This paper deals with three-dimensional differential system of nonlinear fractional order problem
$ \begin{align*} D^{\alpha}_{0^{+}}\upsilon(\varrho) = f(\varrho,\omega(\varrho),\omega^{\prime}(\varrho),\omega^{\prime\prime}(\varrho),...,\omega^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\beta}_{0^{+}}\nu(\varrho) = g(\varrho, \upsilon(\varrho),\upsilon^{\prime}(\varrho),\upsilon^{\prime\prime}(\varrho),...,\upsilon^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\gamma}_{0^{+}}\omega(\varrho) = h(\varrho,\nu(\varrho),\nu^{\prime}(\varrho),\nu^{\prime\prime}(\varrho),...,\nu^{(n-1)}(\varrho)), \; \varrho \in (0,1), \end{align*} $
with the boundary conditions,
$ \begin{align*} \upsilon(0) = \upsilon^{\prime}(0) = ... = \upsilon^{(n-2)}(0) = 0,\; \upsilon^{(n-1)}(0) = \upsilon^{(n-1)}(1),\\ \nu(0) = \nu^{\prime}(0) = ... = \nu^{(n-2)}(0) = 0,\; \nu^{(n-1)}(0) = \nu^{(n-1)}(1),\\ \omega(0) = \omega^{\prime}(0) = ... = \omega^{(n-2)}(0) = 0,\; \omega^{(n-1)}(0) = \omega^{(n-1)}(1), \end{align*} $
where $ D^{\alpha}_{0^{+}}, D^{\beta}_{0^{+}}, D^{\gamma}_{0^{+}} $ are the standard Caputo fractional derivative, $ n-1 < \alpha, \beta, \gamma \leq n, \; n \geq 2 $ and we derive sufficient conditions for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems via Mawhin's coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.
Citation: M. Sathish Kumar, M. Deepa, J Kavitha, V. Sadhasivam. Existence theory of fractional order three-dimensional differential system at resonance[J]. Mathematical Modelling and Control, 2023, 3(2): 127-138. doi: 10.3934/mmc.2023012
This paper deals with three-dimensional differential system of nonlinear fractional order problem
$ \begin{align*} D^{\alpha}_{0^{+}}\upsilon(\varrho) = f(\varrho,\omega(\varrho),\omega^{\prime}(\varrho),\omega^{\prime\prime}(\varrho),...,\omega^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\beta}_{0^{+}}\nu(\varrho) = g(\varrho, \upsilon(\varrho),\upsilon^{\prime}(\varrho),\upsilon^{\prime\prime}(\varrho),...,\upsilon^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\gamma}_{0^{+}}\omega(\varrho) = h(\varrho,\nu(\varrho),\nu^{\prime}(\varrho),\nu^{\prime\prime}(\varrho),...,\nu^{(n-1)}(\varrho)), \; \varrho \in (0,1), \end{align*} $
with the boundary conditions,
$ \begin{align*} \upsilon(0) = \upsilon^{\prime}(0) = ... = \upsilon^{(n-2)}(0) = 0,\; \upsilon^{(n-1)}(0) = \upsilon^{(n-1)}(1),\\ \nu(0) = \nu^{\prime}(0) = ... = \nu^{(n-2)}(0) = 0,\; \nu^{(n-1)}(0) = \nu^{(n-1)}(1),\\ \omega(0) = \omega^{\prime}(0) = ... = \omega^{(n-2)}(0) = 0,\; \omega^{(n-1)}(0) = \omega^{(n-1)}(1), \end{align*} $
where $ D^{\alpha}_{0^{+}}, D^{\beta}_{0^{+}}, D^{\gamma}_{0^{+}} $ are the standard Caputo fractional derivative, $ n-1 < \alpha, \beta, \gamma \leq n, \; n \geq 2 $ and we derive sufficient conditions for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems via Mawhin's coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.
[1] | S. Abbas, M. Benchora, G. M. N'Guerekata, Topics in fractional differential equations, Springer, Newyork, 2012. |
[2] | Z. Hilfer, Appliations of fractional calculus in physics, World scientific, Singapore, 2000. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier science, B.V. Amsterdam, 2006. |
[4] | V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of fractional dynamic systems, Cambridge academic publishers, Cambridge, 2009. |
[5] | A. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial college press, London, 2010. |
[6] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, Newyork, 1993. |
[7] | Y. Zhou, Basic theory of fractional differential equations, World scientific, Singapore, 2014. |
[8] | F. Mainardi, Fractional diffusive waves in viscoelastic solids, in; J.L. Wegner, F.R. Norwood (Eds.), Nonlinear waves in solids, Fairfield, (1995), 93–97. |
[9] | H. Scher, E. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12 (1975), 2455–2477. https://doi.org/10.1103/physrevb.12.2455 doi: 10.1103/physrevb.12.2455 |
[10] | R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Physics A, 278 (2000), 107–125. https://doi.org/10.1016/s0378-4371(99)00503-8 doi: 10.1016/s0378-4371(99)00503-8 |
[11] | Z. Hu, W. Liu, T. Chen, Two-point boundary value problems for fractional differential equations at resonance, Boundary value problems, (2011), 1–10. |
[12] | W. Rui, Existence of solutions of nonlinear fractional differential equations at resonance, Electron. J Qual. Theo., 66 (2011), 1–12. https://doi.org/10.14232/ejqtde.2011.1.66 doi: 10.14232/ejqtde.2011.1.66 |
[13] | Z. Hu, W. Liu, T. Chen, Existence of solutions for a coupled system of fractional differential equations at resonance, Bound. value probl., (2012), 1–13. |
[14] | Z. Hu, W. Liu, W. Rui, Existence of solutions for a coupled system of fractional differential equations, Springer, (2012), 1–15. |
[15] | W. Jiang, Solvability for a coupled system of fractional differential equations at resonance, Nonlinear analysis, 13 (2012), 2285–2292. https://doi.org/10.1016/j.nonrwa.2012.01.023 doi: 10.1016/j.nonrwa.2012.01.023 |
[16] | V. Sadhasivam, J. Kavitha, M. Deepa, Existence of solutions of three-dimensional fractional differential systems, Applied mathematics, 8 (2017), 193–208. |
[17] | Z. Bai, Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Comput. Math. Appl., 60 (2010), 2364–2372. https://doi.org/10.1016/j.camwa.2010.08.030 doi: 10.1016/j.camwa.2010.08.030 |
[18] | G. Wang, W. Liu, S. Zhu, T. Zheng, Existence results for a coupled system of nonlinear fractional 2m-point boundary value problems at resonance, Adv. Differ. Equations, 44 (2011), 1–17. https://doi.org/10.1186/1687-1847-2011-44 doi: 10.1186/1687-1847-2011-44 |
[19] | C. S. Varun Bose, R. Udhayakumar, A. M. Elshenhab, M. S. Kumar, J. S. Ro, Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators, Fractal Fract., 6 (2022), 607. https://doi.org/10.3390/fractalfract6100607 doi: 10.3390/fractalfract6100607 |
[20] | T. Gayathri, M. Deepa, M. Sathish Kumar, V. Sadhasivam, Hille and Nehari Type Oscillation Criteria for Conformable Fractional Differential Equations, Iraqi Journal of Science, (2021), 578–587. |
[21] | N. Xu, W. Lui and L. Xiao, The existence of solutions for nonlinear fractional multi-point boundary value problems at resonance, J. Math. Ind., 65 (2012), 1–14. |
[22] | A. Guezane-Lakoud, R. Khaldi, A. Klicman, Solvability of a boundary value problem at resonance, Springerplus, 5 (2016), 1–9. |
[23] | L. Hu, S. Zhang, A. Shi, Existence of solutions for two-point boundary value problem of fractional differential equations at resonance, International journal of differential equations, (2014), 632434. https://doi.org/10.1155/2014/632434 |
[24] | Z. Hu, W. Liu, J. Lui, Boundary value problems for fractional differential equations, Bound. value probl., (2014), 1–11. |
[25] | L. Hu, On the existence of positive solutions for fractional differential inclusions at resonance, Springerplus, (2016), 1–12. |
[26] | N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Diff. Equ., 2010 (2010), 1–10. |
[27] | Y. Zhang, Z. Bai, T. Feng, Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance, Comput. Math. Appl., 61 (2011), 1032–1047. https://doi.org/10.1016/j.camwa.2010.12.053 doi: 10.1016/j.camwa.2010.12.053 |
[28] | L. Hu, S. Zhang, Existence and uniqueness of solutions for a higher order coupled fractional differential equations at resonance, Adv. Differ. Equations, 202 (2015), 1–14. https://doi.org/10.1186/s13662-015-0543-2 doi: 10.1186/s13662-015-0543-2 |
[29] | L. Hu, Existence of solutions to a coupled system of fractional differential equations with infinite point boundary value conditions at resonance, Adv. Differ. Equations, 200 (2016), 1–13. https://doi.org/10.1186/s13662-016-0924-1 doi: 10.1186/s13662-016-0924-1 |
[30] | J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations in topological methods for ordinary differential equations, Lect. Notes Math., 1537 (1993), 74–142. |