academic Press, 1980. |
[9] | K. C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math., 158 (2010), 1181–1188. https://doi.org/10.1016/j.dam.2010.03.006 doi: 10.1016/j.dam.2010.03.006 |
[10] | E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849–855. |
[11] | E. Estrada, The $ ABC $ matrix, J. Math. Chem., 55 (2017), 1021–1033. https://doi.org/10.1007/s10910-016-0725-5 |
[12] | B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discrete Appl. Math., 157 (2009), 2828–2835. https://doi.org/10.1016/j.dam.2009.03.004 doi: 10.1016/j.dam.2009.03.004 |
[13] | Y. Gao, Y. Shao, The minimum $ ABC $ energy of trees, Linear Algebra Appl., 577 (2019), 186–203. https://doi.org/10.1016/j.laa.2019.04.032 doi: 10.1016/j.laa.2019.04.032 |
[14] | M. Ghorbani, X. Li, M. Hakimi-Nezhaad, J. Wang, Bounds on the $ ABC $ spectral radius and $ ABC $ energy of graphs, Linear Algebra Appl., 598 (2020), 145–164. https://doi.org/10.1016/j.laa.2020.03.043 doi: 10.1016/j.laa.2020.03.043 |
[15] | I. Gutman, J. Tošović, S. Radenković, S. Marković, On atom-bond connectivity index and its chemical applications, Indian J. Chem., 51A (2012), 690–694. |
[16] | I. Gutman, B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem., 68 (2012), 131–136. |
[17] | I. Gutman, X. Li, Y. Shi, Graph energy, New York: Springer, 2009. |
[18] | A. Hamzeh, A. R. Ashrafi, Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups, Filomat, 31 (2017), 5323–5334. https://doi.org/10.2298/FIL1716323H doi: 10.2298/FIL1716323H |
[19] | S. M. Hosamani, B. B. Kulkarni, R. G. Boli, V. M. Gadag, QSPR analysis of certain graph theoratical matrices and their corresponding energy, Appl. Math. Nonlinear Sci., 2 (2017), 131–150. https://doi.org/10.21042/AMNS.2017.1.00011 doi: 10.21042/AMNS.2017.1.00011 |
[20] | S. A. K. Kirmani, P. Ali, F. Azam, P. A. Alvi, On ve-degree and ev-degree topological properties of hyaluronic acid? Anticancer drug conjugates with QSPR, J. Chem., 2021 (2021), 3860856. https://doi.org/10.1155/2021/3860856 doi: 10.1155/2021/3860856 |
[21] | X. Li, J. Wang, on the $ ABC $ spectral radius of unicyclic graphs, Linear Algebra Appl., 596 (2020), 71–81. https://doi.org/10.1016/j.laa.2020.03.007 doi: 10.1016/j.laa.2020.03.007 |
[22] | S. Li, L. Wang, H. Zhang, on $ ABC $ Estrada index of graphs, Discrete Math., 344 (2021), 112586. https://doi.org/10.1016/j.disc.2021.112586 doi: 10.1016/j.disc.2021.112586 |
[23] | Z. Mehranian, A. Gholami, A. R. Ashrafi, The spectra of power graphs of certain finite groups, Linear Multilinear Algebra, 65 (2017), 1003–1010. https://doi.org/10.1080/03081087.2016.1221375 doi: 10.1080/03081087.2016.1221375 |
[24] | S. Nasir, N. ul Hassan Awan, F. B. Farooq, S. Parveen, Topological indices of novel drugs used in blood cancer treatment and its QSPR modelling, AIMS Math., 7 (2022), 11829–11850. https://doi.org/10.3934/math.2022660 doi: 10.3934/math.2022660 |
[25] | A. Patil, K. Shinde, Spectrum of the zero divisor graphs of von Neumann regular rings, J. Algebra Appl., 21 (2021), 2250193. http://doi.org/10.1142/S0219498822501936 doi: 10.1142/S0219498822501936 |
[26] | H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, et al., Equienergetic graphs, Kragujevac J. Math., 26 (2004), 5–13. |
[27] | B. A. Rather, On distribution of Laplacian eigenvalues of graphs, arXiv, 2020. https://doi.org/10.48550/arXiv.2107.09161 |
[28] | B. A. Rather, S. Pirzada, G. F. Zhou, On distance Laplacian spectra of power graphs of certain finite groups, Acta Math. Sin., 39 (2023), 603–617. https://doi.org/10.1007/s10114-022-0359-4 doi: 10.1007/s10114-022-0359-4 |
[29] | B. A. Rather, H. A. Ganie, S. Pirzada, On $ A_{\alpha} $-spectrum of joined union and its applications to power graphs of certain finite groups, J. Algebra Appl., 2022, 2350257. https://doi.org/10.1142/S0219498823502572 |
[30] | B. A. Rather, M. Aouchiche, M. Imran, On Laplacian eigenvalues of comaximal graphs of commutative rings, Indian J. Pure Appl. Math., 2023. https://doi.org/10.1007/s13226-023-00364-8 |
[31] | M. C. Shanmukha, N. S. Basavarajappa, K. C. Shilpa, A. Usha, Degree-based topological indices on anticancer drugs with QSPR analysis, Heliyon, 6 (2020), e04235. https://doi.org/10.1016/j.heliyon.2020.e04235 doi: 10.1016/j.heliyon.2020.e04235 |