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Abstract: For a simple connected graph Γ with node set V(Γ) = {w1,w2, . . . ,wn} and degree sequence

di, the atom-bond connectivity (ABC) matrix of Γ has an (i j)-th entry
√

di+d j−2
did j

if wi is adjacent to
w j and 0, otherwise. The multiset of all eigenvalues of ABC matrix is known as the ABC spectrum
and their absolute sum is known as the ABC energy of Γ. Two graphs of same order are known as
ABC equienergetic if they have the same ABC energy but share different ABC spectrum. We describe
the ABC spectrum of some special graph operations and as an application, we construct the ABC
equienergetic graphs. Further, we give linear regression analysis of ABC index/energy with the physical
properties of anticancer drugs. We observe that they are better correlated with ABC-energy.

Keywords: adjacency matrix; ABC matrix; atom-bond connectivity; equienergetic graphs;
correlation
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1. Introduction

Throughout this paper all graphs will be assumed to be finite, connected and simple. A graph Γ
consists of node set V(Γ) = {w1,w2, . . . ,wn} and edge set E(Γ). Furthermore |V(Γ)| is the order n and
|E(Γ)| is the size m of Γ. We write w ∼ u if w is adjacent to u. The neighbourhood of w denoted by
N(w) is the set of nodes adjacent to v. The notation dΓ(wi) (dwi or di) denotes the degree of wi. A graph
Γ is r-regular if dw = r, for every w. For other graph terminology and definitions we follow [3].

The adjacency matrix A(Γ) = (ai j) of Γ is a square matrix of order n, with ai j = 1, if wi ∼ w j, and
ai j = 0, otherwise. The adjacency matrix A(Γ) is real symmetric, so its eigenvalues are real, denoted
by ζ1(Γ) ≥ ζ2(Γ) ≥ · · · ≥ ζn(Γ) and is known as the adjacency spectrum (or spectrum) of Γ. The energy
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of Γ is defined as

E(Γ) =
n∑

i=1

|ζi(Γ)|.

The spectral parameter E(Γ) is widely studied parameter since it is related to the π-electron energy of
hydrocarbons in mathematical chemistry. Two graphs with same order are known as equienergetic (or
adjacency equienergetic) if they share the same energy but have the different adjacency spectrum. For
more about the energy E(Γ) of Γ, we refer to [17]. If an eigenvalue θ of matrix M is repeated k times
we say θ is the eigenvalue of M with multiplicity (order) k and denote it by θ[k]. Further readings about
A(Γ) can be seen in [2, 8].

The ABC index is a topological index defined in [10] as following

ABC =
∑

wiw j∈E(Γ)

√
di + d j − 2

did j
.

In [10] the ABC index was shown to be correlated to the heat formation of alkanes. In [15] the authors
proved that the ABC index can generate the heat of formation with sound accuracy comparable to that
of high-level ab into and DFT (MP2, B3LYP) quantum chemical calculations. More mathematical
literature of ABC index can be found in [4,9,12,16]. The ABC matrix of graph Γ is a square matrix of
order n and is defined as

ABC(Γ) =


√

di + d j − 2
did j

if wi ∼ w j,

0 otherwise.

Estrada [11] introduced an ABC matrix which is related to atom-bond connectivity (ABC index) of Γ.
Let θ1 ≥ θ2 ≥ · · · ≥ θn be the ABC eigenvalues of Γ, where θ1 is the ABC spectral radius of Γ. The

ABC energy EABC [11] of Γ is defined as

EABC(Γ) =
n∑

i=1

|θi|.

The graphs Γ1 and Γ2 of order n are said to be ABC equienergetic if EABC(Γ1) = EABC(Γ2) while
they share the distinct ABC spectrum. The ABC spectral parameters like energy were studied in [5],
ABC spectral radius in [14] and other spectral properties in [6, 7, 13, 21, 22].

Kn is the complete graph, Ka,b is the complete bipartite graph, Pn is the path graph and Cn is the
cycle graph. For terminology and notations not defined here, we refer the readers to [8, 27].

Ramane et al. [26] established several results concerning the equienergetic graphs. Li et al. [22]
introduced the ABC matrix index of graphs and related with the ABC energy. Gao et al. [13]
characterized the extremal ABC energy of trees. Chen [5, 6] obtained results about distinct ABC
eigenvalues and results about ABC spectral radius of trees.

The present report is organized as follows: In Section 2 we discuss the ABC spectrum of the Γ-join
of regular graphs and the lexicographic product of graphs. In Section 3 we presents results on the
ABC equienergetic graphs. In Section 4 we discusses applications of ABC energy/index to physical
properties of anticancer drugs and gives their linear regression analysis.
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2. The ABC eigenvalues of the Γ-join of regular graphs

The Γ-join Γ[Γ1,Γ2, . . . ,Γn] of graphs Γ1,Γ2, . . . ,Γn with underlying graph Γ is the graph
⋃n

i=1 Γi

together with the edges from each node of Γi to every node of Γ j when wi ∼ w j in Γ. Thus, the join of
two graphs Γ1 ⊔ Γ2 is the Γ-join K2[Γ1,Γ2].

Let M be a partitioned block matrix and Q be the matrix with entries as the average row sums
(column sums) of the blocks of M. Q is know as the quotient matrix and if the row sums (columns
sums) of each block in M are some constants then the partition is regular (equitable) and we say Q
is regular (equitable) quotient matrix (see [2]). The eigenvalue of M interlace the eigenvalues of Q.
However, for regular partitions the spectrum (see [2, 8]) of Q is contained in the spectrum of M.

Our first result gives the ABC spectrum of Γ[Γ1,Γ2, . . . ,Γn] where Γi are regular graphs in terms of
the adjacency spectrum of Γi and the spectrum of an auxiliary matrix.

Theorem 2.1. Let Γ be a connected graph with nodes {w1,w2, . . . ,wn} and let Γi be an ri regular
graphs of orders ni having adjacency eigenvalues ζi,1 = ri ≥ ζi,2 ≥ · · · ≥ ζi,ni . Then, the ABC spectrum

of Γ[Γ1,Γ2, . . . ,Γn] consists of the eigenvalues
√

2r′i−2

r′i
ζi,k where k = 2, 3, . . . , ni and r′i = ri +

∑
w j∈NΓ(wi)

n j,

for i = 1, 2, . . . , n. The other ABC eigenvalues of Γ[Γ1,Γ2, . . . ,Γn] are the eigenvalues of the following
regular quotient matrix 

r1

r′1

√
2r′1 − 2 n2q1,2 . . . nnq1,n

n1q2,1
r2

r′2

√
2r′2 − 2 . . . nnq2,n

...
...

. . .
...

n1qn,1 n2qn,2 . . .
rn

r′n

√
2r′n − 2


, (2.1)

where qi j = q ji =

√
r′i+r′j−2

r′i r
′
j

if wi is adjacent to w j and 0 otherwise.

Proof. Let V(Γi) = {wi1, . . . ,wini} be the node set of Γi, for i = 1, 2, . . . , n. Let H = Γ[Γ1, . . . ,Γn]
be the Γ-join of ri regular graphs Γi, where i = 1, 2, . . . , n. Since Γi is ri regular, the degree of nodes
wi j ∈ V(H) for 1 ≤ i ≤ n and 1 ≤ j ≤ ni is equal to the degree of j-th node in Γ j plus the sum of order
of Γ j’s in H which neighbours the node w j in Γ, that is, dH(wi j) = ri +

∑
w j∈NΓ(wi)

ni. Labelling the nodes

of H from Γ1 to Γn, the ABC matrix can be put as

ABC(H) =



√
2r′1−2

r′1
A(Γ1) a12 . . . a1n

a21

√
2r′2−2

r′2
A(Γ2) . . . a2n

...
...

. . .
...

an1 an2 . . .

√
2r′n−2
r′n

A(Γn)


,

where ai j =

√
r′i+r′j−2

r′i r
′
j

Jni×n j if wi is adjacent to w j in Γ and 0 otherwise. J is the matrix with all entries

equal to 1 and r′i = ri +
∑

w j∈NΓ(wi)
n j, for i = 1, 2, . . . , n.
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For a regular graph Γi, the vector Eni = (1, 1, . . . , 1︸      ︷︷      ︸
ni

)T is the eigenvector of the eigenvalue ri of

A(Γi) and the remaining eigenvectors of A(Γi) are orthogonal to it. Let ζik, 2 ≤ k ≤ ni be an arbitrary
eigenvalue of A(Γi) with the eigenvector X = (bi1, bi2, . . . , bini)

T such that ET
ni

X = 0. Thus, X can be
considered as a mapping defined on V(Γi) relating wi j to bi j, that is, X(wi j) = bi j for i = 1, 2, . . . , n and
j = 1, 2, . . . , ni. Consider the new vector Y = (c1, c2, . . . , cn)T , where

c j =

{
bi j if wi j ∈ V(Γi),

0 otherwise.

Since ET
ni
X = 0 the coordinates of Y related to nodes in

⋃
j,i

w j of H are zeros.

ABC(H)Y =



√
r′1+r′i−2

r′1r′i
Jn1×niX

...√
r′i−1+r′i−2

r′i−1r′i
Jni−1×niX

√
2r′i−2

r′i
A(Γi)X√

r′i+1+r′i−2
r′i+1r′i

Jni+1×niX

...√
r′n+r′i−2

r′nr′i
Jnn×niX



=



0
...

0
√

2r′i−2

r′i
ζikX

0
...

0


=

( √
2r′1 − 2

r′1
ζik

)
Y.

This proves thatY is the eigenvector of ABC(H) related to the eigenvalue
√

2r′1−2

r′1
ζik for each eigenvalue

ζik, 2 ≤ k ≤ ni, of A(Γi). So, it implies that with 1 ≤ i ≤ n and 2 ≤ k ≤ ni,
√

2r′1−2

r′1
ζik is an eigenvalue of

ABC(H). Thus, we obtain
∑n

i=1 ni − n eigenvalues of ABC(H). The other n, ABC eigenvalues of H are
the eigenvalues of the following regular quotient matrix.

r1

r′1

√
2r′1 − 2 n2q1,2 . . . nnq1,n

n1q2,1
r2

r′2

√
2r′2 − 2 . . . nnq2,n

...
...

. . .
...

n1qn,1 n2qn,2 . . .
rn

r′n

√
2r′n − 2


.

This completes the proof. □
The lexicographic product Γ[H1] of two graphs Γ and H1 is the graph with node set V(Γ) × V(H1)

and (c, x)(d, y) ∈ E(Γ[H1]) whenever cd ∈ E(Γ) or c = d and xy ∈ E(H1). Clearly, the lexicographic
product Γ[H1] of Γ and H1 is the Γ-join Γ[H1,H1, . . . ,H1]. That is, Γ[H1] = Γ[H1,H1, . . . ,H1]. Taking,
Γi = H1 for all i in Theorem 2.1, we obtain the following result which gives the ABC spectrum of the
lexicographic product Γ[H1].

Corollary 2.2. Let Γ be a connected graph of order n and let H1 be a connected r regular graph
of order n1. Let ζ1(H1) ≥ ζ2(H1) ≥ . . . ≥ ζn1(H1) be the eigenvalues of A(H1). The ABC spectrum
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of the lexicographic product Γ[H1] = Γ[H1, . . . ,H1] consists of the eigenvalues
√

2r′i−2

r′i
ζk(H1), where

r′i = r + n1
∑

v∈NΓ(wi)
, for i = 1, 2, . . . , n and k = 1, 2, . . . , n1 − 1. The other n eigenvalues of Γ[H1] are the

eigenvalues of the following regular quotient matrix
r
r′1

√
2r′2 − 2 n2q1,2 . . . nnq1,n

n1q2,1
r
r′1

√
2r′1 − 2 . . . nnq2,n

...
...

. . .
...

n1qn,1 n2qn,2 . . . r
r′n

√
2r′n − 2

 , (2.2)

where qi j = q ji =

√
r′i+r′j−2

r′i r
′
j

if wi ∼ w j and 0 otherwise.

As an application of Theorem 2.1, we obtain the ABC eigenvalues of the join of regular graphs Γ1

and Γ2.

Corollary 2.3. Let Γ1 and Γ2 be r1 and r2 regular graphs with orders n1 and n2, respectively. Let
ζ1 = r1, ζ2, . . . , ζn1 and µ1 = r2, µ2, . . . , µn2 be the adjacency eigenvalues of Γ1 and Γ2, respectively. Then

the ABC spectrum of Γ1 ⊔ Γ2 consists of eigenvalues

√
2r′1 − 2

r′1
ζi and

√
2r′2 − 2

r′2
µ j with multiplicities

n1 − 1 and n2 − 1 respectively, where r
′

1 = r1 + n2 and r
′

2 = r2 + n1. The remaining two ABC eigenvalues
of Γ1 ⊔ Γ2 are the eigenvalues of the matrix given below

r1

r′1

√
2r′1 − 2 n2

√
r
′

1 + r
′

2 − 2
r′1r′2

n1

√
r
′

1 + r
′

2 − 2
r′1r′2

r2

r′2

√
2r′2 − 2

 . (2.3)

From Corollary 2.3, we obtain the ABC spectrum of Ka,n−a = Ka ⊔ Kn−a, the complete split graph
CS ω,n−ω = Kω ⊔ Kn−ω, the graph Kn − e = Kn−2 ⊔ K2 obtained from Kn by deleting an edge and many
other graphs.

The double star D(α, β) is the tree of order n = α + β + 2, obtained by adding an edge between the
nodes of maximum degrees of the stars K1,α and K1,β. The complement of Γ is denoted by Γ. As an
application of Theorem 2.1, we can find the ABC spectrum of the double star and its complement.

Proposition 2.4. Let α, β be the positive integers such that α + β = n − 2. Then, the following holds.

(i) The ABC eigenvalues of D(α, β) are 0 with order n − 2 and the zeros of the following polynomial

x4 − x2
(
α2

α + 1
+

α

(α + 1)(β + 1)
+

β

(α + 1)(β + 1)
+
β2

β + 1

)
+

α2β2

(α + 1)(β + 1)
.

(ii) The ABC eigenvalues of D(α, β) are −
√

2n−6
n−2 with order n− 2 and the eigenvalues of matrix (2.4).
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Proof. It is clear that D(α, β) = P4[K1,Kα,Kβ,K1]. By using Theorem 2.1 and the adjacency spectrum
of Kn is {0n} we obtain the ABC eigenvalue 0 with order α + β − 2. The other four ABC eigenvalues of
D(α, β) are the eigenvalues of the following matrix

0
√
α
α+1 0 0

α
√
α
α+1 0

√
α+β

(α+1)(β+1) 0

0
√

α+β

(α+1)(β+1) 0 β
√
β

β+1

0 0
√
β

β+1 0


,

and its characteristic polynomial is

x4 − x2
(
α2

α + 1
+

α

(α + 1)(β + 1)
+

β

(α + 1)(β + 1)
+
β2

β + 1

)
+

α2β2

(α + 1)(β + 1)
.

Similarly, D(α, β) can be presented as D(α, β) = P4[K1,Kα,Kβ,K1]. Now by applying Theorem 2.1 and

the spectrum of Kη is {η − 1, (−1)[η−1]}, the ABC eigenvalues of D(a, b) are the eigenvalue −
√

2(α+β)−2
α+β

with order α + β − 2 and the eigenvalues of the matrix presented below

0 α
√

2α+β−2
α(α+β) 0 0√

2α+β−2
α(α+β)

(α−1)
√

2α+2β−2
α+β

β
√

2α+2β−2
α+β

0

0
α
√

2α+2β−2
α+β

(β−1)
√

2α+2β−2
α+β

√
α+2β−2
β(α+β)

0 0 β
√
α+2β−2
β(α+β) 0


. (2.4)

□
The graph operation Γ-join is known by several names in the literature, like generalized

composition, generalized join graph operation and Γ-join graph operation. Among the graph
operations, Γ-join is an interesting operation because almost all connected graphs can be written in
terms of Γ-join. More interestingly, the graphs defined on algebraic structures like power graphs of
finite groups, commuting graphs of finite groups, zero divisor graphs of finite rings (modules and
lattices), unit graphs or rings and many other algebraic graphs can be written in terms of the Γ-join
of graphs. For some applications of the spectrum of the Γ-join of graphs with different types of graph
matrices the reader is referred to [18, 23, 25, 27–30] and the references therein.

3. ABC equienergetic graphs

In this section, we construct the ABC equienergetic graphs using Theorem 2.1 and the operation
Γ-join of graphs.

Theorem 3.1. Let Γ be a connected graph with nodes {w1,w2, . . . ,wn} and for i = 1, 2, . . . , n, let
Γi and Hi be ri regular adjacency equienergetic graphs of orders ni having adjacency eigenvalues
ζi,1 = ri ≥ ζi,2 ≥ · · · ≥ ζi,ni . Then,

EABC(Γ[Γ1,Γ2, . . . ,Γn]) = EABC(Γ[H1,H2, . . . ,Hn]).
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Proof. As Γi’s and Hi’s are of same order ni (same degree ri), for each i = 1, 2, . . . , n. So, the regular
quotient matrices of Γ[Γ1,Γ2, . . . ,Γn] and Γ[H1,H2, . . . ,Hn] are same

r1

r′1

√
2r′2 − 2 n2q1,2 . . . nnq1,n

n1q2,1
r1

r′1

√
2r′1 − 2 . . . nnq2,n

...
...

. . .
...

n1qn,1 n2qn,2 . . .
rn

r′n

√
2r′n − 2


,

where qi j = q ji =

√
r′i+r′j−2

r′i r
′
j
, if wi is adjacent to w j and 0, otherwise. Thus, the spectrum of regular

quotient matrix adds the same quantity say E1 to the ABC energy of Γ-joins. Now, for i = 1, 2, . . . , n,

using the fact that
ni∑
j=1
|ζi, j(Γi)| = E(Γi) and ABC spectrum of Γ[Γ1,Γ2, . . . ,Γn] consists of the eigenvalues

√
2r′i−2

r′i
ζi,k(Γi) we obtain

n∑
i=1

ni∑
j=2

√
2r′i − 2

r′i
|ζi, j(Γi)| =

n∑
i=1

√
2r′i − 2

r′i

ni∑
j=2

|ζi, j(Γi)| =
n∑

i=1

√
2r′i − 2

r′i

(
E(Γi) − ri

)
,

where E(Γi) is the energy of Γi, for i = 1, 2, . . . , n.

Similarly, using the fact that the ABC eigenvalues of Γ[H1,H2, . . . ,Hn] are of the form
√

2r′i−2

r′i
ζi,k(Hi)

we have

n∑
i=1

ni∑
j=2

√
2r′i − 2

r′i
|ζi, j(Hi)| =

n∑
i=1

√
2r′i − 2

r′i

ni∑
j=2

|ζi, j(Hi)| =
n∑

i=1

√
2r′i − 2

r′i

(
E(Hi) − ri

)
,

where E(Hi) =
n∑

i=1
|ζi(Hi)| is the energy of Hi, for i = 1, 2, . . . , n. Therefore, by the equienergetic

properties of Γi and Hi we have

EABC(Γ[Γ1,Γ2, . . . ,Γn]) = E1 +

n∑
i=1

√
2r′i − 2

r′i

(
E(Γi) − ri

)
= E1 +

n∑
i=1

√
2r′i − 2

r′i

(
E(Hi) − ri

)
= EABC(Γ[H1,H2, . . . ,Hn]).

□
We will illustrate Theorem 3.1 with the help of a example.

Example 3.2. Let Γ = K2[C6,C6] and H = K2[C6, (K3 ∪ K3)] be the two graphs. We will show that
EABC(Γ) = EABC(H). Since the eigenvalues of A(C6) are {2,−2, (−1)2, 12} and by Theorem 2.1, the
ABC eigenvalues of Γ are

{(0.46774)4, (−0.46774)4, (−0.93541)2)},
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the remaining two ABC eigenvalues of Γ are the eigenvalues of the following matrix(1
4

√
14 3

4

√
14

3
4

√
14 3

4

√
14

)
, (3.1)

and its eigenvalues are 3.74166 and −1.87083. Thus, by using Theorem 3.1 the ABC energy of Γ is

EABC(Γ) = 3.74166 + 1.87083 + 2(0.93541) + 8(0.46774) = 11.22497.

Similarly, noting that the adjacency spectrum of K3 is {2,−1,−1}, the ABC spectrum of H consists of
the eigenvalues {0.935414,−0.935414, (0.467707)2, (−0.467707)6} and the eigenvalues of (3.1). Now,
it is easy to verify that EABC(H) = 11.22497 = EABC(Γ).

From Theorem 3.1, we see that Γ[Γ1,Γ2, . . . ,Γn] and Γ[H1,H2, . . . ,Hn] share the same regular
quotient matrix and have equal part in their ABC energy. Thus, it is necessary for ABC equienergetic
graphs that the set of the union of adjacency spectra A(Γi)− {ri} is different from the set of the union of
adjacency spectrum A(Hi) − {ri}.

As in Example 3.2, we have the following collection of ABC equienergetic graphs.

Pn[C6,C6, . . . ,C6,C6],
Pn[C6,C6, . . . ,C6,C3 ∪C3],
Pn[C6,C6, . . . ,C3 ∪C3,C3 ∪C3],
...

Pn[C6,C3 ∪C3, . . . ,C3 ∪C3,C3 ∪C3],
Pn[C3 ∪C3,C3 ∪C3, . . . ,C3 ∪C3,C3 ∪C3].

In the above manner, for any pair of adjacency equienergetic graphs say Γ1 and Γ2, we get at least three
ABC equienergetic graphs K2[Γ1,Γ1],K2[Γ1,Γ2] and K2[Γ2,Γ2]. Therefore, we construct infinite class
of ABC equienergetic graphs by using the graph operation Γ-join.

4. Anti-cancer drugs

Topological indices are numeric descriptors that are obtained from molecular graphs to describe
their chemical system. Degree-based topological indices are of great importance and particularly in
mathematical chemistry. The use of graph invariant in QSPR and QSAR studies has been of key interest
in recent years. Topological indices have application in the non-empirical Quantitative Structure-
Property Relationships (QSPR) and Quantitative Structure -Activity Relationships (QSAR) [1, 19,
20, 24, 31]. These psychochemical qualities are being studied because they have direct impact on
bioactivity and drug transit in the human body and thereby help in designing better drugs. We
compute ABC index and ABC energy of certain cancer drugs. We carry the linear regression and study
their correlation and coefficient of determinations R2. We consider the following drugs (see chemical
structures Figure 1) for our QSPR study.
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Azacitidine

Busulfan
Mercaptopurine

Tioguanine
Nelarabine

Cytarabine

Melphalan Dexamethasone Doxorubicin

Carboplatin
Bosutinib Dasatinib

Figure 1. Molecular structure of certain drugs.

Azacytidine is used as an antineoplastic agent and its chemical formula is C8H12N4O5. Busulfan
is an antineoplastic alkylating agent commonly used for several types of cancer. They prevent tumor
development by cross linking guanine bases in DNA double-helix strands, directly attacking DNA.
Thus strands are unable to separate and uncoil which is necessary in DNA replication and cells are
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no longer divided. The molecular formula for bulasan is C8H14N6S 2. Mercaptopurine (C5H4N4S ) is s
series of purine analogues that interfere with nucleic acid biosynthesis and is active against human
leukemias. Tioguanine (C5H5N5S ) is an antineoplastic compound which also has antimetabolite
action and is used in the therapy of acute leukemia. Nelarabine (C11H15N5O5) is a purine nucleoside
analog and antineoplastic agent used for the treatment of acute T-cell lymphoblastic leukemia
and T cell lymphoblastic lymphoma with inadequate clinical response to prior chemotherapeutic
treatments. Cytarabine (C9H13N3O5) is an antineoplastic antimetabolite used in the treatment of
various forms of leukemia, including acute myelogenous leukemia and meningeal leukemia. Melphala
is (C13H18Cl2N2O2) is an antineoplastic alkylating agents and is used in the treatment of cancers.
Alkylating agents are known for their ability to add alkyl groups to many electronegative groups
under conditions present in cells. They stop tumor growth by crosslinking guanine bases in DNA.
Dexamethasone (C22H29FO5) is a glucocorticoid available in various modes of administration that is
used to prevent various inflammatory conditions, including bronchial asthma, endocrine and rheumatic
disorders. Doxorubicine (C27H29NOD) is an antineoplastic in the anthracycline class. Anthracyclines
are the most important anti tumor drugs available. Carbopalatin (C6H12N2O4Pt) is a alkylating agent
used to treat advanced ovarian cancer. Bosutinib (C26H29Cl2N5O5) is used to treat chronic myeloid
leukemia (a type of cancer of white blood cells). Dasatinib (C22H26ClN7S ) is a tyrosine kinase inhibitor
used for the treatment of lymphoblastic or chronic myeloid leukemia.

The physical properties values of these anticancer drugs are taken from Chem Spider. Properties
include molar volume (MV), refractive index (R), complexity (C) and flash point (FP). The ABC index
and ABC energy are calculated by mathematical software. From Table 1, it is clear that these data
values are normally distributed. So, linear regression model is most suitable to test and adopt an
analysis for the same.

Table 1. Molar volume MV, refractive index RI, complicity C, flash point FP, ABC index and
ABC energy of drugs given in Figure 1.

Drug MV (cm3) RI (m3 mol−1) C FP ◦C ABC EABC
Azacitidine 117.10 54.10 384.00 277.00 22.0424 25.7008

Busulfan 182.40 50.90 234.40 21.4787 22.8048
Mercaptopurine 94.20 41.00 19.00 250.50 10.9109 12.7935

Tioguanine 80.20 46.89 225.00 232.00 12.3941 14.5517
Nelarabine 149.90 65.80 377.00 389.90 27.9857 31.9586
Cytarabine 128.40 52.60 383.00 283.80 22.778 26.8256
Melphalan 231.20 78.23 265.00 239.00 28.4535 31.5644

Dexamethasone 296.20 100.20 805.00 298.00 43.9525 49.7114
Doxorubicin 336.60 134.59 977.00 443.80 53.0933 60.3944
Carboplatin 60.04 177.00 19.819 21.178
Bosutinib 388.30 142.12 734.00 346.70 51.1774 56.4559
Dasatinib 366.40 133.08 642.00 46.3232 52.3302

We carry the regression analysis for the drugs listed in Figure 1. Linear regression model is tested
with the help of equation:

P = a + b · ∗,

AIMS Mathematics Volume 8, Issue 9, 21668–21682.



21678

where P is a physicochemical property of a drug, ∗ is either ABC or ABC energy, a is a constant and b
represents regression coefficient.

Table 2 gives the correlation coefficients of the physiochemical properties of drugs given in Figure 1
with the graph invariants ABC index and the ABC energy. From the table, we observe that RI is highly
correlated with ABC index while FP is least related in both cases.

Table 2. Correlation coefficients of MV, RI, C and FP with ABC index and ABC energy of
drugs given in Figure 1.

Invariant MV (cm3) RI (m3 mol−1) C FP ◦C
ABC 0.957399 0.968961 0.940544 0.735575

EABC 0.949354 0.964731 0.950077 0.752718

Table 3 gives the coefficient of determinations R2 of the physiochemical properties with ABC and
EABC.We see that RI achieves maximum R2 in both case of ABC and EABC.

Table 3. R2 of MV, RI, C and FP with ABC index and ABC energy of drugs given in Figure 1.

Invariant MV (cm3) RI (m3 mol−1) C FP ◦C
ABC 0.8442 0.9389 0.8385 0.0609

EABC 0.8405 0.9307 0.867 0.0.0699

Figure 2 shows the pictorial representation of linear regression of ABC and EABC with MV. The
approximated regression equations are:

MV = 7.7609 · ABC − 35.517with R2 = 0.8442.

MV = 6.9126 · EABC − 36.449with R2 = 0.8405.

MV with ABC MV with EABC

Figure 2. Linear regression of ABC index and ABC energy with molar volume (MV).

Figure 3 shows the pictorial representation of linear regression of ABC and EABC with RI. The
approximated regression equations are:

RI = 2.4579 · ABC + 6.158with R2 = 0.9389.
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RI = 6.9126 · EABC + 6.0212with R2 = 0.9307.

RI with ABC RI with EABC

Figure 3. Linear regression of ABC index and ABC energy with Refractive Index (RI).

Figure 4 shows the pictorial representation of linear regression of ABC and EABC with C. The
approximated regression equations are:

C = 19.264 · ABC − 162.9with R2 = 0.8385.

C = 17.486 · EABC − 176.31with R2 = 0.867.

C with ABC C with EABC

Figure 4. Linear regression of ABC index and ABC energy with Complexity (C).

Figure 5 shows the linear regression of ABC and EABC with FP. The approximated regression
equations are:

FP = 2.2249 · ABC + 182.77with R2 = 0.0609.

FP = 0.0699 · EABC + 177.55with R2 = 0.0699.
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FP with ABC FP with EABC
Figure 5. Linear regression of ABC index and ABC energy with Flash Point (FP).

The significant observation is that molar volume (MV), refractive index (R) and complexity (C) are
better related with the ABC index and the ABC energy and thereby may help in designing better drugs.
With this study, we can better understand the structure of these drugs and increase their efficiency
against cancer related diseases.
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